Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Metabolites ; 14(6)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38921477

ABSTRACT

The complex process of aging leads to a gradual deterioration in the function of cells, tissues, and the entire organism, thereby increasing the risk of disease and death. Nicotinamide N-methyltransferase (NNMT) has attracted attention as a potential target for combating aging and its related pathologies. Studies have shown that NNMT activity increases over time, which is closely associated with the onset and progression of age-related diseases. NNMT uses S-adenosylmethionine (SAM) as a methyl donor to facilitate the methylation of nicotinamide (NAM), converting NAM into S-adenosyl-L-homocysteine (SAH) and methylnicotinamide (MNA). This enzymatic action depletes NAM, a precursor of nicotinamide adenine dinucleotide (NAD+), and generates SAH, a precursor of homocysteine (Hcy). The reduction in the NAD+ levels and the increase in the Hcy levels are considered important factors in the aging process and age-related diseases. The efficacy of RNA interference (RNAi) therapies and small-molecule inhibitors targeting NNMT demonstrates the potential of NNMT as a therapeutic target. Despite these advances, the exact mechanisms by which NNMT influences aging and age-related diseases remain unclear, and there is a lack of clinical trials involving NNMT inhibitors and RNAi drugs. Therefore, more in-depth research is needed to elucidate the precise functions of NNMT in aging and promote the development of targeted pharmaceutical interventions. This paper aims to explore the specific role of NNMT in aging, and to evaluate its potential as a therapeutic target.

2.
Front Pharmacol ; 15: 1410479, 2024.
Article in English | MEDLINE | ID: mdl-38919254

ABSTRACT

Metabolic syndrome (MetS) represents a constellation of metabolic abnormalities, typified by obesity, hypertension, hyperglycemia, and hyperlipidemia. It stems from intricate dysregulations in metabolic pathways governing energy and substrate metabolism. While comprehending the precise etiological mechanisms of MetS remains challenging, evidence underscores the pivotal roles of aberrations in lipid metabolism and insulin resistance (IR) in its pathogenesis. Notably, nicotinamide N-methyltransferase (NNMT) has recently surfaced as a promising therapeutic target for addressing MetS. Single nucleotide variants in the NNMT gene are significantly correlated with disturbances in energy metabolism, obesity, type 2 diabetes (T2D), hyperlipidemia, and hypertension. Elevated NNMT gene expression is notably observed in the liver and white adipose tissue (WAT) of individuals with diabetic mice, obesity, and rats afflicted with MetS. Knockdown of NNMT elicits heightened energy expenditure in adipose and hepatic tissues, mitigates lipid accumulation, and enhances insulin sensitivity. NNMT catalyzes the methylation of nicotinamide (NAM) using S-adenosyl-methionine (SAM) as the donor methyl group, resulting in the formation of S-adenosyl-l-homocysteine (SAH) and methylnicotinamide (MNAM). This enzymatic process results in the depletion of NAM, a precursor of nicotinamide adenine dinucleotide (NAD+), and the generation of SAH, a precursor of homocysteine (Hcy). Consequently, this cascade leads to reduced NAD+ levels and elevated Hcy levels, implicating NNMT in the pathogenesis of MetS. Moreover, experimental studies employing RNA interference (RNAi) strategies and small molecule inhibitors targeting NNMT have underscored its potential as a therapeutic target for preventing or treating MetS-related diseases. Nonetheless, the precise mechanistic underpinnings remain elusive, and as of yet, clinical trials focusing on NNMT have not been documented. Therefore, further investigations are warranted to elucidate the intricate roles of NNMT in MetS and to develop targeted therapeutic interventions.

