Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
iScience ; 27(6): 109949, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38799567

ABSTRACT

As the global aging population rises, finding effective interventions to improve aging health is crucial. Drug repurposing, utilizing existing drugs for new purposes, presents a promising strategy for rapid implementation. We explored naltrexone from the Library of Integrated Network-based Cellular Signatures (LINCS) based on several selection criteria. Low-dose naltrexone (LDN) has gained attention for treating various diseases, yet its impact on longevity remains underexplored. Our study on C. elegans demonstrated that a low dose, but not high dose, of naltrexone extended the healthspan and lifespan. This effect was mediated through SKN-1 (NRF2 in mammals) signaling, influencing innate immune gene expression and upregulating oxidative stress responses. With LDN's low side effects profile, our findings underscore its potential as a geroprotector, suggesting further exploration for promoting healthy aging in humans is warranted.

2.
bioRxiv ; 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38293129

ABSTRACT

Lifespan is influenced by complex interactions between genetic and environmental factors. Studying those factors in model organisms of a single genetic background limits their translational value for humans. Here, we mapped lifespan determinants in 85 genetically diverse C. elegans recombinant intercross advanced inbred lines (RIAILs). We assessed molecular profiles - transcriptome, proteome, and lipidome - and life-history traits, including lifespan, development, growth dynamics, and reproduction. RIAILs exhibited large variations in lifespan, which positively correlated with developmental time. Among the top candidates obtained from multi-omics data integration and QTL mapping, we validated known and novel longevity modulators, including rict-1, gfm-1 and mltn-1. We translated their relevance to humans using UK Biobank data and showed that variants in RICTOR and GFM1 are associated with an elevated risk of age-related heart disease, dementia, diabetes, kidney, and liver diseases. We organized our dataset as a resource (https://lisp-lms.shinyapps.io/RIAILs/) that allows interactive explorations for new longevity targets.

4.
Oncol Rep ; 46(4)2021 Oct.
Article in English | MEDLINE | ID: mdl-34476504

ABSTRACT

Extracellular acidosis is associated with various immunopathological states. The microenvironment of numerous solid tumours and inflammatory responses during acute or chronic infection are all related to a pH range of 5.5­7.0. The relationship between inflammation and immune escape, cancer metabolism, and immunologic suppression drives researchers to focus on the effects of low pH on diverse components of disease immune monitoring. The potential effect of low extracellular pH on the immune function reveals the importance of pH in inflammatory and immunoreactive processes. In this review, the mechanism of how pH receptors, including monocarboxylate transporters (MCTs), Na+/H+ exchanger 1, carbonic anhydrases (CAs), vacuolar­ATPase, and proton­sensing G­protein coupled receptors (GPCRs), modulate the immune system in disease, especially in cancer, were studied. Their role in immunocyte growth and signal transduction as part of the immune response, as well as cytokine production, have been documented in great detail. Currently, immunotherapy strategies have positive therapeutic effects for patients. However, the acidic microenvironment may block the effect of immunotherapy through compensatory feedback mechanisms, leading to drug resistance. Therefore, we highlight promising therapeutic developments regarding pH manipulation and provide a framework for future research.


Subject(s)
Hydrogen-Ion Concentration , Immunotherapy/methods , Membrane Transport Proteins/metabolism , Tumor Microenvironment , Drug Resistance, Neoplasm , Humans
5.
Animal Model Exp Med ; 4(2): 169-180, 2021 06.
Article in English | MEDLINE | ID: mdl-34179724

ABSTRACT

Background: Myelodysplastic syndrome (MDS) is a group of disorders involving hemopoietic dysfunction leading to leukemia. Although recently progress has been made in identifying underlying genetic mutations, many questions still remain. Animal models of MDS have been produced by introduction of specific mutations. However, there is no spontaneous mouse model of MDS, and an animal model to simulate natural MDS pathogenesis is urgently needed. Methods: In characterizing the genetically diverse mouse strains of the Collaborative Cross (CC) we observed that one, designated JUN, had abnormal hematological traits. This strain was thus further analyzed for phenotypic and pathological identification, comparing the changes in each cell population in peripheral blood and in bone marrow. Results: In a specific-pathogen free environment, mice of the JUN strain are relatively thin, with healthy appearance. However, in a conventional environment, they become lethargic, develop wrinkled yellow hair, have loose and light stools, and are prone to infections. We found that the mice were cytopenic, which was due to abnormal differentiation of multipotent bone marrow progenitor cells. These are common characteristics of MDS. Conclusions: A mouse strain, JUN, was found displaying spontaneous myelodysplastic syndrome. This strain has the advantage over existing models in that it develops MDS spontaneously and is more similar to human MDS than genetically modified mouse models. JUN mice will be an important tool for pathogenesis research of MDS and for evaluation of new drugs and treatments.


