Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Nanoscale ; 6(17): 10134-9, 2014 Sep 07.
Article in English | MEDLINE | ID: mdl-25042514

ABSTRACT

We experimentally investigate the protection of electron spin coherence of a nitrogen-vacancy (NV) centre in diamond by dynamic nuclear spin polarization (DNP). The electron spin decoherence of an NV centre is caused by the magnetic field fluctuation of the (13)C nuclear spin bath, which contributes large thermal fluctuation to the centre electron spin when it is in an equilibrium state at room temperature. To address this issue, we continuously transfer the angular momentum from electron spin to nuclear spins, and pump the nuclear spin bath to a polarized state under the Hartmann-Hahn condition. The bath polarization effect is verified by the observation of prolongation of the electron spin coherence time (T). Optimal conditions for the DNP process, including the pumping pulse duration and repeat numbers, are proposed by numerical simulation and confirmed by experiment. We also studied the depolarization effect of laser pulses. Our results provide a new route for quantum information processing and quantum simulation using the polarized nuclear spin bath.

SELECTION OF CITATIONS
SEARCH DETAIL