3.
PeerJ ; 11: e16263, 2023.
Article in English | MEDLINE | ID: mdl-37901469

ABSTRACT

Background: NTMT1, a transfer methylase that adds methyl groups to the N-terminus of proteins, has been identified as a critical player in tumor development and progression. However, its precise function in pan-cancer is still unclear. To gain a more comprehensive understanding of its role in cancer, we performed a thorough bioinformatics analysis. Methods: To conduct our analysis, we gathered data from multiple sources, including RNA sequencing and clinical data from the TCGA database, protein expression data from the UALCAN and HPA databases, and single-cell expression data from the CancerSEA database. Additionally, we utilized TISIDB to investigate the interaction between the tumor and the immune system. To assess the impact of NTMT1 on the proliferation of SNU1076 cells, we performed a CCK8 assay. We also employed cellular immunofluorescence to detect DNA damage and used flow cytometry to measure tumor cell apoptosis. Results: Our analysis revealed that NTMT1 was significantly overexpressed in various types of tumors and that high levels of NTMT1 were associated with poor survival outcomes. Functional enrichment analysis indicated that NTMT1 may contribute to tumor development and progression by regulating pathways involved in cell proliferation and immune response. In addition, we found that knockdown of NTMT1 expression led to reduced cell proliferation, increased DNA damage, and enhanced apoptosis in HNSCC cells. Conclusion: High expression of NTMT1 in tumors is associated with poor prognosis. The underlying regulatory mechanism of NTMT1 in cancer is complex, and it may be involved in both the promotion of tumor development and the inhibition of the tumor immune microenvironment.


Subject(s)
Neoplasms , Humans , Prognosis , Neoplasms/genetics , Apoptosis/genetics , Biological Assay , Methyltransferases/genetics , Tumor Microenvironment/genetics
4.
Opt Lett ; 48(13): 3359-3362, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37390130

ABSTRACT

We present a deep background-mismodeling-learned reconstruction framework for high-accuracy fluorescence diffuse optical tomography (FDOT). A learnable regularizer incorporating background mismodeling is formulated in the form of certain mathematical constraints. The regularizer is then learned to obtain the background mismodeling automatically using a physics-informed deep network implicitly. Here, a deep-unrolled FIST-Net for optimizing L1-FDOT is specially designed to obtain fewer learning parameters. Experiments show that the accuracy of FDOT is significantly improved via implicitly learning the background mismodeling, which proves the validity of the deep background-mismodeling-learned reconstruction. The proposed framework can also be used as a general method to improve a class of image modalities based on linear inverse problems with unknown background modeling errors.

5.
Opt Lett ; 48(2): 199-202, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36638417

ABSTRACT

The imaging fidelity of mesoscopic fluorescence molecular tomography (MFMT) in reflective geometry suffers from spatial nonuniformity of measurement sensitivity and ill-posed reconstruction. In this study, we present a spatially adaptive split Bregman network (SSB-Net) to simultaneously overcome the spatial nonuniformity of measurement sensitivity and promote reconstruction sparsity. The SSB-Net is derived by unfolding the split Bregman algorithm. In each layer of the SSB-Net, residual block and 3D convolution neural networks (3D-CNNs) can adaptively learn spatially nonuniform error compensation, the spatially dependent proximal operator, and sparsity transformation. Simulations and experiments show that the proposed SSB-Net enables high-fidelity MFMT reconstruction of multifluorophores at different positions within a depth of a few millimeters. Our method paves the way for a practical reflection-mode diffuse optical imaging technique.


Subject(s)
Tomography, Optical , Tomography, Optical/methods , Algorithms , Neural Networks, Computer , Image Processing, Computer-Assisted/methods , Tomography , Phantoms, Imaging
6.
Opt Express ; 30(7): 10414-10427, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35473009

ABSTRACT

Rare-earth-doped ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) fibers have evolved to become promising candidates for efficient UV-visible emission because of their low phonon energy and low optical losses, as well as their well-defined absorption bands. We investigate the efficient emission of UV-visible light in a low-concentration (0.1 mol%) Ho3+-doped ZBLAN fiber excited by a 532 nm CW laser. In addition to the direct populating of the thermalized 5F4+5S2 levels by ground-state absorption, the upconversion processes responsible for UV-visible emission from the higher emitting levels, 3P1+3D3, 3K7+5G4, 5G5, and 5F3, of the Ho3+ ions are examined using excited-state absorption. The dependence of UV-visible fluorescence intensity on launched green pump power is experimentally determined, confirming the one-photon and two-photon characters of the observed processes. We theoretically investigate the excitation power dependence of the population density for nine Ho3+ levels based on a rate equation model. This qualitative model has shown a good agreement with the measured power dependence of UV-visible emission. Moreover, the emission cross-sections for blue, green, red, and deep-red light in the visible region are measured using the Füchtbauer-Ladenburg method and corroborated by McCumber theory, and the corresponding gain coefficients are derived. We propose an alternative approach to achieve efficient UV-visible emission in an Ho3+-doped ZBLAN fiber using a cost-effective, high-brightness 532 nm laser.