Subject(s)
Anemia , Leukopenia , Myelodysplastic Syndromes , Animals , Bone Marrow , Disease Models, Animal , Mice , Myelodysplastic Syndromes/genetics
6.
Cancer Gene Ther ; 28(10-11): 1213-1224, 2021 11.
Article in English | MEDLINE | ID: mdl-34158625

ABSTRACT

Immunotherapies for cancer, such as immune checkpoint blockade or adoptive T-cell transfer, can lead to a long-lasting clinical response. But the therapeutic response rate remains low on account of many tumors that have evolved sophisticated strategies to evade immune surveillance. Solid tumors are characterized by the highly acidic microenvironment, which may weaken the effectiveness of antitumor immunity. Here, we explored a promising therapeutic development deployed by pH manipulation for avoiding immunoevasion. The highly acidified microenvironment of melanoma induces the expression of G-protein-coupled receptor (Ogr1) in T cells, which weakened their effective function and promote tumor growth. Ogr1 inhibition reactivate CD8+ T cells and have a cytotoxic role by reducing the activity of high glycolysis, resulting in comparatively low acidification of the tumor microenvironment, and leads to tumor suppression. In addition, the adoptive transfer of Ogr1-/--CD8+ T cells enhanced the antitumor responses, with the potential for immediate clinical transformation.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Immunotherapy/methods , Receptors, G-Protein-Coupled/metabolism , Animals , Cell Line, Tumor , Humans , Male , Mice , Tumor Microenvironment
7.
Animal Model Exp Med ; 4(1): 71-76, 2021 03.
Article in English | MEDLINE | ID: mdl-33738439

ABSTRACT

Myelodysplastic syndrome (MDS) is a malignant tumor of the hematological system characterized by long-term, progressive refractory hemocytopenia. In addition, the risk of leukemia is high, and once it develops, the course of acute leukemia is short with poor curative effect. Animal models are powerful tools for studying human diseases and are highly effective preclinical platforms. Animal models of MDS can accurately show genetic aberrations and hematopoietic clone phenotypes with similar cellular features (such as impaired differentiation and increased apoptosis), and symptoms can be used to assess existing treatments. Animal models are also helpful for understanding the pathogenesis of MDS and its relationship with acute leukemia, which helps with the identification of candidate genes related to the MDS phenotype. This review summarizes the current status of animal models used to research myelodysplastic syndrome (MDS).


Subject(s)
Models, Animal , Myelodysplastic Syndromes/pathology , Animals , Genetic Engineering , Humans , Leukemia, Myeloid, Acute/complications , Mice , Myelodysplastic Syndromes/chemically induced , Myelodysplastic Syndromes/complications , Myelodysplastic Syndromes/genetics , Rats , Transplantation, Heterologous , Zebrafish
8.
Oncol Lett ; 20(6): 394, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33193854

