Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Environ Pollut ; 356: 124206, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38795819

ABSTRACT

It is known that nanoplastics can cause membrane damage and production of reactive oxygen species (ROS) in cyanobacteria, negatively impacting their photosynthetic reactions and growth. However, the synergistic effect of light intensity on nanoplastics' toxicity to cyanobacteria is rarely investigated. Here, we investigated the impact of nano-polystyrene particles (PS) and amino-modified nano-polystyrene particles (PS-NH2) on cyanobacterium Microcystis aeruginosa cultivated under two light intensities. We discovered that PS-NH2 was more toxic to M. aeruginosa compared to PS with more damage of cell membranes by PS-NH2. The membrane damage was found by scanning electron microscope and atomic force microscopy. Under low light, PS-NH2 inhibited the photosynthesis of M. aeruginosa by decreasing the PSII quantum yield, photosynthetic electron transport rate and pigment content, but increasing non-photochemical quenching and Car/chl a ratio to cope with this stress condition. Moreover, high light appeared to increase the toxicity of PS-NH2 to M. aeruginosa by increasing its in vitro and intracellular ROS content. Specifically, on the one hand, high visible light (without UV) and PS-NH2 induced more in vitro singlet oxygen, hydroxyl radical and superoxide anion measured by electron paramagnetic resonance spectrometer in vitro, which could be another new toxic mechanism of PS-NH2 to M. aeruginosa. On the other hand, high light and PS-NH2 might increase intracellular ROS by inhibiting more photosynthetic electron transfer and accumulating more excess energy and electrons in M. aeruginosa. This research broadens our comprehension of the toxicity mechanisms of nanoplastics to cyanobacteria under varied light conditions and suggests a new toxic mechanism of nanoplastics involving in vitro ROS under visible light, providing vital information for assessing ecotoxicological effects of nanoplastics in the freshwater ecosystem.

2.
Appl Environ Microbiol ; 90(3): e0211023, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38391210

ABSTRACT

Ultraviolet (UV) A radiation (315-400 nm) is the predominant component of solar UV radiation that reaches the Earth's surface. However, the underlying mechanisms of the positive effects of UV-A on photosynthetic organisms have not yet been elucidated. In this study, we investigated the effects of UV-A radiation on the growth, photosynthetic ability, and metabolome of the edible cyanobacterium Nostoc sphaeroides. Exposures to 5-15 W m-2 (15-46 µmol photons m-2 s-1) UV-A and 4.35 W m-2 (20 µmol photons m-2 s-1) visible light for 16 days significantly increased the growth rate and biomass production of N. sphaeroides cells by 18%-30% and 15%-56%, respectively, compared to the non-UV-A-acclimated cells. Additionally, the UV-A-acclimated cells exhibited a 1.8-fold increase in the cellular nicotinamide adenine dinucleotide phosphate (NADP) pool with an increase in photosynthetic capacity (58%), photosynthetic efficiency (24%), QA re-oxidation, photosystem I abundance, and cyclic electron flow (87%), which further led to an increase in light-induced NADPH generation (31%) and ATP content (83%). Moreover, the UV-A-acclimated cells showed a 2.3-fold increase in ribulose-1,5-bisphosphate carboxylase/oxygenase activity, indicating an increase in their carbon-fixing capacity. Gas chromatography-mass spectrometry-based metabolomics further revealed that UV-A radiation upregulated the energy-storing carbon metabolism, as evidenced by the enhanced accumulation of sugars, fatty acids, and citrate in the UV-A-acclimated cells. Therefore, our results demonstrate that UV-A radiation enhances energy flow and carbon assimilation in the cyanobacterium N. sphaeroides.IMPORTANCEUltraviolet (UV) radiation exerts harmful effects on photo-autotrophs; however, several studies demonstrated the positive effects of UV radiation, especially UV-A radiation (315-400 nm), on primary productivity. Therefore, understanding the underlying mechanisms associated with the promotive effects of UV-A radiation on primary productivity can facilitate the application of UV-A for CO2 sequestration and lead to the advancement of photobiological sciences. In this study, we used the cyanobacterium Nostoc sphaeroides, which has an over 1,700-year history of human use as food and medicine, to explore its photosynthetic acclimation response to UV-A radiation. As per our knowledge, this is the first study to demonstrate that UV-A radiation increases the biomass yield of N. sphaeroides by enhancing energy flow and carbon assimilation. Our findings provide novel insights into UV-A-mediated photosynthetic acclimation and provide a scientific basis for the application of UV-A radiation for optimizing light absorption capacity and enhancing CO2 sequestration in the frame of a future CO2 neutral, circular, and sustainable bioeconomy.


