Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Nat Commun ; 15(1): 3113, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600097

ABSTRACT

Autophagy is a conserved, catabolic process essential for maintaining cellular homeostasis. Malfunctional autophagy contributes to neurodevelopmental and neurodegenerative diseases. However, the exact role and targets of autophagy in human neurons remain elusive. Here we report a systematic investigation of neuronal autophagy targets through integrated proteomics. Deep proteomic profiling of multiple autophagy-deficient lines of human induced neurons, mouse brains, and brain LC3-interactome reveals roles of neuronal autophagy in targeting proteins of multiple cellular organelles/pathways, including endoplasmic reticulum (ER), mitochondria, endosome, Golgi apparatus, synaptic vesicle (SV) for degradation. By combining phosphoproteomics and functional analysis in human and mouse neurons, we uncovered a function of neuronal autophagy in controlling cAMP-PKA and c-FOS-mediated neuronal activity through selective degradation of the protein kinase A - cAMP-binding regulatory (R)-subunit I (PKA-RI) complex. Lack of AKAP11 causes accumulation of the PKA-RI complex in the soma and neurites, demonstrating a constant clearance of PKA-RI complex through AKAP11-mediated degradation in neurons. Our study thus reveals the landscape of autophagy degradation in human neurons and identifies a physiological function of autophagy in controlling homeostasis of PKA-RI complex and specific PKA activity in neurons.


Subject(s)
Neurons , Proteomics , Mice , Animals , Humans , Neurons/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Autophagy/physiology , Homeostasis
2.
Nat Cell Biol ; 25(7): 963-974, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37231161

ABSTRACT

Dysfunctional autophagy has been implicated in the pathogenesis of Alzheimer's disease (AD). Previous evidence suggested disruptions of multiple stages of the autophagy-lysosomal pathway in affected neurons. However, whether and how deregulated autophagy in microglia, a cell type with an important link to AD, contributes to AD progression remains elusive. Here we report that autophagy is activated in microglia, particularly of disease-associated microglia surrounding amyloid plaques in AD mouse models. Inhibition of microglial autophagy causes disengagement of microglia from amyloid plaques, suppression of disease-associated microglia, and aggravation of neuropathology in AD mice. Mechanistically, autophagy deficiency promotes senescence-associated microglia as evidenced by reduced proliferation, increased Cdkn1a/p21Cip1, dystrophic morphologies and senescence-associated secretory phenotype. Pharmacological treatment removes autophagy-deficient senescent microglia and alleviates neuropathology in AD mice. Our study demonstrates the protective role of microglial autophagy in regulating the homeostasis of amyloid plaques and preventing senescence; removal of senescent microglia is a promising therapeutic strategy.


Subject(s)
Alzheimer Disease , Microglia , Mice , Animals , Microglia/metabolism , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Autophagy/physiology , Neurons/metabolism , Mice, Transgenic , Disease Models, Animal
3.
Chemotherapy ; 68(3): 119-130, 2023.
Article in English | MEDLINE | ID: mdl-36657426

ABSTRACT

BACKGROUND: Oxaliplatin-based chemotherapy resistance is a major cause of recurrence in patients with colorectal cancer (CRC). Increasing evidence indicates that lncRNA BCAR4 is involved in the occurrence and development of various cancers. However, the effect of BCAR4 on CRC chemotherapy resistance remains unclear. METHODS: Real-time quantitative PCR and Western blotting were used to detect the expression levels of gene and protein, respectively. The role of BCAR4 in drug resistance was evaluated by cell viability and apoptosis experiments. Luciferase reporter assay and Western blot analysis confirmed the relationship between BCAR4, miR-483-3p, and RAB5C. RESULTS: Luciferase reporter assay and Western blotting analysis confirmed the relationship among BCAR4, miR-483-3p, and RAB5C. The results showed that the expression levels of BCAR4 and RAB5C were increased in CRC tumor tissue. The expression levels of BCAR4 were increased in patients with chemotherapy resistance. Functional analysis showed that knockdown of BCAR4 reduced the expression levels of proteins related to stemness, decreased the activity of cells, and promoted apoptosis of CRC cells, while overexpression of RAB5C reversed these effects. Moreover, the results showed that BCAR4 promoted oxaliplatin resistance by inhibiting cell apoptosis. Mechanistically, BCAR4 sponged miR-483-3p and promoted the expression of RAB5C. Knockdown of BCAR4 reduced tumor size and enhanced cell sensitivity to oxaliplatin in vivo. CONCLUSION: The results suggested that BCAR4/miR-483-3p/RAB5C axis has the potential to be explored as a novel therapeutic target for CRC treatment.