7.
J Healthc Eng ; 2022: 2005196, 2022.
Article in English | MEDLINE | ID: mdl-35388323

ABSTRACT

Asthma in children has a long duration and is prone to recurring attacks. Children will feel chest tightness, shortness of breath, cough, and difficulty breathing when they are onset, which has a serious impact on their health. Clinical nursing is of great significance in the treatment of childhood asthma. At present, the electronic health PDCA nursing model is widely used in clinical nursing as a common and effective nursing method. Therefore, it is very important to evaluate the efficacy of the PDCA nursing model in the treatment of childhood asthma. With the development of artificial intelligence, artificial intelligence can be used to evaluate the effect of the PDCA nursing model in the treatment of childhood asthma. The BP network can effectively perform data training and discrimination, but its training efficiency is low, and it is easily affected by initial weights and thresholds. Aiming at this defect, this work uses the genetic simulated annealing (GSA) algorithm to improve it. In view of the problems that the genetic algorithm falls into local minimum and simulated annealing algorithm has a slow convergence speed, the improved genetic simulated annealing algorithm is used to optimize the BP neural network, and an improved genetic simulated annealing BP network (IGSA-BP) is proposed. The algorithm not only reduces the problem that the BP network has an influence on initial weight and threshold on the algorithm but also improves the population diversity and avoids falling into local optimum by improving the crossover and mutation probability formula and improving Metropolis criterion. The proposed method has more efficient performance.


Subject(s)
Artificial Intelligence , Asthma , Algorithms , Asthma/therapy , Child , Electronics , Humans , Neural Networks, Computer
8.
Eur J Neurosci ; 54(11): 8006-8019, 2021 12.
Article in English | MEDLINE | ID: mdl-34755396

ABSTRACT

The reduced density of cardiac autonomic nerves plays an important role in malignant arrhythmia after myocardial infarction (MI). Previous studies have shown that there is an interaction between the brain and the heart, and fastigial nucleus electrostimulation (FNS) promotes central nerve regeneration. Whether and how it can promote cardiac nerve regeneration after MI and the underlying mechanisms remain unknown. This study investigated whether FNS promotes cardiac nerve regeneration and reduces malignant arrhythmia inducibility in a post-infarction rat model. Ninety-eight Wistar rats were randomly assigned to Sham control, MI (left anterior descending coronary artery ligation without FNS), FNS (MI plus FNS), and FNL (fastigial nucleus lesion plus FNS plus MI) groups. The frequency of malignant arrhythmia was significantly lower in the FNS group than in the MI and FNL groups. The density of cardiac autonomic nerves was less in the MI group than in the Sham group, which was promoted by FNS. The nerve growth factor (NGF) mRNA expression was downregulated in the MI group compared to the Sham group, which was significantly enhanced by FNS. The expression levels of norepinephrine (NE) and acetylcholine (ACh) were higher and lower respectively in the MI and FNL groups than in the Sham group. After FNS, NE concentration was reduced and Ach level was elevated compared to the MI group. These data suggested that FNS promoted the regeneration of cardiac autonomic nerves and reduced the incidence of malignant arrhythmias in MI rat model. The mechanisms might involve up-regulation of NGF mRNA expression, decrease of NE release and increase of ACh release.