Subject(s)
Nostoc , Ultraviolet Rays , Humans , Biomass , Carbon/metabolism , Carbon Dioxide/metabolism , Nostoc/metabolism , Photosynthesis/physiology
4.
Nat Commun ; 14(1): 6935, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37907460

ABSTRACT

The limited sensitivity of photovoltaic-type photodiodes makes it indispensable to use pre-amplifier circuits for effectively extracting electrical signals, especially when detecting dim light. Additionally, the photomultiplication photodiodes with light amplification function suffer from potential damages caused by high power consumption under strong light. In this work, by adopting the synergy strategy of thermal-induced interfacial structural traps and blocking layers, we develop a dual-mode visible-near infrared organic photodiode with bias-switchable photomultiplication and photovoltaic operating modes, exhibiting high specific detectivity (~1012 Jones) and fast response speed (0.05/3.03 ms for photomultiplication-mode; 8.64/11.14 µs for photovoltaic-mode). The device also delivers disparate external quantum efficiency in two optional operating modes, showing potential in simultaneously detecting dim and strong light ranging from ~10-9 to 10-1 W cm-2. The general strategy and working mechanism are validated in different organic layers. This work offers an attractive option to develop bias-switchable multi-mode organic photodetectors for various application scenarios.

5.
Adv Sci (Weinh) ; 10(28): e2302976, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37541299

ABSTRACT

The recent emergence of non-fullerene acceptors (NFAs) has energized the field of organic photodiodes (OPDs) and made major breakthroughs in their critical photoelectric characteristics. Yet, stabilizing inverted NF-OPDs remains challenging because of the intrinsic degradation induced by improper interfaces. Herein, a tin ion-chelated polyethyleneimine ethoxylated (denoted as PEIE-Sn) is proposed as a generic cathode interfacial layer (CIL) of NF-OPDs. The chelation between tin ions and nitrogen/oxygen atoms in PEIE-Sn contributes to the interface compatibility with efficient NFAs. The PEIE-Sn can effectively endow the devices with optimized cascade alignment and reduced interface defects. Consequently, the PEIE-Sn-OPD exhibits properties of anti-environmental interference, suppressed dark current, and accelerated interfacial electron extraction and transmission. As a result, the unencapsulated PEIE-Sn-OPD delivers high specific detection and fast response speed and shows only slight attenuation in photoelectric performance after exposure to air, light, and heat. Its superior performance outperforms the incumbent typical counterparts (ZnO, SnO2 , and PEIE as the CILs) from metrics of both stability and photoelectric characteristics. This finding suggests a promising strategy for stabilizing NF-OPDs by designing appropriate interface layers.