Subject(s)
Colorectal Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Oxaliplatin/pharmacology , Oxaliplatin/therapeutic use , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/pharmacology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , rab5 GTP-Binding Proteins/genetics , rab5 GTP-Binding Proteins/metabolism , rab5 GTP-Binding Proteins/pharmacology
4.
Obes Surg ; 33(2): 611-622, 2023 02.
Article in English | MEDLINE | ID: mdl-36564618

ABSTRACT

The objective of this review is to systematically review the efficacy and safety outcomes of one anastomosis gastric bypass (OAGB) with Roux-en-Y gastric bypass (RYGB). From inception to July 4, 2022, a systematic literature search was performed using PubMed, Embase, and Cochrane Library for randomized clinical trials comparing OAGB with RYGB in obesity. A meta-analysis performed using the RevMan 5.4.1 software evaluations was completed. We identified 1217 reports; after exclusions, eight trials with a total of 931 patients were eligible for analysis. Compared with RYGB, OAGB had multiple advantageous indexes. Examples include percent of excess weight loss (%EWL) at 12 months (P = 0.009), body mass index (BMI) at 2 years (P < 0.00001), early postoperative complication (P = 0.04), remission of dyslipidemia (P < 0.0001), and operative time (P < 0.00001). No significant statistical difference was observed in BMI at 6 months, %EWL at 6 months, BMI at 12 months, percent of excess body mass index loss (%EBMIL) at 2 years, BMI at 5 years, intraoperative complications, late postoperative complications, remission of type 2 diabetes mellitus, and dyslipidemia or gastroesophageal reflux disease remission between OAGB and RYGB. OAGB is no less effective than RYGB; no significant differences in weight loss efficacy were observed, and more large and long-term randomized controlled trials are needed to verify this. In addition, studies have shown that OAGB has a shorter operation time, fewer early postoperative complications, and a shorter learning curve, making it easier for young surgeons to perform.


Subject(s)
Anastomosis, Roux-en-Y , Gastric Bypass , Obesity, Morbid , Humans , Anastomosis, Roux-en-Y/adverse effects , Diabetes Mellitus, Type 2/epidemiology , Dyslipidemias/epidemiology , Gastric Bypass/adverse effects , Postoperative Complications/epidemiology , Randomized Controlled Trials as Topic , Weight Loss , Obesity, Morbid/surgery
5.
Sci Total Environ ; 828: 154455, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35278566

ABSTRACT

The utilization of underground working space in the rapidly developing global economy has broadened the scope of human activities. However, it has also brought new challenges to existing environmental construction strategies. The comfort and performance of the people inside a building are influenced by multiple factors. This study investigates the main factors affecting personnel perception and work performance, such as humidity, heat, and light, to guide the construction of underground working environments. Therefore, an experiment was designed and carried out in an artificial climate chamber to explore the differences in subjective evaluation, physiological parameters, and working performance of personnel under different thermal and lighting environments. The results show that air temperature has a significant effect on most subjective and objective parameters, while lighting has a weak effect. Air temperature and illumination are the two main environmental factors that affect comfort. Regression analysis shows that the recommended air temperature and illumination ranges are 22.0-27.3 °C and 545-1000 lx, respectively. This study also found that the interaction between color temperature and air temperature had significant effects on several evaluation parameters.


Subject(s)
Lighting , Work Performance , Humans , Humidity , Perception/physiology , Temperature
6.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Article in English | MEDLINE | ID: mdl-33785595

ABSTRACT

Autophagy is a catabolic pathway that provides self-nourishment and maintenance of cellular homeostasis. Autophagy is a fundamental cell protection pathway through metabolic recycling of various intracellular cargos and supplying the breakdown products. Here, we report an autophagy function in governing cell protection during cellular response to energy crisis through cell metabolic rewiring. We observe a role of selective type of autophagy in direct activation of cyclic AMP protein kinase A (PKA) and rejuvenation of mitochondrial function. Mechanistically, autophagy selectively degrades the inhibitory subunit RI of PKA holoenzyme through A-kinase-anchoring protein (AKAP) 11. AKAP11 acts as an autophagy receptor that recruits RI to autophagosomes via LC3. Glucose starvation induces AKAP11-dependent degradation of RI, resulting in PKA activation that potentiates PKA-cAMP response element-binding signaling, mitochondria respiration, and ATP production in accordance with mitochondrial elongation. AKAP11 deficiency inhibits PKA activation and impairs cell survival upon glucose starvation. Our results thus expand the view of autophagy cytoprotection mechanism by demonstrating selective autophagy in RI degradation and PKA activation that fuels the mitochondrial metabolism and confers cell resistance to glucose deprivation implicated in tumor growth.


