Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Dig Dis ; 42(3): 221-229, 2024.
Article in English | MEDLINE | ID: mdl-38342087

ABSTRACT

INTRODUCTION: The objective of our study was to develop a nomogram to predict overall survival (OS) and cancer-specific survival (CSS) in patients with gastric signet ring cell carcinoma (GSRCC). METHODS: A total of 3,408 GSRCC patients between 1975 and 2017 were screened from the Surveillance, Epidemiology, and End Results (SEER) database and randomly divided into training and validation cohorts. Univariate and multivariate Cox analyses were conducted to identify independent prognostic factors for the construction of a nomogram. The performance of the model was then assessed by the concordance index (C-index), calibration plot, and area under the receiver operating characteristic curve (AUC). Then, the novel nomogram was further assessed by 64 GSRCC patients from our hospital as the external cohort. RESULTS: We identified age, tumor lymph node metastasis (TNM) staging system, surgery, and chemotherapy as significant independent elements of prognosis. On this basis, a nomogram was constructed, with a C-index of OS in the training and validation cohorts of 0.763 (95% CI: 0.751-0.774) and 0.766 (95% CI: 0.748-0.784) and a C-index of CSS of 0.765 (95% CI: 0.753-0.777) and 0.773 (95% CI: 0.755-0.791), respectively. The AUCs of the nomogram for predicting 2- and 5-year OS were 0.848 and 0.885, respectively, and those for predicting CSS were 0.854 and 0.899, respectively, demonstrating the excellent predictive value of the constructed nomogram compared to the traditional AJCC staging system. Similar results were also observed in both the internal and external validation sets. CONCLUSION: The nomogram provided an accurate tool to predict OS and CSS in patients with GSRCC, which can assist clinicians in making predictions about individual patient survival.


Subject(s)
Carcinoma, Signet Ring Cell , Nomograms , SEER Program , Stomach Neoplasms , Humans , Carcinoma, Signet Ring Cell/mortality , Carcinoma, Signet Ring Cell/pathology , Stomach Neoplasms/mortality , Stomach Neoplasms/pathology , Male , Female , Middle Aged , Prognosis , Aged , Adult , Neoplasm Staging , ROC Curve , Proportional Hazards Models
2.
Eur J Med Res ; 28(1): 519, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37968748

ABSTRACT

OBJECTIVE: The primary objective of this study was to evaluate the efficacy and safety of pulsed field ablation in individuals diagnosed with atrial fibrillation. METHODS: A total of 36 patients diagnosed with atrial fibrillation were enrolled in the pulsed field ablation group, while another 36 patients diagnosed with atrial fibrillation were included in the radiofrequency ablation group. Among the study participants, 15 patients in the pulsed field ablation group and 17 patients in the radiofrequency ablation group had persistent atrial fibrillation. Comprehensive comparisons were made between the two groups, including baseline data, underlying diseases, medication usage, intraoperative parameters, and atrial fibrillation recurrence rates at 1, 3, and 6 months during the postoperative follow-up period. RESULTS: (1) There were no significant differences observed between the two groups concerning baseline data and antiarrhythmic drug usage (P > 0.05); (2) the effective ablation time for both left and right pulmonary veins in the pulsed field ablation group was markedly shorter compared to the radiofrequency ablation group (P < 0.001 for each vein); (3) within the pulsed field ablation group, the number of discharges, catheter operation time, and effective ablation time for the left pulmonary vein were significantly higher than those for the right pulmonary vein (P < 0.05). Conversely, in the radiofrequency ablation group, the number of discharges for the left pulmonary vein was significantly higher than that for the right pulmonary vein (P < 0.05); and (4) when comparing sinus rhythm maintenance at 1, 3, and 6 months postoperatively, no statistically significant differences were noted between the two groups for paroxysmal, persistent, and paroxysmal + persistent atrial fibrillation cases (P > 0.05). CONCLUSION: During the 6-month follow-up period, pulsed field ablation demonstrated comparable efficacy to radiofrequency ablation with respect to recurrence rates for both paroxysmal and persistent atrial fibrillation. Moreover, pulsed field ablation exhibited high safety levels, excellent surgical efficiency, and a notably brief learning curve, affirming its viability as a therapeutic option for these conditions.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Pulmonary Veins , Humans , Atrial Fibrillation/diagnosis , Case-Control Studies , Pulmonary Veins/surgery , Catheter Ablation/methods , Treatment Outcome , Recurrence
3.
J Phys Chem B ; 127(30): 6643-6647, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37467375

