Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Cancer ; 24(1): 684, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840087

ABSTRACT

BACKGROUND: Many randomized controlled trials (RCTs) and network meta-analyses have demonstrated that the progression-free survival (PFS) and overall survival (OS) of advanced non-small cell lung cancer (NSCLC) patients can be improved through combination immunotherapy or monotherapies. However, time-dependent analysis of the treatment effect is currently lacking. Thus, we aimed to evaluate the efficacy of first-line immunotherapy, and establish a hazard ratio function to reflect the time-varying progression or mortality risk of patients with NSCLC. METHODS: Seventeen clinical trials were selected based on search strategy. Baseline characteristics, including the age, sex, smoking status, geographical region, and Eastern Cooperative Oncology Group (ECOG) performance status of patients, were balanced, resulting in ten immunotherapies from nine appropriate clinical trials to conduct treatment effect comparison. RESULTS: We found that nivolumab plus ipilimumab (nivo + ipi) improved the PFS and OS over time. The hazard ratio of nivo + ipi, relative to that of pembrolizumab, decreased from 1.11 to 0.36 for PFS, and from 0.93 to 0.49 for OS over a 10-year period. In terms of the response to immunotherapy in patients with different PD-L1 expression levels, patients with PD-L1 > = 50% experienced lower rates of progression and a reduced mortality risk over time. The hazard ratio of patients with PD-L1 > = 50% relative to all of the patients decreased from 0.73 to 0.69 for PFS, and from 0.78 to 0.67 for OS. CONCLUSIONS: Based on the fact that time-dependent progression and mortality risk existed during the treatment duration, physicians should select a suitable treatment regimen for patients based on the hazard ratio.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Immunotherapy , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/therapy , Lung Neoplasms/mortality , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Immunotherapy/methods , Time Factors , Progression-Free Survival , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Female , Male , Nivolumab/therapeutic use , Ipilimumab/therapeutic use , Ipilimumab/administration & dosage , Antibodies, Monoclonal, Humanized/therapeutic use , Treatment Outcome , Randomized Controlled Trials as Topic
2.
Crit Rev Oncol Hematol ; 193: 104195, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37931769

ABSTRACT

BACKGROUND: Immunotherapies can substantially improve treatment efficacy, despite their high cost. A comprehensive overview of the cost-effectiveness analysis (CEA) of immune checkpoint inhibitors (ICIs) in patients with non-small cell lung cancer based on different tumor proportion scores (TPSs) was conducted. METHODS: PubMed, Embase, Cochrane Central Register of Controlled Trials, Health Technology Assessment Database, and NHS Economic Evaluation databases were searched from their inception until August 24, 2022. Data relevant to the CEA results were recorded, and quality assessments conducted based on the Quality of Health Economic Studies (QHES) process. FINDINGS: Fifty-one original studies from seven countries were included. The mean QHES score was 77.0 (range: 53-95). Twenty-seven studies were classified as high-quality, and the rest as fair quality. Pembrolizumab, nivolumab, ipilimumab, atezolizumab, camrelizumab, cemiplimab, sintilimab, tislelizumab, and durvalumab were identified using three TPS categories. While nivolumab plus ipilimumab and pembrolizumab plus chemotherapy were unlikely to be cost-effective in China, the results for the US were uncertain. Atezolizumab combinations were not cost-effective in China or the US, and tislelizumab and sintilimab were cost-effective in China. For TPSs ≥ 50%, the pembrolizumab monotherapy could be cost-effective in some developed countries. Cemiplimab was more cost-effective than chemotherapy, pembrolizumab, and atezolizumab in the US. For TPSs ≥ 1%, the cost-effectiveness of pembrolizumab was controversial due to the different willingness-to-pay thresholds. CONCLUSIONS: None of the atezolizumab combination regimens were found to be cost-effective in any perspective of evaluations. Camrelizumab, tislelizumab, and sintilimab have lower ICERs compared to atezolizumab, pembrolizumab, and nivolumab in China. Cemiplimab may be a more affordable alternative to pembrolizumab or atezolizumab. However, it remains unclear which ICIs are the best choices for each country. Future CEAs are required to select comprehensive regimens alongside randomized trials and real-world studies to help verify the economics of ICIs in specific decision-making settings.