Subject(s)
A Kinase Anchor Proteins/metabolism , Autophagy , Mitochondria/metabolism , Neoplasms/metabolism , Animals , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , HCT116 Cells , HEK293 Cells , HeLa Cells , Humans , Mice
7.
Phys Fluids (1994) ; 32(11): 115125, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33244216

ABSTRACT

The infection risks of Biden, Wallace, and the audience by Trump and the first lady were assessed during the first presidential debate. The debate scene was established numerically, and two cases, i.e., only Trump being infected and both Trump and the first lady being infected, were set up for risk analysis. The infection probabilities at different positions were assessed by using the Wells-Riley equation with consideration of the effects of air distribution and face mask. It was concluded that (1) the infection risks of Biden and Wallace were lower due to the reasonable distance from Trump, with the maximum probability of 0.34% at 40 quanta/h for both Trump and the first lady being infected; (2) the infection probabilities in the audience area were lower for the long distance from the debate stage, with the maximum probability of 0.35%. Wearing masks resulted in a notable decrease in the infection probability to 0.09%; and (3) there was a certain local area surrounding Trump and the first lady with a relatively greater infection probability. The preliminary analysis provides some reference for protection of the next presidential debate and other public events.

8.
Hum Mol Genet ; 29(14): 2300-2312, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32356558

ABSTRACT

Synaptojanin1 (synj1) is a phosphoinositide phosphatase with dual SAC1 and 5'-phosphatase enzymatic activities in regulating phospholipid signaling. The brain-enriched isoform has been shown to participate in synaptic vesicle (SV) recycling. More recently, recessive human mutations were identified in the two phosphatase domains of SYNJ1, including R258Q, R459P and R839C, which are linked to rare forms of early-onset Parkinsonism. We now demonstrate that Synj1 heterozygous deletion (Synj1+/-), which is associated with an impaired 5'-phosphatase activity, also leads to Parkinson's disease (PD)-like pathologies in mice. We report that male Synj1+/- mice display age-dependent motor function abnormalities as well as alpha-synuclein accumulation, impaired autophagy and dopaminergic terminal degeneration. Synj1+/- mice contain elevated 5'-phosphatase substrate, PI(4,5)P2, particularly in the midbrain neurons. Moreover, pharmacological elevation of membrane PI(4,5)P2 in cultured neurons impairs SV endocytosis, specifically in midbrain neurons, and further exacerbates SV trafficking defects in Synj1+/- midbrain neurons. We demonstrate down-regulation of SYNJ1 transcript in a subset of sporadic PD brains, implicating a potential role of Synj1 deficiency in the decline of dopaminergic function during aging.


Subject(s)
Nerve Tissue Proteins/genetics , Parkinson Disease/genetics , Phosphoric Monoester Hydrolases/genetics , alpha-Synuclein/genetics , Animals , Autophagy/genetics , Disease Models, Animal , Dopamine/genetics , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Endocytosis/genetics , Haploinsufficiency/genetics , Humans , Mesencephalon/metabolism , Mesencephalon/pathology , Mice , Parkinson Disease/pathology , Sequence Deletion/genetics
9.
Cell Res ; 29(4): 313-329, 2019 04.
Article in English | MEDLINE | ID: mdl-30858560