ABSTRACT

The leading mechanism for the formation of O2 in photosystem II (PSII) has, during the past decade, been established as the so-called oxyl-oxo mechanism. In that mechanism, O2 is formed from a binding between an oxygen radical (oxyl) and a bridging oxo group. For the case of higher plants, that mechanism has recently been criticized. Instead, a nucleophilic attack of an oxo group on a five-coordinated Mn(V)═O group forming O2 has been suggested in a so-called water-unbound (WU) mechanism. In the present study, the WU mechanism has been investigated. It is found that the WU mechanism is just a variant of a previously suggested mechanism but with a reactant and a transition state that have much higher energies. The addition of a water molecule on the empty site of the Mn(V)═O center is very exergonic and leads back to the previously suggested oxyl-oxo mechanism.

4.
J Phys Chem B ; 127(21): 4800-4807, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37196177

ABSTRACT

The catalytic mechanisms for the wild-type and the mutated Cu-only superoxide dismutase were studied using the hybrid density functional B3LYP and a quantum chemical cluster approach. Optimal protonation states of the active site were examined for each stage of the catalytic cycle. For both the reductive and the oxidative half-reactions, the arrival of the substrate O2•- was found to be accompanied by a charge-compensating H+ with exergonicities of -15.4 kcal·mol and -4.7 kcal·mol, respectively. The second-sphere Glu-110 and first-sphere His-93 were suggested to be the transient protonation site for the reductive and the oxidative half-reactions, respectively, which collaborates with the hydrogen bonding water chain to position the substrate near the redox-active copper center. For the reductive half-reaction, the rate-limiting step was found to be the inner-sphere electron transfer from the partially coordinated O2•- to CuII with a barrier of 8.1 kcal·mol. The formed O2 is released from the active site with an exergonicity of -14.9 kcal·mol. For the oxidative half-reaction, the inner-sphere electron transfer from CuI to the partially coordinated O2•- was found to be accompanied by the proton transfer from the protonated His-93 and barrierless. The rate-limiting step was found to be the second proton transfer from the protonated Glu-110 to HO2- with a barrier of 7.3 kcal·mol. The barriers are reasonably consistent with experimental activities, and a proton-transfer rate-limiting step in the oxidative half-reaction could explain the experimentally observed pH-dependence. For the E110Q CuSOD, Asp-113 was suggested to be likely to serve as the transient protonation site in the reductive half-reaction. The rate-limiting barriers were found to be 8.0 and 8.6 kcal·mol, respectively, which could explain the slightly lower performance of E110X mutants. The results were found to be stable, with respect to the percentage of exact exchange in B3LYP.


Subject(s)
Protons , Superoxide Dismutase , Oxidation-Reduction , Electron Transport , Models, Theoretical
5.
J Phys Chem A ; 124(39): 8011-8018, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32877196

ABSTRACT

The mechanism for water oxidation in photosystem II has been a major topic for several decades. The active catalyst has four manganese atoms connected by bridging oxo bonds, in a complex termed the oxygen-evolving complex (OEC), which also includes a calcium atom. The O-O bond of oxygen is formed after absorption of four photons in a state of the OEC termed S4. There has been essential consensus that in the S4 state, all manganese atoms are in the Mn(IV) oxidation state. However, recently there has been a suggestion that one of the atoms is in the Mn(VII) state. In the present computational study, the feasibility of that proposal has been investigated. It is here shown that the mechanism involving Mn(VII) has a much higher barrier for forming O2 than the previous proposal with four Mn(IV) atoms.

6.
Chemosphere ; 244: 125386, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32050321

ABSTRACT

Polysulfone ultrafiltration (UF) and polypiperazine-amide nanofiltration (NF) membranes were first fabricated by phase inversion and interfacial polymerization, and then modified by the commonly used TiO2 on the membrane surface, respectively. Compared with the pristine UF and NF membranes, pure water flux decreased by 40.66% for modified UF membrane and 12.92% for modified NF membrane, while the contact angle of the modified membranes decreased from 66.5° to 35.3° for UF membrane and from 48.2° to37.7° for NF membrane. However, the membrane modified by TiO2 nanoparticles for both UF and NF membranes exhibited much better anti-fouling and separation performance for two types of oil-in-water emulsions with different droplet size (i.e., prepared oil-in-water emulsion with low salinity and oil produced water in Shengli oilfield, China). It was obvious that water flux of modified UF only slightly decreased and the stable water flux was 2.2 times and 15.6% higher than that of pristine membranes for the prepared oil-in-water emulsion and produced water, respectively. According to the five fouling models for UF, the TiO2 modified UF membrane could alleviate the fouling on membrane surface and greatly increase water flux by reducing the adsorption, deposition, blockage of membrane pores and formation of cake layer for two types of oil-in-water emulsion. For NF, water flux of the modified membrane increased by 66.1% and 22.8% for prepared oil-in-water emulsion and produced water, respectively. TiO2 coating effectively alleviated the oil adhesion and cake layer formation on the membrane surface.


