Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 8346, 2017 08 21.
Article in English | MEDLINE | ID: mdl-28827701

ABSTRACT

Epidermal growth factor receptor (EGFR) mutations predict better outcomes with EGFR tyrosine kinase inhibitors in patients with non-small cell lung cancer (NSCLC). Most common activating mutations include in-frame deletion in exon 19 and L858R substitution in exon 21, which account for >90% of all EGFR mutations in NSCLC. In this study, a PCR-GoldMag lateral flow assay (PCR-GoldMag LFA) was developed for the visual detection of delE746-A750 and L858R of EGFR mutations. Forty formalin-fixed paraffin-embedded (FFPE) tissue samples of NSCLC patients were analyzed using PCR-GoldMag LFA system and verified by direct sequencing and TaqMan-PCR detection methods. Results showed that EGFR mutations were detected in 34 cases among the 40 samples (85%) by PCR-GoldMag LFA method. Among the 34 cases, 5 cases were simultaneously detected with delE746-A750 in exon 19 and L858R mutation in exon 21. Compared with sequencing, only 4 samples were detected as delE746-A750, which revealed higher sensitivity of PCR-GoldMag LFA detection method than direct sequencing. TaqMan-PCR method verified the L858R mutation and was in 100% agreement with our method. These results indicated that our method has obvious advantages to analyze clinical samples and offers a more sensitive alternative to direct sequencing for the detection of EGFR mutations.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Mutation , Polymerase Chain Reaction/instrumentation , Polymerase Chain Reaction/methods , Carcinoma, Non-Small-Cell Lung/pathology , Case-Control Studies , ErbB Receptors/genetics , Genotype , Humans , Lung Neoplasms/pathology , Prospective Studies
2.
IEEE Trans Image Process ; 22(5): 1915-25, 2013 May.
Article in English | MEDLINE | ID: mdl-23303694

ABSTRACT

This paper presents a novel approach to edge-aware image manipulation. Our method processes a Gaussian pyramid from coarse to fine, and at each level, applies a nonlinear filter bank to the neighborhood of each pixel. Outputs of these spatially-varying filters are merged using global optimization. The optimization problem is solved using an explicit mixed-domain (real space and DCT transform space) solution, which is efficient, accurate, and easy-to-implement. We demonstrate applications of our method to a set of problems, including detail and contrast manipulation, HDR compression, nonphotorealistic rendering, and haze removal.

3.
IEEE Trans Vis Comput Graph ; 19(2): 344-52, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22508904

ABSTRACT

Harmonic functions are the critical points of a Dirichlet energy functional, the linear projections of conformal maps. They play an important role in computer graphics, particularly for gradient-domain image processing and shape-preserving geometric computation. We propose Poisson coordinates, a novel transfinite interpolation scheme based on the Poisson integral formula, as a rapid way to estimate a harmonic function on a certain domain with desired boundary values. Poisson coordinates are an extension of the Mean Value coordinates (MVCs) which inherit their linear precision, smoothness, and kernel positivity. We give explicit formulas for Poisson coordinates in both continuous and 2D discrete forms. Superior to MVCs, Poisson coordinates are proved to be pseudoharmonic (i.e., they reproduce harmonic functions on n-dimensional balls). Our experimental results show that Poisson coordinates have lower Dirichlet energies than MVCs on a number of typical 2D domains (particularly convex domains). As well as presenting a formula, our approach provides useful insights for further studies on coordinates-based interpolation and fast estimation of harmonic functions.

SELECTION OF CITATIONS
SEARCH DETAIL
...