6.
ChemSusChem ; 16(20): e202300773, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37381086

ABSTRACT

Biomanufacturing of ethylene is particularly important for modern society. Cyanobacterial cells are able to photosynthesize various valuable chemicals. A promising platform for next-generation biomanufacturing, the semiconductor-cyanobacterial hybrid systems are capable of enhancing the solar-to-chemical conversion efficiency. Herein, the native ethylene-producing capability of a filamentous cyanobacterium Nostoc sphaeroides is confirmed experimentally. The self-assembly characteristic of N. sphaeroides is exploited to facilitate its interaction with InP nanomaterial, and the resulting biohybrid system gave rise to further elevated photosynthetic ethylene production. Based on chlorophyll fluorescence measurement and metabolic analysis, the InP nanomaterial-augmented photosystem I activity and enhanced ethylene production metabolism of biohybrid cells are confirmed, the mechanism underlying the material-cell energy transduction as well as nanomaterial-modulated photosynthetic light and dark reactions are established. This work not only demonstrates the potential application of semiconductor-N. sphaeroides biohybrid system as a good platform for sustainable ethylene production but also provides an important reference for future studies to construct and optimize nano-cell biohybrid systems for efficient solar-driven valuable chemical production.


Subject(s)
Ethylenes , Photosynthesis
7.
Front Immunol ; 14: 1180001, 2023.
Article in English | MEDLINE | ID: mdl-37256142

ABSTRACT

Primary liver cancer (PLC) that originates in the liver is a malignant tumor with the worst prognosis. Hepatocellular carcinoma (HCC) is the most common type of PLC. Most PLC cases are diagnosed at advanced stages mainly due to their insidious onset and rapid progression. Patients with PLC undergo surgical intervention or localized treatment, but their survival is often affected by its high relapse rate. Medical treatment is the primary option for patients with liver cancer, especially with advanced extrahepatic metastases. Molecular targeted therapy exerts an anti-tumor effect by acting on various signaling pathways involved in molecular pathogenesis; however, high drug resistance and low therapeutic responsiveness of PLC to molecular targets challenge the treatment option. In recent years, after surgical intervention, radiotherapy, chemotherapy, and/or molecular targeted therapy, autologous cell immunotherapy has been adopted for PLC. As a typical autologous cell immunotherapy, CAR T-cell therapy uses genetically modified T cells to express tumor-specific chimeric antigen receptors (CARs). Its targeting ability, persistent nature, and tumor-killing function result in a significant impact on the treatment of hematological tumors. However, no breakthrough has happened in the research specific to the curation of lung cancer, liver cancer, breast cancer, and other common solid tumors. In this context, a combination of molecular targeted therapy and CAR T-cell therapy was used to treat a patient with advanced HCC to achieve a partial remission(PR) and facilitate further liver transplantation.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Liver Neoplasms/pathology , Immunotherapy, Adoptive , Carcinoma, Hepatocellular/pathology , alpha-Fetoproteins/metabolism , T-Lymphocytes , Receptors, Antigen, T-Cell , Neoplasm Recurrence, Local/metabolism
8.
Int J Med Sci ; 20(3): 385-391, 2023.
Article in English | MEDLINE | ID: mdl-36860673

ABSTRACT

Objectives: The objective of this study is to explore the incidence, characteristics, risk factors, and prognosis of liver injury in patients with COVID-19. Methods: We collected clinical data of 384 cases of COVID-19 and retrospectively analyzed the incidence, characteristics, and risk factors of liver injury of the patients. In addition, we followed the patient two months after discharge. Results: A total of 23.7% of the patients with COVID-19 had liver injury, with higher serum AST (P < 0.001), ALT (P < 0.001), ALP (P = 0.004), GGT (P < 0.001), total bilirubin (P = 0.002), indirect bilirubin (P = 0.025) and direct bilirubin (P < 0.001) than the control group. The median serum AST and ALT of COVID-19 patients with liver injury were mildly elevated. Risk factors of liver injury in COVID-19 patients were age (P = 0.001), history of liver diseases (P = 0.002), alcoholic abuse (P = 0.036), body mass index (P = 0.037), severity of COVID-19 (P < 0.001), C-reactive protein (P < 0.001), erythrocyte sedimentation rate (P < 0.001), Qing-Fei-Pai-Du-Tang treatment (P = 0.032), mechanical ventilation (P < 0.001), and ICU admission (P < 0.001). Most of the patients (92.3%) with liver injury were treated with hepatoprotective drugs. 95.6% of the patients returned to normal liver function tests at 2 months after discharge. Conclusions: Liver injury was commen in COVID-19 patients with risk factors, most of them have mild elevations in transaminases, and conservative treatment has a good short-term prognosis.