ABSTRACT

Missense mutations in Leucine-Rich Repeat Kinase 2 (LRRK2) cause the majority of familial and some sporadic forms of Parkinson's disease (PD). The hyperactivity of LRRK2 kinase induced by the pathogenic mutations underlies neurotoxicity, promoting the development of LRRK2 kinase inhibitors as therapeutics. Many potent and specific small-molecule LRRK2 inhibitors have been reported with promise. However, nearly all inhibitors are ATP competitive-some with unwanted side effects and unclear clinical outcome-alternative types of LRRK2 inhibitors are lacking. Herein we identify 5'-deoxyadenosylcobalamin (AdoCbl), a physiological form of the essential micronutrient vitamin B12 as a mixed-type allosteric inhibitor of LRRK2 kinase activity. Multiple assays show that AdoCbl directly binds LRRK2, leading to the alterations of protein conformation and ATP binding in LRRK2. STD-NMR analysis of a LRRK2 homologous kinase reveals the contact sites in AdoCbl that interface with the kinase domain. Furthermore, we provide evidence that AdoCbl modulates LRRK2 activity through disrupting LRRK2 dimerization. Treatment with AdoCbl inhibits LRRK2 kinase activity in cultured cells and brain tissue, and prevents neurotoxicity in cultured primary rodent neurons as well as in transgenic C. elegans and D. melanogaster expressing LRRK2 disease variants. Finally, AdoCbl alleviates deficits in dopamine release sustainability caused by LRRK2 disease variants in mouse models. Our study uncovers vitamin B12 as a novel class of LRRK2 kinase modulator with a distinct mechanism, which can be harnessed to develop new LRRK2-based PD therapeutics in the future.


Subject(s)
Cobamides/pharmacology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Neuroprotective Agents/pharmacology , Parkinson Disease/drug therapy , Vitamin B 12/analogs & derivatives , Vitamin B Complex/pharmacology , Allosteric Regulation , Animals , Caenorhabditis elegans , Disease Models, Animal , Drosophila melanogaster , Drug Repositioning , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Rats
10.
Energy Build ; 196: 145-156, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-32288120

ABSTRACT

Source localization is critical to ensuring indoor air quality and environmental safety. Although considerable research has been conducted on source localization in steady-state indoor environments, very few studies have dealt with the more challenging source localization problems in dynamic indoor environments. This paper presents a comprehensive particle swarm optimization (CPSO) method to locate a contaminant source in dynamic indoor environments with mechanical ventilation and develops a multi-robot source localization system to experimentally validate the method. Three robots were used to test the presented method in a typical dynamic indoor environment with periodic swinging of the air supply louvers of a cabinet air conditioner. The presented method was validated with two typical source locations, DS (in the downwind zone) and RS (in the recirculation zone). For DS and RS, 15 and 14 experiments out of 15 experiments were successful, with success rates of 100% and 93.3%, and each robot moved an average of 24.4 and 23.6 steps, respectively. The presented method was also compared with the standard particle swarm optimization (SPSO) and wind utilization II (WUII) methods for locating the source at DS. For the SPSO and WUII methods, only 3 and 6 experiments out of 15 experiments were successful, with success rates of 20% and 40% and averages of 33.0 and 38.0 steps, respectively. The experimental results show that the presented method not only has a much higher success rate than the SPSO and WUII methods but also has higher source localization efficiency.

11.
Appl Opt ; 57(6): 1518-1523, 2018 Feb 20.
Article in English | MEDLINE | ID: mdl-29469858

ABSTRACT

In this paper, a high-performance color sequence particle streak velocimetry (CSPSV) technique is proposed to measure the air velocity in a large three-dimensional (3D) space. Based on the basic principle of CSPSV, a new color sequence illumination pattern is designed to mark seeding bubbles for better imaging performance. Synchronized with the illumination system, cameras record the targets' paths at the start, middle, and end points with different color information more clearly. Thus, a rectification-based stereo corresponding algorithm is presented to reconstruct the 3D trajectory of the bubbles. The accuracy of this system is verified and shows good consistency with a hot-wire anemometer (the principal research tool for turbulent-flow studies). The vortex test experiments also indicate its capability for complex airflow. Our high-performance CSPSV can extend the 3D measurement zone from several cubic centimeters to several cubic meters with regular, off-the-shelf cameras.