Subject(s)
Electric Stimulation Therapy , Myocardial Infarction , Animals , Arrhythmias, Cardiac , Cerebellar Nuclei , Disease Models, Animal , Myocardial Infarction/complications , Myocardial Infarction/therapy , Nerve Regeneration , Neurotransmitter Agents , Rats , Rats, Wistar
9.
Opt Express ; 29(10): 15564-15575, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33985254

ABSTRACT

Green laser sources have become increasingly important for the application in scientific research and industry. Although several laser approaches have been investigated, the development of green lasers with the necessary efficiency and spectral characteristics required for practical deployment continues to attract immense interest. In this study, the efficient green laser operation of a Ho3+-doped fluoride fiber directly pumped by a commercial blue laser diode (LD) is experimentally investigated at various active fiber lengths. In the free-running laser, the slope efficiency was optimized up to 59.3% with 543.9 nm lasing, with respect to the launched pump power, using a 20-cm long active fiber. This is the maximum slope efficiency reported to date for a green fiber laser. A maximum output power of 376 mW at 543.5 nm was achieved by using a 17-cm long active fiber pumped at a maximum available launched pump power of 996 mW. Moreover, broadband tuning operation was demonstrated by employing a range of active fiber lengths, together with an intracavity bandpass filter. The operating wavelength was tunable from 536.3 nm to 549.3 nm. A maximum tuning power achieved was 118 mW at 543.4 nm for a 17-cm long active fiber. Moderate Ho3+-doped fiber length is shown to be effective in producing a high performance of a green fiber laser. The short-length of the active fiber considerably extends the green short wavelength operation due to limited reabsorption of the signal below 540 nm.

10.
Stem Cell Res Ther ; 12(1): 33, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33413636

ABSTRACT

OBJECTIVE: Our aim was to evaluate the efficacy and safety of intracoronary autologous bone marrow mesenchymal stem cell (BM-MSC) transplantation in patients with ST-segment elevation myocardial infarction (STEMI). METHODS: In this randomized, single-blind, controlled trial, patients with STEMI (aged 39-76 years) were enrolled at 6 centers in Beijing (The People's Liberation Army Navy General Hospital, Beijing Armed Police General Hospital, Chinese People's Liberation Army General Hospital, Beijing Huaxin Hospital, Beijing Tongren Hospital, Beijing Chaoyang Hospital West Hospital). All patients underwent optimum medical treatment and percutaneous coronary intervention and were randomly assigned in a 1:1 ratio to BM-MSC group or control group. The primary endpoint was the change of myocardial viability at the 6th month's follow-up and left ventricular (LV) function at the 12th month's follow-up. The secondary endpoints were the incidence of cardiovascular event, total mortality, and adverse event during the 12 months' follow-up. The myocardial viability assessed by single-photon emission computed tomography (SPECT). The left ventricular ejection fraction (LVEF) was used to assess LV function. All patients underwent dynamic ECG and laboratory evaluations. This trial is registered with ClinicalTrails.gov, number NCT04421274. RESULTS: Between March 2008 and July 2010, 43 patients who had underwent optimum medical treatment and successful percutaneous coronary intervention were randomly assigned to BM-MSC group (n = 21) or control group (n = 22) and followed-up for 12 months. At the 6th month's follow-up, there was no significant improvement in myocardial activity in the BM-MSC group before and after transplantation. Meanwhile, there was no statistically significant difference between the two groups in the change of myocardial perfusion defect index (p = 0.37) and myocardial metabolic defect index (p = 0.90). The LVEF increased from baseline to 12 months in the BM-MSC group and control group (mean baseline-adjusted BM-MSC treatment differences in LVEF 4.8% (SD 9.0) and mean baseline-adjusted control group treatment differences in LVEF 5.8% (SD 6.04)). However, there was no statistically significant difference between the two groups in the change of the LVEF (p = 0.23). We noticed that during the 12 months' follow-up, except for one death and one coronary microvascular embolism in the BM-MSC group, no other events occurred and alanine transaminase (ALT) and C-reactive protein (CRP) in BM-MSC group were significantly lower than that in the control group. CONCLUSIONS: The present study may have many methodological limitations, and within those limitations, we did not identify that intracoronary transfer of autologous BM-MSCs could largely promote the recovery of LV function and myocardial viability after acute myocardial infarction.


