Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Biochem Biophys ; 80(2): 443-455, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35257277

ABSTRACT

Adipose-derived stem cells are one of the potential sources of cells for the treatment of cartilage defects. This study aimed to investigate the molecular mechanisms that account for the chondrogenic differentiation of human adipose-derived stem cells (hADSCs). We employed integrin ß1 (ITGB1) overexpression to induce chondrogenic differentiation of hADSCs. Next-generation sequencing was used to determine the mRNAs and circular RNAs (circRNAs) expression profiles in ITGB1-overexpresing and negative control cells. The potential functions of differentially expressed mRNAs were analyzed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses. Moreover, differentially expressed circRNAs with the greatest fold change were validated by polymerase chain reaction (PCR), Sanger sequencing, and quantitative real-time PCR (qRT-PCR). These three circRNAs and their downstream microRNAs and mRNAs were used to construct a circRNA-microRNA-mRNA interaction network. The results showed that we identified 713 differentially expressed circRNAs (150 upregulated and 563 downregulated in ITGB1-overexpressing hADSCs versus negative control cells, respectively). Meanwhile, 2383 mRNAs were differentially expressed between two groups (1672 upregulated and 711 downregulated in ITGB1-overexpressing cells compared with the negative control cells). The GO and KEGG analysis results showed that the differentially expressed mRNAs were enriched in biological processes, cellular components, and molecular functions, especially in the phosphatidylinositol 3-kinase (PI3K)-AKT and mitogen-activated protein kinase signaling pathways. Three differentially expressed circRNAs, including hsa_circ_0071127, hsa_circ_0008637, and hsa_circ_0020028, were validated by qRT-PCR. Moreover, the circRNA-microRNA-mRNA network predicted that fibroblast growth factor 2 (FGF2) was a common node regulated by these three circRNAs through several microRNAs, including miR-195-3p, miR-205-3p, and miR-152-3p. We further found that the knockdown of hsa_circ_0020028, but not the two other circRNAs, significantly reduced FGF2 mRNA expression in hADSCs. Furthermore, the knockdown of hsa_circ_0020028 significantly inhibited the protein expression of FGF2, chondrogenic differentiation markers (COL II, aggrecan, and SOX9), and PI3K/AKT signaling in ITGB1-overexpressing hADSCs. This study uncovered the differentially expressed mRNA and circRNA profiles in the chondrogenic differentiation of hADSCs induced by ITGB1 overexpression. Our findings demonstrate that hsa_circ_0020028 regulates the ITGB1 overexpression-mediated chondrogenic differentiation of hADSCs through regulation of FGF2-related signaling pathways.


Subject(s)
MicroRNAs , RNA, Circular , Fibroblast Growth Factor 2/genetics , High-Throughput Nucleotide Sequencing , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt/genetics , RNA, Circular/genetics , RNA, Messenger/genetics , Stem Cells/metabolism
2.
J Orthop Surg Res ; 16(1): 64, 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33468174

ABSTRACT

BACKGROUND: Knowledge regarding the pathogenesis of osteoarthritis (OA) is very limited. Previous studies have shown that matrix metalloproteinase (MMP) 8 and MMP9 were upregulated in patients with diabetic OA. However, their regulatory functions and mechanisms in diabetic OA are not fully understood. METHODS: Diabetic OA rats were constructed using a high-fat diet combined with streptozotocin (STZ) induction. Safranin O-Fast green staining was used to detect the pathological changes in rat knee cartilage. MMP8 and MMP9 overexpression vectors or siRNAs were injected into diabetic OA rats to overexpress or knockdown the expression of MMP8 and MMP9, which was verified by real-time quantitative PCR (RT-qPCR). The expression of MMP8 and MMP9, chondrocyte differentiation markers collagen type II alpha 1 (COL2A1) and collagen type I alpha 1(COL1A1), and antiapoptotic protein BCL2 were detected using immunohistochemistry (IHC), and the number of apoptotic cells was detected by the transferase-mediated d-UTP nick-end-labeling (TUNEL) assay. RESULTS: High-fat diet combined with STZ-induced rats exhibited joint cartilage damage, morphological changes, and increased expression of MMP8 and MMP9. Overexpression of MMP8 and MMP9 in the joint cavity further aggravated the pathological morphological changes, decreased the expression of COL2A1 and COL1A1, increased the expression of BCL2, and promoted cell apoptosis in diabetic OA rats. The use of siRNA to inhibit MMP8 and MMP9 levels in the cartilage joints significantly reversed the decrease in COL2A1 and COL1A1 expression and partially reversed BCL2 expression and chondrocyte apoptosis. CONCLUSION: MMP8 and MMP9 promoted rat diabetic OA model. The underlying mechanism may be related to inhibiting cartilage differentiation and promoting chondrocyte apoptosis.


Subject(s)
Diabetes Complications/complications , Gene Expression , Matrix Metalloproteinase 8/genetics , Matrix Metalloproteinase 8/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Osteoarthritis/etiology , Osteoarthritis/genetics , Animals , Apoptosis/genetics , Cartilage/cytology , Cell Differentiation/genetics , Cells, Cultured , Chondrocytes/physiology , Collagen Type I, alpha 1 Chain , Disease Models, Animal , Disease Progression , Humans , Male , Rats, Wistar
3.
J Mol Histol ; 51(6): 729-739, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33057850

ABSTRACT

Adipose-derived mesenchymal stem cell (ADSC) with a high capacity of chondrogenic differentiation was a promising candidate for cartilage defect treatment. This study's objective is to study the roles of integrin ß1 (ITGB1) in regulating ADSC chondrogenic differentiations as well as the underlying mechanisms. The identity of ADSC was confirmed by flow cytometry. ITGB1 gene was overexpressed in human ADSC (hADSC) by transfection with LV003-recombinant plasmids. Gene mRNA and protein levels were examined using quantitative RT-PCR and western blotting, respectively. Differentially expressed mRNAs and proteins were characterized by next-generation RNA sequencing and label-free quantitative proteomics, respectively. ERK signaling and AKT signaling in hADSCs were inhibited by treating with SCH772984 and GSK690693, respectively. ITGB1 gene overexpression substantially increased collagen type II alpha 1 chain (COL2A1), aggrecan (ACAN), and SRY-box transcription factor 9 (SOX9) expression but suppressed collagen type I alpha 1 chain (COL1A1) expression in hADSCs. Next-generation RNA sequencing identified a total of 246 genes differentially expressed in hADSCs by ITGB1 overexpression, such as 183 upregulated and 63 downregulated genes. Label-free proteomics characterized 34 proteins differentially expressed in ITGB1-overexpressing hADSCs. Differentially expressed genes and proteins were enriched by different biological processes such as cell adhesion and differentiation and numerous signaling pathways such as the ERK signaling pathway. ERK inhibitor treatment caused substantially enhanced chondrogenic differentiation in ITGB1-overexpressing hADSCs. ITGB1 promoted the chondrogenic differentiation of human ADSCs via the activation of the ERK signaling pathway.


Subject(s)
Cell Differentiation/genetics , Chondrocytes/metabolism , Integrin beta1/genetics , MAP Kinase Signaling System , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Adipose Tissue/cytology , Chondrocytes/cytology , Chondrogenesis/genetics , Collagen Type I, alpha 1 Chain , Gene Expression , Humans , Integrin beta1/metabolism , Proteomics/methods , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...