12.
Brain Res ; 1685: 9-18, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29425910

ABSTRACT

Ischemic stroke brings a huge family and social burden. Although the reperfusion of ischemic cerebral tissue is the most important way to rescue ischemic stroke, ischemia-reperfusion (I/R) injury further results in brain damage and even lead to death. Recent studies demonstrated that Tongxinluo (TXL) helps to protect the brain against focal cerebral I/R injury in rats by reducing neuronal apoptosis, and the MEK1/2/ERK1/2/90 ribosomal S6 kinase (p90RSK) pathway may be involved in this protective effect. Therefore, our present research was designed to identify the potential mechanisms involved. Adult male Sprague-Dawley rats (n = 108) were randomly divided into 4 groups: sham, cerebral ischemia and reperfusion (I/R), I/R plus TXL (TXL), and TXL plus U0126, a highly selective inhibitor of MEK 1 and MEK 2 (TXL + U0126). Brain edema was measured by T2-weighted magnetic resonance imaging (MRI). Pathological destruction of the blood brain barrier (BBB) ultrastructure was assessed by transmission electron microscopy, and proteins involved in the MEK1/2/ERK1/2/p90RSK pathway were detected by immunofluorescence and Western blotting. Our results indicated that TXL significantly improved neurological function, reduced brain edema, ameliorated the destruction of the BBB ultrastructure and markedly reduced neuronal injury. However, these benefits were diminished when the MEK1/2/ERK1/2/p90RSK pathway was inhibited by U0126. We also found that TXL upregulated the expression levels of p-MEK1/2, p-ERK1/2, p-p90RSK and p-bad, which were all significantly reversed by U0126. Collectively, our data demonstrate that TXL provides neuroprotection against cerebral I/R injury and neuronal injury, and that these effects are mediated, in part, by activation of the MEK1/2/ERK1/2/p90RSK pathway.


Subject(s)
Brain Ischemia/drug therapy , Drugs, Chinese Herbal/pharmacology , Neuroprotective Agents/pharmacology , Reperfusion Injury/drug therapy , Animals , Brain Ischemia/pathology , Disease Models, Animal , MAP Kinase Signaling System/drug effects , Male , Mitogen-Activated Protein Kinase 3/metabolism , Rats, Sprague-Dawley , Reperfusion Injury/metabolism , Signal Transduction/drug effects
13.
Sci Transl Med ; 10(423)2018 01 10.
Article in English | MEDLINE | ID: mdl-29321258

ABSTRACT

Crohn's disease (CD), a form of inflammatory bowel disease, has a higher prevalence in Ashkenazi Jewish than in non-Jewish European populations. To define the role of nonsynonymous mutations, we performed exome sequencing of Ashkenazi Jewish patients with CD, followed by array-based genotyping and association analysis in 2066 CD cases and 3633 healthy controls. We detected association signals in the LRRK2 gene that conferred risk for CD (N2081D variant, P = 9.5 × 10-10) or protection from CD (N551K variant, tagging R1398H-associated haplotype, P = 3.3 × 10-8). These variants affected CD age of onset, disease location, LRRK2 activity, and autophagy. Bayesian network analysis of CD patient intestinal tissue further implicated LRRK2 in CD pathogenesis. Analysis of the extended LRRK2 locus in 24,570 CD cases, patients with Parkinson's disease (PD), and healthy controls revealed extensive pleiotropy, with shared genetic effects between CD and PD in both Ashkenazi Jewish and non-Jewish cohorts. The LRRK2 N2081D CD risk allele is located in the same kinase domain as G2019S, a mutation that is the major genetic cause of familial and sporadic PD. Like the G2019S mutation, the N2081D variant was associated with increased kinase activity, whereas neither N551K nor R1398H variants on the protective haplotype altered kinase activity. We also confirmed that R1398H, but not N551K, increased guanosine triphosphate binding and hydrolyzing enzyme (GTPase) activity, thereby deactivating LRRK2. The presence of shared LRRK2 alleles in CD and PD provides refined insight into disease mechanisms and may have major implications for the treatment of these two seemingly unrelated diseases.


Subject(s)
Crohn Disease/enzymology , Crohn Disease/genetics , Genetic Predisposition to Disease , Genetic Variation , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Parkinson Disease/enzymology , Parkinson Disease/genetics , Alleles , Autophagy , Cytoskeleton/metabolism , Exome/genetics , Gene Frequency , Gene Regulatory Networks , Genetic Loci , Genome, Human , Humans , Macrophages/metabolism , Macrophages/pathology , Odds Ratio , Open Reading Frames/genetics , Phenotype , Reproducibility of Results , Risk Factors , Exome Sequencing
14.
J Neurosci ; 37(47): 11366-11376, 2017 11 22.
Article in English | MEDLINE | ID: mdl-29054882