Subject(s)
COVID-19 , Humans , Retrospective Studies , COVID-19/complications , Bilirubin , Blood Sedimentation , Liver
9.
J Clin Anesth ; 86: 111077, 2023 06.
Article in English | MEDLINE | ID: mdl-36764022

ABSTRACT

STUDY OBJECTIVE: In many countries, the combination of propofol and opioid is used as the preferred sedative regime during ERCP. However, the most serious risks of propofol sedation are oxygen deficiency and hypotension. Compared to midazolam, remimazolam has a faster onset and offset of hypnotic effect, as well as cardiorespiratory stability, and to achieve widespread acceptance for procedural sedation, remimazolam must replace propofol which is the most commonly used for procedural sedation. The objective of this study was to compare the safety and efficacy profiles of the remimazolam and propofol when combined with alfentanil for sedation during ERCP procedures. DESIGN: A randomized, controlled, single-center trial. SETTING: The Endoscopic Centre of Tianjin Nankai Hospital, China. PATIENTS: 518 patients undergoing elective ERCP under deep sedation. INTERVENTIONS: Patients scheduled for ERCP were randomly assigned to be sedated with either a combination of remimazolam-alfentanil or propofol-alfentanil. MEASUREMENTS: The primary outcome was the prevalence of hypoxia, which was defined as SpO2 < 90% for >10 s. Other outcomes were the need for airway maneuver, procedure, and sedation-related outcomes and side effects (e.g., nausea, vomiting, and cardiovascular adverse events). MAIN RESULTS: A total of 518 patients underwent randomization. Of these, 250 were assigned to the remimazolam group and 255 to the propofol group. During ERCP, 9.6% of patients in the remimazolam group showed hypoxia, while in the propofol group, 15.7% showed hypoxia (p = 0.04). The need for airway maneuvering due to hypoxia was significantly greater in the propofol group (p = 0.04). Furthermore, patients sedated with remimazolam had a lower percentage of hypotension than patients sedated with propofol (p < 0.001). Patients receiving remimazolam sedation expressed higher satisfaction scores and were recommended the same sedation for the next ERCP. The procedure time in the remimazolam group was much longer than in the propofol group due to the complexity of the patient's disease, which resulted in a longer sedation time. CONCLUSION: During elective ERCP, patients administered with remimazolam showed fewer respiratory depression events under deep sedation with hemodynamic advantages over propofol when administered in combination with alfentanil.


Subject(s)
Hypotension , Propofol , Humans , Propofol/adverse effects , Alfentanil/adverse effects , Cholangiopancreatography, Endoscopic Retrograde/adverse effects , Hypnotics and Sedatives/adverse effects , Hypoxia/chemically induced , Hypoxia/epidemiology , Hypotension/chemically induced , Hypotension/epidemiology , Conscious Sedation/adverse effects , Conscious Sedation/methods
10.
Sci Data ; 9(1): 640, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36271026

ABSTRACT

Population and water withdrawal data sets are currently faced with difficulties in collecting, processing and verifying multi-source time series, and the spatial distribution characteristics of long series are also relatively lacking. Time series is the basic guarantee for the accuracy of data sets, and the production of long series spatial distribution is a realistic requirement to expand the application scope of data sets. Through the time-consuming and laborious basic processing work, this research focuses on the population and water intake time series, and interpolates and extends them to specific land uses to ensure the accuracy of the time series and the demand of spatially distributed data sets. This research provides a set of population density and water intensity products from 1960 to 2020 distributed to the administrative units or the corresponding regions. The data set fills the gaps in the multi-year data set for the accuracy of population density and the intensity of water withdrawal.