ABSTRACT

The abnormal upregulation of heterogeneous nuclear ribonucleoprotein K (hnRNP K) expression levels were reported to be involved in the progression of various types of cancer. Therefore, it is hypothesized that hnRNP K may serve as a useful diagnostic marker and antitumor target; however, only a few studies to date have investigated the exact role of hnRNP K in head and neck squamous cell carcinoma (HNSCC) and the potential downstream signaling pathway involved. The present study aimed to identify the roles of hnRNP K in the proliferation and migration of HNSCC, and the possible signaling pathways hnRNP K may be associated with in HNSCC. hnRNP K expression levels in clinical HNSCC samples were analyzed using the Oncomine and UALCAN databases, and its association with the survival of patients with HNSCC was analyzed using the tumor-immune system interactions database. Short hairpin RNA targeting hnRNP K was transfected into the CAL-27 cell line to establish HNSCC cells with stable hnRNP K-knockdown. Cell viability was analyzed using a Cell Counting Kit-8 assay and an absolute count assay, and cell proliferation was measured using 5-ethynyl-2'-deoxyuridine incorporation and colony formation assays. Migratory ability of cells was analyzed using wound healing assay and transwell assay. The growth of xenografts derived from hnRNP K-knockdown cells was also evaluated, and bioinformatics analyses were performed using the Gene Ontology and Kyoto Encyclopedia for Genes and Genomes databases to determine the possible downstream signaling pathways of hnRNP K. Furthermore, the status of the Wnt/ß-Catenin signaling pathway in hnRNP K-knockdown cells mediated by small interfering RNA was determined using reverse transcription-quantitative PCR and western blotting. The results revealed that the expression levels of hnRNP K were upregulated in HNSCC cell lines and tissues. Moreover, the upregulation of hnRNP K expression levels was associated with poor survival of patients with HNSCC. The knockdown of hnRNP K also decreased HNSCC cell proliferation and migration, and inhibited tumor growth in nude mice. Bioinformatics analyses identified the Wnt/ß-Catenin signaling pathway as a possible downstream signaling pathway of hnRNP K. Knockdown of hnRNP K significantly downregulated the expression levels of Wnt/ß-Catenin signaling pathway-related proteins; while with knockdown of hnRNP K and overexpression of ß-Catenin, the expression levels of Wnt/ß-Catenin signaling pathway-related proteins were partially rescued. In conclusion, the present findings indicated that hnRNP K may serve as a candidate diagnostic biomarker and a promising therapeutic target for HNSCC.

9.
Animal Model Exp Med ; 3(1): 55-61, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32318660

ABSTRACT

BACKGROUND: Head and neck squamous cancer (HNSC) frequently occurs in the clinic. Revealing the role of the genes that correlate with cancer cell outgrowth will contribute to potential treatment target identification and tumor inhibition. METHODS: The gene expression profiles and gene ontology of the proton-sensing G-protein-coupled receptor OGR1 were analyzed using the TCGA (The Cancer Genome Atlas) database. The effects of sex, age, race, and degree of malignancy on HNSC were investigated, and the survival times of HNSC patients with high or low/medium expression levels of OGR1 were compared. Methylation of the OGR1 promoter CpG sites was also investigated and OGR1-related genes were analyzed using gene set enrichment analysis. RESULTS: OGR1 is overexpressed in HNSC patients. However, compared with the low/median expression group, the high OGR1 expression group did not have different survival rates. The OGR1 expression level differed across sex, age, race, and degree of malignancy, while the methylation of the OGR1 promoter CpG sites was maintained at a similar level. Gene set enrichment analysis revealed that OGR1 was positively correlated with head and neck cancer, cisplatin resistance, hypoxia, angiogenesis, cell migration, and TGF-ß. CONCLUSION: The expression of OGR1 correlated with HNSC progression and survival and thus can serve as a potential treatment target and prognostic marker.

10.
Animal Model Exp Med ; 2(4): 291-296, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31942561

ABSTRACT

BACKGROUND: Lung cancer frequently occurs in the clinic, leading to poor prognosis and high mortality. Markers for early diagnosis of lung cancer are scarce, and further potential therapeutic targets are also urgently needed. METHOD: We established a new mouse model in which the specific gene HNRNPK (heterogeneous nuclear ribonucleoprotein K) was downregulated after administration of doxycycline. The lung metastatic nodules were investigated using bioluminescence imaging, micro-CT, and autopsy quantification. RESULTS: Compared with the short hairpin negative control group, less lung metastatic nodules were formed in the short hairpin RNA group. CONCLUSION: Downregulation of HNRNPK in cancer cells can inhibit lung metastasis.

11.
Ultrasonics ; 71: 59-68, 2016 09.
Article in English | MEDLINE | ID: mdl-27281284

ABSTRACT

Trapped modes in a hard cylindrical tube with a local axisymmetric enlargement or bulge and filled with a uniform acoustic medium is studied. The governing Helmholtz equation in the cylindrical coordinate system is employed to deal with this problem through the domain decomposition method and matching technique. The trapped modes and the corresponding frequencies less than the threshold frequency or cut-off frequency are derived. It is found that in addition to the fundamental mode, the second- and higher-order trapped modes exist and depend on the geometry parameters of the local bulge. The effects of the bulge radius and width on the frequencies are discussed. The local bulge leads to a decrease of the frequencies and the corresponding vibration mode is localized near the bulge. A multimodal analysis is made and frequency band gap of generalized trapped modes is also studied. A frequency band gap depends on the radius of a bulge and is independent of its width. The obtained results can be extended to analyze bound states in quantum wires.

SELECTION OF CITATIONS
SEARCH DETAIL
...