ABSTRACT

Parkinson's disease (PD) is characterized pathologically by the selective loss of substantia nigra (SN) dopaminergic (DAergic) neurons. Recent evidence has suggested a role of LRRK2, linked to the most frequent familial PD, in regulating synaptic vesicle (SV) trafficking. However, the mechanism whereby LRRK2 mutants contribute to nigral vulnerability remains unclear. Here we show that the most common PD mutation LRRK2 G2019S impairs SV endocytosis in ventral midbrain (MB) neurons, including DA neurons, and the slowed endocytosis can be rescued by inhibition of LRRK2 kinase activity. A similar endocytic defect, however, was not observed in LRRK2 mutant neurons from the neocortex (hereafter, cortical neurons) or the hippocampus, suggesting a brain region-specific vulnerability to the G2019S mutation. Additionally, we found MB-specific impairment of SV endocytosis in neurons carrying heterozygous deletion of SYNJ1 (PARK20), a gene that is associated with recessive Parkinsonism. Combining SYNJ1+/- and LRRK2 G2019S does not exacerbate SV endocytosis but impairs sustained exocytosis in MB neurons and alters specific motor functions of 1-year-old male mice. Interestingly, we show that LRRK2 directly phosphorylates synaptojanin1 in vitro, resulting in the disruption of endophilin-synaptojanin1 interaction required for SV endocytosis. Our work suggests a merge of LRRK2 and SYNJ1 pathogenic pathways in deregulating SV trafficking in MB neurons as an underlying molecular mechanism of early PD pathogenesis.SIGNIFICANCE STATEMENT Understanding midbrain dopaminergic (DAergic) neuron-selective vulnerability in PD is essential for the development of targeted therapeutics. We report, for the first time, a nerve terminal impairment in SV trafficking selectively in MB neurons but not cortical neurons caused by two PARK genes: LRRK2 (PARK8) and SYNJ1 (PARK20). We demonstrate that the enhanced kinase activity resulting from the most frequent G2019S mutation in LRRK2 is the key to this impairment. We provide evidence suggesting that LRRK2 G2019S and SYNJ1 loss of function share a similar pathogenic pathway in deregulating DAergic neuron SV endocytosis and that they play additive roles in facilitating each other's pathogenic functions in PD.


Subject(s)
Dopaminergic Neurons/metabolism , Endocytosis , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Mesencephalon/metabolism , Parkinson Disease/genetics , Synaptic Vesicles/metabolism , Animals , Gain of Function Mutation , Gene Deletion , HEK293 Cells , Hippocampus/cytology , Hippocampus/metabolism , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Male , Mesencephalon/cytology , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Parkinson Disease/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism
15.
CNS Neurosci Ther ; 23(2): 162-173, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27943591

ABSTRACT

INTRODUCTION: Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most prevalent cause of familial and sporadic Parkinson's disease (PD). Because most pathogenic LRRK2 mutations result in enhanced kinase activity, it suggests that LRRK2 inhibitors may serve as a potential treatment for PD. To evaluate whether LRRK2 inhibitors are effective therapies for PD, it is crucial to know whether LRRK2 inhibitors will affect dopaminergic (DAergic) neurotransmission. However, to date, there is no study to investigate the impact of LRRK2 inhibitors on DAergic neurotransmission. AIMS: To address this gap in knowledge, we examined the effects of three types of LRRK2 inhibitors (LRRK2-IN-1, GSK2578215A, and GNE-7915) on dopamine (DA) release in the dorsal striatum using fast-scan cyclic voltammetry and DA neuron firing in the substantia nigra pars compacta (SNpc) using patch clamp in mouse brain slices. RESULTS: We found that LRRK2-IN-1 at a concentration higher than 1 µM causes off-target effects and decreases DA release, whereas GSK2578215A and GNE-7915 do not. All three inhibitors at 1 µM have no effect on DA release and DA neuron firing rate. We have further assessed the effects of the inhibitors in two preclinical LRRK2 mouse models (i.e., BAC transgenic hG2019S and hR1441G) and demonstrated that GNE-7915 enhances DA release and synaptic vesicle mobilization/recycling. CONCLUSION: GNE-7915 can be validated for further therapeutic development for PD.