Subject(s)
Population Dynamics , Water Resources , Humans , Population Density
11.
Front Oncol ; 12: 822760, 2022.
Article in English | MEDLINE | ID: mdl-35847904

ABSTRACT

Background: Hepatocellular carcinoma (HCC) remains a worldwide burden. However, the mechanisms behind the malignant biological behavior of HCC remain unclear. The homeobox (HOX) family could act as either promoters or suppressors in different kinds of malignancies. Our study discovered the role of HOXB5 in regulating HCC progression. Methods: The HOXB5 expression was assessed by RT-PCR analysis in human HCC samples and cell lines. HOXB5 transcriptional regulation of the EGFR was verified by the luciferase reporter assay and chromatin immunoprecipitation experiment. The oncogenic role of HOXB5 in HCC progression was analyzed by CCK8, colony-forming, and transwell assays. Results: Upregulation of HOXB5 was found in human HCC, and was strongly correlated with HCC tumor size, tumor-nodule metastasis, TNM stage, and relatively unfavorable OS and DFS. Ectopic expression of HOXB5 promoted the capacity of cell growth and clonogenicity, while the inhibition of HOXB5 decreased the proliferation and clonogenicity potential in vitro by CCK8 and colony-forming assays. In addition, HOXB5 also promoted cell migration by transwell experiment. Mechanism studies elucidated that HOXB5 triggers HCC progression via direct transcriptional activation of EGFR. The upregulation of HOXB5 is regulated by miR-200a-3p and miR-181-5p. Transfection of miR-200a-3p and miR-181-5p mimics blocked the cell proliferation and migration regulated by HOXB5, while overexpression of the 3'-UTR mutant HOXB5 abolished the suppressive effect of miR-200a-3p and miR-181-5p, but not the wild-type HOXB5. Conclusion: HOXB5 is a promising prognostic factor in human HCC. Targeting miR-200a-3p and the miR-181-5p/HOXB5/EGFR signaling pathway may provide new options for the treatment strategies of HCC.

12.
Nanomedicine (Lond) ; 17(10): 671-682, 2022 04.
Article in English | MEDLINE | ID: mdl-35475381

ABSTRACT

Aim: The rational design of a fluorescence imaging-guided, highly efficient multiresponsive delivery system is important for improving drug delivery efficiency. Materials and methods: Herein, pH/H2O2-responsive polyhedral oligomeric silsesquioxane (POSS) molecule functionalized 4-(phenyl(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-phenyl)amino)benzaldehyde (OTB) copolymer (PEG-POSS-OTB) was synthesized to encapsulate doxorubicin (DOX) for precise drug delivery. Results: The self-assembly fluorescent vesicles exhibited excellent pH/H2O2-responsive drug release properties under physiological conditions and efficient drug-targeting ability. In vitro, compared with the DOX group, PEG-POSS-OTB fluorescent vesicles exhibited improved drug delivery and reduced toxicity. Importantly, we performed a proof-of-concept study demonstrating that PEG-POSS-OTB fluorescent vesicles were a high-efficiency nanoassembly drug-delivery platform for improving drug delivery efficiency. In vivo studies demonstrated that PEG-POSS-OTB vesicles with enhanced stability could be used in targeted drug delivery and controlled intelligent release.


Subject(s)
Hydrogen Peroxide , Neoplasms , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Delivery Systems , Humans , Hydrogen-Ion Concentration , Neoplasms/drug therapy , Polymers
13.
Sensors (Basel) ; 22(7)2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35408344

ABSTRACT

Polyvinylidene fluoride (PVDF) is a very promising material for fabricating flexible infrared sensors due to its ferroelectricity as well as excellent flexibility and low fabrication cost. This work focuses on improving PVDF's pyroelectric performance by creating microstructures in the film. Simulation results suggest that the pyroelectric response of PVDF film can be improved if micro groove, square-pit or sinusoidal patterns are created on the film surface, with the grooved film showing the best pyroelectric performance. Suggested by the simulation results, flexible PVDF samples with groove structure are prepared by casting the precursor solution on the mold with designed patterns. Measurement results demonstrate that the optimal microstructured PVDF film can improve its pyroelectric performance by as high as 146%, which is in good agreement with the simulations. This work provides an innovative way of achieving flexible infrared sensor devices with promoted performance based on pyroelectric polymers.