Subject(s)
Mesenchymal Stem Cells , Myocardial Infarction , ST Elevation Myocardial Infarction , Bone Marrow Transplantation , Humans , Myocardial Infarction/therapy , Single-Blind Method , Stroke Volume , Treatment Outcome , Ventricular Function, Left
11.
Environ Sci Pollut Res Int ; 27(13): 14642-14653, 2020 May.
Article in English | MEDLINE | ID: mdl-32052331

ABSTRACT

The development of cheap and effective approach for utilizing red mud (RM) waste is a long and arduous task. This work provided a technically and economically feasible route to utilize RM waste for the production of high valuable chemicals by use of the industrial wastes as cheap raw materials. The Fe and Al elements were first leached from RM through hydrothermal reaction and then were separated by precipitation after the Fe(III) in leachate was reduced to Fe(II) by iron powder. Above 90% Fe and Al were extracted from RM with the Fe and Al purity of about 95% and 45%, respectively. The control test revealed that the main impurity of Al product was caused by the adsorbed SO42- during the precipitation of the Al3+. The structural characterization demonstrated that the obtained Fe products were in nanoscale, and the Ti-Si residue has high BET area of 203.7 m2/g. Four products of nano-Fe3O4/nano-Fe, aluminum oxide, Ti-Si residue, and (NH4)2SO4 were obtained as valuable chemical materials for industry. This demonstrated utilization of industrial waste to produce high added-value products with high efficiency and low cost will possess promising application prospect for the resource utilization of RM in industry.


Subject(s)
Ferric Compounds , Industrial Waste , Aluminum , Aluminum Oxide , Fractional Precipitation
12.
Cell Biochem Funct ; 38(4): 436-442, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31930529

ABSTRACT

As small conserved RNAs without a coding function, microRNAs are expressed in multicellular organisms and contribute to the modulation of multiple cellular reactions, such as viral replication, as well as autophagy. microRNAs can regulate host gene expression and inhibit or reinforce hepatitis B virus (HBV) replication. Hepatic cells express miR-155 noticeably. Consequently, our study explored miR-155 modulation of HBV replication and investigated the potential mechanism involved. miR-155 was inhibited on HBV infection. miR-155 transfection remarkably reinforced HBV replication, antigen expression, and progeny secretion in HepG2215 cells. Moreover, miR-155 impaired the inhibition of the cytokine signalling 1 (SOCS1)/Akt/mTOR axis and reinforced HepG2215 autophagy. Additionally, the autophagy inhibitor (3-MA) eliminated HBsAg secretion triggered by miR-155. Taken together, miR-155 reinforced HBV replication by reinforcing SOCS1-triggered autophagy. SIGNIFICANCE OF THE STUDY: The research studied the potential mechanism involved in HBV replication and miR-155 that miR-155 reinforces HBV replication by reinforcing the SOCS1/Akt/mTOR axis-stimulated autophagy, and therefore, it can provide medical practitioners with the inspiration that chronic HBV might be cured or improved by regulating the activation of miR-155 in cells. In the study, the experiments show that autophagy inhibitors (3-MA) counteracted miR-155 contribution to HBV replication, and it might be a practicable way to improve HBV through some therapies that can repress the autophagy in related cells.


Subject(s)
Autophagy , Hepatitis B virus/physiology , MicroRNAs/metabolism , Signal Transduction , Suppressor of Cytokine Signaling 1 Protein/metabolism , Virus Replication , Hep G2 Cells , Humans
13.
Opt Express ; 27(18): 24972-24977, 2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31510377

ABSTRACT

We demonstrate that the strong 4-level Yb emission in a fiber laser can be almost completely suppressed in an Yb all-solid double-clad photonic bandgap fiber, resulting in highly efficient high-power monolithic Yb fiber lasers operating at the 3-level system. We have achieved single-mode continuous wave laser output power of ~151W at ~978nm with an efficiency of 63% with respect to the launched pump power in a practical monolithic fiber laser configuration for the first time. The demonstrated power in this work are setting new records for diffraction-limited double-clad fiber lasers operating at ~978nm.

14.
Opt Lett ; 44(4): 807-810, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30767992

ABSTRACT

Efficient cladding-pumped three-level Yb fiber lasers are difficult to achieve due to the competing four-level system and necessary high inversions. We demonstrate an efficiency of ∼62.7% versus a coupled pump, a record for cladding-pumped fiber lasers with a single-pass pump. 84 W at ∼978 nm with ∼1.12M2 was achieved, a record power for flexible fibers. Amplified spontaneous emission was suppressed by >40 dB. The efficiency is quantum-limited ∼94% versus an absorbed pump. This is made possible by the use of a photo-darkening-free Yb phosphosilicate core and recent progress in single-mode large-core all-solid photonic bandgap fiber designs, which provide the necessary large core-to-cladding ratio and suppression of the four-level system.