Subject(s)
Corpus Striatum/cytology , Dopamine/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Parkinson Disease/pathology , Substantia Nigra/cytology , Aminopyridines/pharmacology , Animals , Benzamides/pharmacology , Benzodiazepinones/pharmacology , Biophysical Phenomena/drug effects , Biophysical Phenomena/genetics , Corpus Striatum/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Electric Stimulation , In Vitro Techniques , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Male , Mice , Mice, Transgenic , Morpholines/pharmacology , Mutation/genetics , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Patch-Clamp Techniques , Pyrimidines/pharmacology , Substantia Nigra/drug effects
16.
Build Environ ; 121: 49-66, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-32287971

ABSTRACT

Recirculating ventilation systems may act as carriers of hazardous substances. The long-term prediction of the dynamic distribution of contaminants in this type of system is crucial for the evaluation of pollution and further design of more efficient ventilation systems. However, few convenient methods can predict the dynamic distribution of contaminants, because the dynamic supply air concentrations resulting from air recirculation are unknown, especially over long time periods, such as months or years. In this study, a novel method is proposed to predict the dynamic distribution of contaminants over a long time period in a complex recirculating ventilation system, where an algebraic expression based on the indices of the response coefficient is applied to account for the relationship between the contaminant distribution inside the room and various boundary conditions. The method is established by obtaining comprehensive mathematical descriptions of the relationships between concentrations of contaminants in the air handling units, supply air inlets, return air outlets, and fresh air. Hourly supply air concentrations can be easily obtained by solving a matrix, and the dynamic distribution of contaminants is then calculated using an expression based on the response coefficient. The reliability of the proposed method is analyzed by both experimental and numerical methods. A simplified method is suggested to accelerate the time-consuming calculation of the response coefficient. The proposed method is beneficial for predicting three-dimensional dynamic distribution of contaminants in complex ventilation systems with an acceptable accuracy and time cost.

17.
Proc Natl Acad Sci U S A ; 113(30): E4357-66, 2016 07 26.
Article in English | MEDLINE | ID: mdl-27357661

ABSTRACT

Leucine-rich repeat kinase 2 (LRRK2) is a large, multidomain protein containing two catalytic domains: a Ras of complex proteins (Roc) G-domain and a kinase domain. Mutations associated with familial and sporadic Parkinson's disease (PD) have been identified in both catalytic domains, as well as in several of its multiple putative regulatory domains. Several of these mutations have been linked to increased kinase activity. Despite the role of LRRK2 in the pathogenesis of PD, little is known about its overall architecture and how PD-linked mutations alter its function and enzymatic activities. Here, we have modeled the 3D structure of dimeric, full-length LRRK2 by combining domain-based homology models with multiple experimental constraints provided by chemical cross-linking combined with mass spectrometry, negative-stain EM, and small-angle X-ray scattering. Our model reveals dimeric LRRK2 has a compact overall architecture with a tight, multidomain organization. Close contacts between the N-terminal ankyrin and C-terminal WD40 domains, and their proximity-together with the LRR domain-to the kinase domain suggest an intramolecular mechanism for LRRK2 kinase activity regulation. Overall, our studies provide, to our knowledge, the first structural framework for understanding the role of the different domains of full-length LRRK2 in the pathogenesis of PD.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/chemistry , Models, Molecular , Protein Domains , Protein Multimerization , Amino Acid Sequence , Catalytic Domain , Crystallography, X-Ray , HEK293 Cells , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Mutation , Parkinson Disease/genetics , Parkinson Disease/metabolism , Sequence Homology, Amino Acid
18.
PLoS Genet ; 12(4): e1005848, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27120463

ABSTRACT

Genetic leukoencephalopathies (gLEs) are a group of heterogeneous disorders with white matter abnormalities affecting the central nervous system (CNS). The causative mutation in ~50% of gLEs is unknown. Using whole exome sequencing (WES), we identified homozygosity for a missense variant, VPS11: c.2536T>G (p.C846G), as the genetic cause of a leukoencephalopathy syndrome in five individuals from three unrelated Ashkenazi Jewish (AJ) families. All five patients exhibited highly concordant disease progression characterized by infantile onset leukoencephalopathy with brain white matter abnormalities, severe motor impairment, cortical blindness, intellectual disability, and seizures. The carrier frequency of the VPS11: c.2536T>G variant is 1:250 in the AJ population (n = 2,026). VPS11 protein is a core component of HOPS (homotypic fusion and protein sorting) and CORVET (class C core vacuole/endosome tethering) protein complexes involved in membrane trafficking and fusion of the lysosomes and endosomes. The cysteine 846 resides in an evolutionarily conserved cysteine-rich RING-H2 domain in carboxyl terminal regions of VPS11 proteins. Our data shows that the C846G mutation causes aberrant ubiquitination and accelerated turnover of VPS11 protein as well as compromised VPS11-VPS18 complex assembly, suggesting a loss of function in the mutant protein. Reduced VPS11 expression leads to an impaired autophagic activity in human cells. Importantly, zebrafish harboring a vps11 mutation with truncated RING-H2 domain demonstrated a significant reduction in CNS myelination following extensive neuronal death in the hindbrain and midbrain. Thus, our study reveals a defect in VPS11 as the underlying etiology for an autosomal recessive leukoencephalopathy disorder associated with a dysfunctional autophagy-lysosome trafficking pathway.