14.
Environ Toxicol ; 37(7): 1675-1685, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35286011

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common cancers. MicroRNA has been studied more and more deeply and may become a new target for the treatment of HCC. Here, we investigated the role of miR-455-3p in HCC progression. Compared with non-tumor tissues and normal human hepatic cells, miR-455-3p expression was significantly downregulated in HCC tissues and cell lines. And overexpression of miR-455-3p inhibited cell proliferation and migration but promoted cell apoptosis in HCC cell lines HepG2 and Huh7. Mechanism studies displayed that miR-455-3p targeted HDAC2 and negatively regulated HDAC2 expression. Moreover, HDAC2 was highly expressed in HCC tissues and cell lines. Overexpression of HDAC2 reversed the inhibitory effects of miR-455-3p on cell proliferation, migration and cell cycle protein (CDK6 and cyclin D1) expression, and neutralized the promotion effects of miR-455-3p on cell apoptosis and the activation of p53 pathway. Furthermore, a p53 inhibitor Pifithrin-α (PFT-α) effectively abolished the effects of miR-455-3p on HCC cell behaviors. Additionally, the role of miR-455-3p in tumorigenesis was evaluated by using a mouse xenograft model, and the data showed that miR-455-3p suppressed tumor growth in vivo. In summary, our results suggested that miR-455-3p targeted HDAC2 to inhibit cell proliferation, migration and promote cell apoptosis via the activation of p53 pathway.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Carcinoma, Hepatocellular/pathology , Cell Cycle/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic/genetics , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism , Humans , Liver Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Tumor Suppressor Protein p53/metabolism
15.
Dig Dis Sci ; 66(10): 3439-3447, 2021 10.
Article in English | MEDLINE | ID: mdl-33247421

ABSTRACT

BACKGROUND: Upregulation of circHIPK3 has been observed in several kinds of malignancies. However, the mechanisms of circHIPK3 in HCC metastases remains unclear. We investigated the role and the mechanisms of circHIPK3 in the development of HCC. METHODS: HCC tissues and paired adjacent non-tumor tissues of surgical patients were used to evaluate circHIPK3 expression. A series of biological experiments had been taken to evaluate the pro-metastatic ability of circHIPK3 during HCC development in vitro and in vivo. The potential mechanisms of circHIPK3 in HCC development were identified by RT-qPCR, Western blot, RIP, and luciferase reporter assays. RESULTS: CircHIPK3 expression is significantly upregulated during HCC development. Overexpression of circHIPK3 promotes cell migration, invasion, and metastases in vitro and in vivo. CircHIPK3 promoted HCC metastases by sponging miR-338-3p to regulate EMT-associated proteins E-cadherin, vimentin, and ZEB2 expression. CONCLUSION: CircHIPK3 plays a regulatory role in metastatic HCC by sponging miR-338-3p to induce ZEB2 expression, thus promoting EMT procession.