Subject(s)
Antineoplastic Agents, Immunological , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Cost-Benefit Analysis , Nivolumab/therapeutic use , Ipilimumab/therapeutic use , Cost-Effectiveness Analysis , B7-H1 Antigen , Antineoplastic Agents, Immunological/therapeutic use , Immunotherapy/methods
3.
BMC Genomics ; 17(1): 877, 2016 11 05.
Article in English | MEDLINE | ID: mdl-27814678

ABSTRACT

BACKGROUND: Verticillium wilt (VW) caused by Verticillium dahliae (Kleb) is one of the most destructive diseases of cotton. The identification of highly resistant QTLs or genes in the whole cotton genome is quite important for developing a VW-resistant variety and for further molecular design breeding. RESULTS: In the present study, BC1F1, BC1S1, and BC2F1 populations derived from an interspecific backcross between the highly resistant line Hai1 (Gossypium barbadense L.) and the susceptible variety CCRI36 (G. hirsutum L.) as the recurrent parent were constructed. Quantitative trait loci (QTL) related to VW resistance were detected in the whole cotton genome using a high-density simple sequence repeat (SSR) genetic linkage map from the BC1F1 population, with 2292 loci covering 5115.16 centiMorgan (cM) of the cotton (AD) genome, and the data concerning VW resistance that were obtained from four dates of BC2F1 in the artificial disease nursery and one date of BC1S1 and BC2F1 in the field. A total of 48 QTLs for VW resistance were identified, and 37 of these QTLs had positive additive effects, which indicated that the G. barbadense alleles increased resistance to VW and decreased the disease index (DI) by about 2.2-10.7. These QTLs were located on 19 chromosomes, in which 33 in the A subgenome and 15 QTLs in the D subgenome. The 6 QTLs were found to be stable. The 6 QTLs were consistent with those identified previously, and another 42 were new, unreported QTLs, of which 31 QTLs were from G. barbadense. By meta-analysis, 17 QTL hotspot regions were identified and 10 of them were new, unreported hotspot regions. 29 QTLs in this paper were in 12 hotspot regions and were all from G. barbadense. CONCLUSIONS: These stable or consensus QTL regions warrant further investigation to better understand the genetics and molecular mechanisms underlying VW resistance. This study provides useful information for further comparative analysis and marker-assisted selection in the breeding of disease-resistant cotton. It may also lay an important foundation for gene cloning and further molecular design breeding for the entire cotton genome.


Subject(s)
Crosses, Genetic , Disease Resistance/genetics , Gossypium/genetics , Gossypium/microbiology , Plant Diseases/genetics , Plant Diseases/microbiology , Quantitative Trait Loci , Verticillium , Chromosome Mapping , Genetic Linkage , Genetics, Population , Phenotype
4.
J Integr Plant Biol ; 57(5): 450-67, 2015 May.
Article in English | MEDLINE | ID: mdl-25263268

ABSTRACT

To introgress the good fiber quality and yield from Gossypium barbadense into a commercial Upland cotton variety, a high-density simple sequence repeat (SSR) genetic linkage map was developed from a BC1 F1 population of Gossypium hirsutum × Gossypium barbadense. The map comprised 2,292 loci and covered 5115.16 centiMorgan (cM) of the cotton AD genome, with an average marker interval of 2.23 cM. Of the marker order for 1,577 common loci on this new map, 90.36% agrees well with the marker order on the D genome sequence genetic map. Compared with five published high-density SSR genetic maps, 53.14% of marker loci were newly discovered in this map. Twenty-six quantitative trait loci (QTLs) for lint percentage (LP) were identified on nine chromosomes. Nine stable or common QTLs could be used for marker-assisted selection. Fifty percent of the QTLs were from G. barbadense and increased LP by 1.07%-2.41%. These results indicated that the map could be used for screening chromosome substitution segments from G. barbadense in the Upland cotton background, identifying QTLs or genes from G. barbadense, and further developing the gene pyramiding effect for improving fiber yield and quality.


Subject(s)
Chromosome Mapping , Crosses, Genetic , Genetic Linkage , Gossypium/genetics , Quantitative Trait Loci/genetics , Textiles , Alleles , Chromosomes, Plant/genetics , Gene Frequency/genetics , Genetic Loci , Genetic Markers , Genome, Plant , Genotype , Heterozygote , Microsatellite Repeats/genetics , Polymorphism, Genetic , Polyploidy
SELECTION OF CITATIONS
SEARCH DETAIL