15.
Eur J Pharmacol ; 851: 36-42, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30776368

ABSTRACT

Type 2 diabetes is a chronic metabolic disease characterized by progressive decrease of islet cell function. Delaying the process of islet failure remains a challenging goal in diabetes care. Previous studies have confirmed the role of obestatin, a gut peptide that belongs to ghrelin family, in the mediation of glucose metabolism. This study aimed to observe the long term effects of exogenous obestatin on glucose metabolism in type 2 diabetes rat model. Type 2 diabetic rat model was set up by high-fat diet (60%) followed by a low dose of streptozotocin intra-peritoneal injection. Exogenous obestatin was administered at a dose of 20 nmol/kg for 12 weeks by intraperitoneal injection. Compared to placebo group (saline intraperitoneal injection), obestatin treatment decreased the glucagon levels and increased the c-peptide levels. Furthermore, obestatin treatment led to a significant restoration of islet morphology, increasing insulin and reducing glucagon expressions. Apoptosis assay showed a reduction in the number of TUNEL positive-cells. The up-regulation of Akt and GSK3ß in pancreas was confirmed by Real-Time PCR. These results demonstrated that obestatin might have a potential therapeutic relevance in improving islet cell function, including increasing insulin secretion through inhibiting beta cell apoptosis and decreasing glucagon secretion by inhibiting alfa cell proliferation in type 2 diabetes. In spite of its role in these phenomena, it is necessary to further discuss, especially regarding the role of obestatin on glucagon.


Subject(s)
Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/pathology , Diet, High-Fat/adverse effects , Ghrelin/pharmacology , Glucagon-Secreting Cells/drug effects , Insulin-Secreting Cells/drug effects , Animals , Body Weight/drug effects , Diabetes Mellitus, Experimental/metabolism , Glucagon-Secreting Cells/pathology , Glucose/metabolism , Insulin-Secreting Cells/pathology , Male , Rats , Rats, Wistar
16.
Nanoscale ; 10(11): 5272-5279, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29498391

ABSTRACT

In this work, efficient visible Ho3+-doped fluorozirconate glass (Ho:ZBLAN) all-fiber lasers operating in continuous-wave (CW) and Q-switching regimes are experimentally demonstrated. The combination of a direct blue pump, a highly-doped Ho:ZBLAN fiber and the fiber end-facet mirrors contributes to a simple all-fiber configuration. A tunable laser emission in the green spectral range of 543-550 nm is achieved with >150 mW output power and a tunable deep-red laser around 754-758 nm is also obtained with about 16 mW output power. Interestingly, stable visible self-Q-switched operation was successfully observed. For the green Q-switched all-fiber laser, a maximum single pulse energy of 196 nJ is realized with a repetition rate of 97.66 kHz and a pulse duration of 605 ns. As the pump power is increased, the deep-red Q-switched all-fiber laser has the pulse repetition rate from 59.88 to 100.5 kHz and the pulse duration from 4.85 to 2.02 µs, corresponding to the maximum pulse energy of 58 nJ. To the best of our knowledge, this work is the first demonstration of Ho:ZBLAN all-fiber lasers emitting in the visible spectral range (i.e., both green and deep-red wavelengths).

17.
Appl Opt ; 56(27): 7749-7755, 2017 Sep 20.
Article in English | MEDLINE | ID: mdl-29047757

ABSTRACT

We report the experimental investigation of visible passively Q-switched Pr3+-doped all-fiber lasers with tungsten disulfide (WS2) saturable absorber, where red-light short-pulse generations from different output mirror transmissions are systemically characterized. The proposed simple and compact all-fiber linear cavity was constructed by a fiber-pigtail-based blue laser-diode pump, a Pr3+-doped fluorozirconate glass active fiber, and the fiber end-facet mirrors. Integrating a free-standing layered WS2 film into the laser cavity initiated the Q-switching operation. Stable microsecond-duration output pulses with kilohertz repetition rates are achieved, corresponding to a few mW/nJ average output power and single-pulse energy. The comparisons on red-light Q-switched output parameters for output transmissions of both ∼40% and ∼80% are performed. This work could provide a useful guideline to manipulate the output performance of visible pulsed all-fiber lasers for various practical applications.