Subject(s)
Carcinoma, Hepatocellular/pathology , Intracellular Signaling Peptides and Proteins/metabolism , Liver Neoplasms/pathology , MicroRNAs/metabolism , Protein Serine-Threonine Kinases/metabolism , RNA, Circular/metabolism , Zinc Finger E-box Binding Homeobox 2/metabolism , Animals , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Intracellular Signaling Peptides and Proteins/genetics , Liver Neoplasms/metabolism , Lung Neoplasms/secondary , Mice , Mice, Nude , MicroRNAs/genetics , Neoplasms, Experimental , Protein Serine-Threonine Kinases/genetics , RNA, Circular/genetics , Up-Regulation , Zinc Finger E-box Binding Homeobox 2/genetics
16.
Radiol Case Rep ; 15(9): 1570-1574, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32685071

ABSTRACT

Duodenal varices are an uncommon presentation of portal hypertension and can result in significant gastrointestinal bleeding with a high mortality. Diagnosis can be difficult and therapeutic options limited. We present a case of upper gastrointestinal bleeding in a woman aged 54 years with primary biliary cholangitis who was ultimately diagnosed with ectopic duodenal variceal bleed, which was successfully treated with transjugular intrahepatic portosystemic shunt. Transjugular intrahepatic portosystemic shunt provide an effective treatment for ectopic duodenal variceal bleed caused by liver cirrhosis, though interventional radiologists need to remain aware of and vigilant for the complications and risks of this treatment option.

17.
Exp Cell Res ; 395(1): 112180, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32682012

ABSTRACT

Ovarian tumour domain containing 6B antisense RNA1 (OTUD6B-AS1), a newly identified long noncoding RNA (lncRNA), has been reported as a key cancer-related lncRNA. However, the detailed relevance of OTUD6B-AS1 in hepatocellular carcinoma (HCC) remains undetermined. This study was designed to determine the functional significance and regulatory mechanism of OTUD6B-AS1 in HCC. We found that the expression of OTUD6B-AS1 was up-regulated in HCC tissues, and patients with high levels of OTUD6B-AS1 expression had shorter survival rates than those with low OTUD6B-AS1 expression. Elevated expression of the lncRNA was also found in multiple HCC cell lines and the silencing of OTUD6B-AS1 significantly decreased proliferation, colony formation and invasion. Correspondingly, OTUD6B-AS1 overexpression had the opposite effect on HCC cell invasion, colony formation and proliferation. Notably, OTUD6B-AS1 was identified as a molecular sponge of microRNA-664b-3p (miR-664b-3p). The down-regulation of miR-664b-3p was detected in HCC tissues and cell lines, and the up-regulation of miR-664b-3p repressed proliferation and invasion in HCC cells by targeting the glycogen synthase kinase-3ß interaction protein (GSKIP). Moreover, OTUD6B-AS1 knockdown or miR-664b-3p up-regulation exerted a suppressive effect on Wnt/ß-catenin signalling via the down-regulation of GSKIP. In addition, GSKIP overexpression markedly reversed OTUD6B-AS1 knockdown- or miR-664b-3p overexpression-induced antitumour effects in HCC. Further data confirmed that OTUD6B-AS1 knockdown exerted a tumour-inhibition role in HCC in vivo. Overall, these findings indicate that the lncRNA OTUD6B-AS1 accelerates the proliferation and invasion of HCC cells by enhancing GSKIP/Wnt/ß-catenin signalling via the sequestration of miR-664b-3p. Our study reveals a novel molecular mechanism, mediated by lncRNA OTUD6B-AS1, which may play a key role in regulating the progression of HCC.


Subject(s)
Carcinoma, Hepatocellular/genetics , MicroRNAs/genetics , Ovarian Neoplasms/genetics , RNA, Long Noncoding/genetics , Carcinoma, Hepatocellular/metabolism , Cell Movement/genetics , Cell Proliferation/genetics , Endopeptidases/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Wnt Signaling Pathway/genetics , beta Catenin/metabolism
18.
Oncol Lett ; 19(3): 1806-1814, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32194674

