Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 108(1): 45-49, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37555725

ABSTRACT

Xanthomonas fragariae is classified as a quarantine pathogen by the European and Mediterranean Plant Protection Organization. It commonly induces typical angular leaf spot (ALS) symptoms in strawberry leaves. X. fragariae strains from China (YL19, SHAQP01, and YLX21) exhibit ALS symptoms in leaves and more severe symptoms of dry cavity rot in strawberry crowns. Conversely, strains from other countries do not cause severe dry cavity rot symptoms in strawberries. After employing multilocus sequence analysis (MLSA), average nucleotide identity (ANI), and amino acid identity (AAI), we determined that Chinese strains of X. fragariae are genetically distinct from other strains and can be considered a new subspecies. Subsequent analysis of 63 X. fragariae genomes published at NCBI using IPGA and EDGAR3.0 revealed the pan-genomic profile, with 1,680 shared genes present in all 63 strains, including 71 virulence-related genes. Additionally, we identified 123 genes exclusive to all the Chinese strains, encompassing 12 virulence-related genes. The qRT-PCR analysis demonstrated that the expression of XopD, XopG1, CE8, GT2, and GH121 out of 12 virulence-related genes of Chinese strains (YL19) exhibited a constant increase in the early stages (6, 24, 54, and 96 hours postinoculation [hpi]) of strawberry leaf infected by YL19. So, the presence of XopD, XopG1, CE8, GT2, and GH121 in Chinese strains may play important roles in the early infection process of Chinese strains. These findings offer novel insights into comprehending the population structure and variation in the pathogenic capacity of X. fragariae.


Subject(s)
Genomics , Xanthomonas , Multilocus Sequence Typing , Xanthomonas/genetics
2.
Plant Dis ; 107(11): 3542-3552, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37194211

ABSTRACT

Xanthomonas fragariae usually causes angular leaf spot (ALS) of strawberry, a serious bacterial disease in many strawberry-producing regions worldwide. Recently, a new strain of X. fragariae (YL19) was isolated from strawberry in China and has been shown to cause dry cavity rot in strawberry crown. In this study, we constructed a green fluorescent protein (GFP)-labeled Xf YL19 (YL19-GFP) to visualize the infection process and pathogen colonization in strawberries. Foliar inoculation of YL19-GFP resulted in the pathogen migrating from the leaves to the crown, whereas dip inoculation of wounded crowns or roots resulted in the migration of bacteria from the crowns or roots to the leaves. These two invasion types both resulted in the systematic spread of YL19-GFP, but inoculation of a wounded crown was more harmful to the strawberry plant than foliar inoculation. Results increased our understanding of the systemic invasion of X. fragariae, and the resultant crown cavity caused by Xf YL19.


Subject(s)
Fragaria , Xanthomonas , Fragaria/microbiology , China
3.
Plant Physiol Biochem ; 142: 151-162, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31284139

ABSTRACT

Extreme environmental conditions seriously affect crop growth and development, resulting in a decrease in crop yield and quality. However, small heat shock proteins (Hsp20s) play an important role in helping plants to avoid these negative impacts. In this study, we identified the expression pattern of the CaHsp25.9 gene in a thermo-tolerance pepper line R9 and thermo-sensitive line B6. The transcription of CaHsp25.9 was strongly induced by heat stress in both R9 and B6. The expression of CaHsp25.9 was induced by salt and drought stress in R9. Additionally, the CaHsp25.9 protein was localized in the cell membrane and cytoplasm. When silencing the CaHsp25.9 gene in the R9 line, the accumulation of malonaldehyde (MDA), relative electrolytic leakage, hydrogen peroxide, superoxide anion were increased, while total chlorophyll decreased under heat, salt, and drought stress. Over-expression of CaHsp25.9 in Arabidopsis resulted in decreased MDA, while proline, superoxide dismutase activity, germination, and root length increased under heat, salt, and drought stress. However, peroxidase activity was higher in drought stress but lower in heat and salt stress in transgenic Arabidopsis compared to the wild type (WT). Furthermore, the transcription of stress related genes was more highly induced in transgenic lines than WT. Our results indicated that CaHsp25.9 confers heat, salt, and drought stress tolerance to plants by reducing the accumulation of reactive oxygen species, enhancing the activity of antioxidant enzymes, and regulating the expression of stress-related genes. Therefore, these results may provide insight into plant adaption mechanisms developed in variable environments.


Subject(s)
Capsicum/physiology , Heat-Shock Proteins, Small/genetics , Heat-Shock Proteins, Small/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/physiology , Arabidopsis/genetics , Droughts , Enzymes/genetics , Enzymes/metabolism , Gene Expression Regulation, Plant , Gene Silencing , Heat-Shock Response/physiology , Plants, Genetically Modified , Reactive Oxygen Species/metabolism , Salt Stress/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...