18.
Environ Sci Pollut Res Int ; 24(31): 24214-24222, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28887631

ABSTRACT

The removal of thallium ions in flue gas desulfurization wastewater from ferrous metallurgic industry was studied by emulsion liquid membrane (ELM) method using 2-ethylhexyl phosphoric acid-2-ethylhexyl ester (P507) as carrier, aviation kerosene (AK) as organic solvent, polyisobutylene succinimide (T154) as surfactant, polyisobutylene (PIB) as additive, and sulfuric acid as internal reagent. Some important influence parameters such as concentrations of carrier, surfactant and stripping agent, agitation speed, extraction time, volume ratios of feed solution to emulsion phase and internal phase to membrane phase, and their effects on the removal efficiency of Tl in the ELM process were investigated and optimized. Under the optimum operating conditions of 2% of carrier, 5% of surfactant, 0.5 M of stripping agent, 350 rpm of agitation speed, 12.5:1 of volume ratio of feed solution to emulsion phase, and 3:1 volume ratio of membrane to internal phase, the maximum extraction efficiency of thallium reached 99.76% within 15-min reaction time. The ICP-MS analysis indicated that the thallium concentration in treated wastewater was below 5 µg/L and could meet the emission standard demand for industrial wastewater enacted by the local government of Hunan province of China. Meanwhile, the extraction of impurity ions calcium and magnesium in the ELM system was investigated. The result showed that an acidic environment would be in favor of the removal of Tl from calcium and magnesium contained in wastewater. Graphical abstract ᅟ.


Subject(s)
Membranes, Artificial , Thallium/analysis , Wastewater/analysis , Water Pollutants, Chemical/analysis , China , Emulsions/chemistry , Ferrous Compounds , Metallurgy , Water Pollution, Chemical/prevention & control
19.
Opt Lett ; 42(4): 671-674, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28198836

ABSTRACT

We experimentally demonstrated a compact single-wall carbon-nanotube (SWNT)-based deep-red passively Q-switched Pr3+-doped ZBLAN all-fiber laser operating at 716 nm. A free-standing SWNT/polyvinyl alcohol composite film embedded between a pair of fiber connectors was employed as a saturable absorber (SA). The deep-red Q-switched operation is attributed to the combination of implementing a pair of fiber end-facet mirrors to achieve the linear laser resonator and incorporating a SWNT-SA into the cavity as a Q-switcher. Stable short-pulse generation with a duration of 2.3 µs was realized. When gradually increasing the incident pump power, the pulse repetition rate can be linearly tuned from 32.6 to 86.5 kHz, corresponding to a maximum average output power of 1.5 mW and the highest single-pulse energy of 18.3 nJ. To the best of our knowledge, this is the first demonstration of SWNT-based SA for a Q-switched laser at a deep-red wavelength ∼716 nm.

20.
Appl Opt ; 56(3): 601-606, 2017 Jan 20.
Article in English | MEDLINE | ID: mdl-28157916

ABSTRACT

We evaluated the feasibility of embedding periodically arranged squares with planar and vertical texture into a background with a developable-modulation (DM) type cholesteric liquid crystal (CLC) fingerprint texture by a two-step ultraviolet-induced polymerization method. Checker-patterned optical diffractive elements, which can be seen as a variation of a two-dimensional (2D) barcode, were first realized and the dependence of diffraction behaviors on incident light polarization and applied voltage were investigated. Taking advantage of the natural randomness and uncontrollable variations of a DM-type fingerprint textures, a polymer-stabilized CLC (PSCLC) graphic symbol with a 2D barcode pattern was then implemented with enhanced anti-counterfeiting features that are difficult to falsify or duplicate. The results indicate that the multiplexing of nonuniform DM-type fingerprint gratings, cross-polarized light readout, and unique polarization diffraction characteristics can improve the level of security.

SELECTION OF CITATIONS
SEARCH DETAIL
...