ABSTRACT

MicroRNA (miRNAs) serve key roles in the progress of various types of cancer. The expression of miRNA (miR)-139-5p is downregulated in several types of tumor and has been recognized as a tumor suppressor. However, the role of miR-139-5p in non-small cell lung cancer (NSCLC) has not been investigated in detail. In the present study, it was demonstrated that miR-139-5p was significantly downregulated in NSCLC cells and tissues, and the overexpression of miR-139-5p in vitro induced apoptosis and significantly inhibited the viability and proliferation of A549 and H1299 cells. In addition, upregulation of miR-139-5p significantly inhibited the migration and invasion of A549 and H1299 cells. Hepatoma-derived growth factor (HDGF) was identified as a direct target of miR-139-5p. Rescue experiments demonstrated that the inhibitory function of miR-139-5p on cell viability, migration and invasion was partially mediated by suppressing HDGF expression. Furthermore, miR-139-5p exhibited efficient inhibition of tumor growth in a xenograft tumor mouse model of A549 cells. In summary, the results from the present study suggested that miR-139-5p may serve an important role in NSCLC by targeting HDGF and causing inhibition of cell viability and metastasis, as well as induction of apoptosis. miR-139-5p may also have the potential to serve as a therapeutic target for the treatment of NSCLC.

19.
J Interv Med ; 3(1): 27-33, 2020 Feb.
Article in English | MEDLINE | ID: mdl-34805902

ABSTRACT

BACKGROUND: The aim of this study was to investigate the effects of transcatheter arterial chemoembolization (TACE) combined with sorafenib on tumor angiogenesis. MATERIALS AND METHODS: Thirty New Zealand rabbit VX2 liver cancer model animals were divided into five groups, which received either normal saline (A), TACE (B), sorafenib (C), sorafenib followed by TACE (D), or TACE followed by sorafenib (E). Serum vascular endothelial growth factor (VEGF) levels were measured before and after TACE via ELISA. Immunohistochemistry for CD34 was performed to evaluate microvessel density (MVD), and ultrasonography was used to access tumor volume. RESULTS: VEGF levels declined in group C but increased significantly on the 3rd post-operative day in groups B, D, and E. Levels decreased after the 7th post-operative day. Peak levels were significantly lower in group D than in groups B and E. On the 14th post-operative day, VEGF levels were the lowest in group C, followed by those in groups D and B. MVD was the lowest in group C followed by that in group D and E, and was the highest in group B. Group D had the smallest tumor volume. HE staining of tumor tissues from group C showed apoptosis in a scattered patchy pattern, whereas in groups B, D, and E, large areas of tumor cell necrosis were visible. CONCLUSION: TACE can up-regulate serum VEGF levels, which in turn accelerates the formation of new blood vessels. Thus, TACE combined with sorafenib inhibits VEGF and angiogenesis, and pre-operative administration of sorafenib has a more superior anti-angiogenic effect than post-operative administration.

20.
ACS Appl Mater Interfaces ; 11(46): 43543-43552, 2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31657198

ABSTRACT

Flexible ultrasensitive strain sensors are highly desirable in view of their widespread applications in wearable electronics, health monitoring systems, and smart robots, where subtle strain detection is required. However, traditional fabrication of such sensors was done to prepare sensitive layers on bare or single-sided structural substrates, leading to limited sensitivity. Herein, a stretchable resistive-type strain sensor was demonstrated by self-assembling conductive networks onto a monolithic polydimethylsiloxane substrate with a two-sided topological design, for example, a sinusoid/auxetic binary architecture. The sensitivity of the obtained sensor was greatly improved by 22-fold as compared to the traditional counterpart with a bare substrate. The remarkably good agreement between the experimental results and finite element analysis predictions confirmed that the superior sensitivity is a synergistic effect of local strain enhancement derived from the topological structure on the foreside and an additional strain concentration and a reduced Poisson's ratio from the auxetic arrays on the backside. Furthermore, this sensor can withstand an extreme mechanical force (>750 N) because of the shear stiffening characteristic of the auxetic structure. Benefiting from the characteristics of ultrahigh sensitivity (gauge factor ∼1744 at 5%), low detection limit (<0.05%), and long-term durability (>500 loading cycles), this as-prepared sensor shows promise in practical applications of high-performance wearable electronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...