Subject(s)
Emulsions/chemistry , Membranes, Artificial , Petroleum Pollution , Piperazine/chemistry , Polymers/chemistry , Sulfones/chemistry , Water Purification/methods , China , Emulsions/isolation & purification , Industrial Oils , Nanoparticles , Oil and Gas Fields , Ultrafiltration/methods , Ultrafiltration/standards
7.
J Biol Inorg Chem ; 24(1): 103-115, 2019 02.
Article in English | MEDLINE | ID: mdl-30519754

ABSTRACT

The mechanism of the H2O2 disproportionation catalyzed by the manganese catalase (MnCat) KatB was studied using the hybrid density functional theory B3LYP and the quantum chemical cluster approach. Compared to the previous mechanistic study at the molecular level for the Thermus thermophilus MnCat (TTC), more modern methodology was used and larger models of increasing sizes were employed with the help of the high-resolution X-ray structure. In the reaction pathway suggested for KatB using the Large chemical model, the O-O homolysis of the first substrate H2O2 occurs through a µ-η1:η1 coordination mode and requires a barrier of 10.9 kcal/mol. In the intermediate state of the bond cleavage, two hydroxides form as terminal ligands of the dimanganese cluster at the Mn2(III,III) oxidation state. One of the two Mn(III)-OH- moieties and a second-sphere tyrosine stabilize the second substrate H2O2 in the second-sphere of the active site via hydrogen bonding interactions. The H2O2, unbound to the metals, is first oxidized into HO2· through a proton-coupled electron transfer (PCET) step with a barrier of 9.5 kcal/mol. After the system switches to the triplet surface, the uncoordinated HO2· replaces the product water terminally bound to the Mn(II) and is then oxidized into O2 spontaneously. Transition states with structural similarities to those obtained for TTC, where µ-η2-OH-/O2- groups play important roles, were found to be higher in energy.


Subject(s)
Anabaena/metabolism , Bacterial Proteins/metabolism , Catalase/metabolism , Hydrogen Peroxide/metabolism , Anabaena/chemistry , Bacterial Proteins/chemistry , Catalase/chemistry , Crystallography, X-Ray , Density Functional Theory , Manganese/chemistry , Manganese/metabolism , Models, Molecular , Oxidation-Reduction , Thermodynamics
8.
Acta Crystallogr Sect E Struct Rep Online ; 64(Pt 3): o561, 2008 Feb 06.
Article in English | MEDLINE | ID: mdl-21201904

ABSTRACT

In the title mol-ecule, C(15)H(17)ClN(2)O(2), the furan and benzene rings form a dihedral angle of 15.35 (8)°. In the crystal structure, inter-molecular N-H⋯O hydrogen bonds link the mol-ecules into chains extended in the [010] direction.

9.
Phys Chem Chem Phys ; 8(38): 4427-33, 2006 Oct 14.
Article in English | MEDLINE | ID: mdl-17001410

ABSTRACT

A series of self-constituted multiple hydrogen bonded (MHB) complexes has been investigated systematically by density functional theory (PBE1PBE /6-31G**), the Morokuma energy decomposition method (HF/6-31G**) and MP2 (6-31G** and 6-311++G**) calculation. We have discovered that (i) for doubly hydrogen bonded (DHB) complexes, both the interaction energy and stability increase with the charge transfer energy; (ii) for quadruple hydrogen bonded (QHB) complexes, cooperativity is the most important factor determining stability of the complex: stronger cooperative energy correlates well with larger interaction energy and thus more stable complex and vice versa; (iii) correlation energy plays an important role in intermolecular interactions. The correlation energy, mainly consisting of dispersive energy, also exhibits cooperativity in MHB dimers: positive for M-aadd and generally negative for other complexes.


Subject(s)
Models, Chemical , Dimerization , Energy Transfer , Hydrogen Bonding , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...