Subject(s)
Autophagy/genetics , Founder Effect , Genes, Recessive , Leukoencephalopathies/genetics , Mutation , Vesicular Transport Proteins/genetics , Adult , Amino Acid Sequence , Animals , Cell Death/genetics , Child , Child, Preschool , Female , Humans , Infant , Male , Molecular Sequence Data , Sequence Homology, Amino Acid , Vesicular Transport Proteins/chemistry , Young Adult
19.
Blood ; 126(10): 1224-33, 2015 Sep 03.
Article in English | MEDLINE | ID: mdl-26209658

ABSTRACT

Autophagy is important for maintaining cellular homeostasis, and thus its deficiency is implicated in a broad spectrum of human diseases. Its role in platelet function has only recently been examined. Our biochemical and imaging studies demonstrate that the core autophagy machinery exists in platelets, and that autophagy is constitutively active in resting platelets. Moreover, autophagy is induced upon platelet activation, as indicated by agonist-induced loss of the autophagy marker LC3II. Additional experiments, using inhibitors of platelet activation, proteases, and lysosomal acidification, as well as platelets from knockout mouse strains, show that agonist-induced LC3II loss is a consequence of platelet signaling cascades and requires proteases, acidic compartments, and membrane fusion. To assess the physiological role of platelet autophagy, we generated a mouse strain with a megakaryocyte- and platelet-specific deletion of Atg7, an enzyme required for LC3II production. Ex vivo analysis of platelets from these mice shows modest defects in aggregation and granule cargo packaging. Although these mice have normal platelet numbers and size distributions, they exhibit a robust bleeding diathesis in the tail-bleeding assay and a prolonged occlusion time in the FeCl3-induced carotid injury model. Our results demonstrate that autophagy occurs in platelets and is important for hemostasis and thrombosis.


Subject(s)
Autophagy/physiology , Hemostasis/physiology , Platelet Activation/physiology , Thrombosis/physiopathology , Animals , Blood Platelets/physiology , Blotting, Western , Cells, Cultured , Humans , Mice , Mice, Mutant Strains
20.
Mov Disord ; 30(6): 813-21, 2015 May.
Article in English | MEDLINE | ID: mdl-25786808

ABSTRACT

The diagnosis of Parkinson's disease (PD) is usually not established until advanced neurodegeneration leads to clinically detectable symptoms. Previous blood PD transcriptome studies show low concordance, possibly resulting from the use of microarray technology, which has high measurement variation. The Leucine-rich repeat kinase 2 (LRRK2) G2019S mutation predisposes to PD. Using preclinical and clinical studies, we sought to develop a novel statistically motivated transcriptomic-based approach to identify a molecular signature in the blood of Ashkenazi Jewish PD patients, including LRRK2 mutation carriers. Using a digital gene expression platform to quantify 175 messenger RNA (mRNA) markers with low coefficients of variation (CV), we first compared whole-blood transcript levels in mouse models (1) overexpressing wild-type (WT) LRRK2, (2) overexpressing G2019S LRRK2, (3) lacking LRRK2 (knockout), and (4) and in WT controls. We then studied an Ashkenazi Jewish cohort of 34 symptomatic PD patients (both WT LRRK2 and G2019S LRRK2) and 32 asymptomatic controls. The expression profiles distinguished the four mouse groups with different genetic background. In patients, we detected significant differences in blood transcript levels both between individuals differing in LRRK2 genotype and between PD patients and controls. Discriminatory PD markers included genes associated with innate and adaptive immunity and inflammatory disease. Notably, gene expression patterns in levodopa-treated PD patients were significantly closer to those of healthy controls in a dose-dependent manner. We identify whole-blood mRNA signatures correlating with LRRK2 genotype and with PD disease state. This approach may provide insight into pathogenesis and a route to early disease detection.


Subject(s)
Biomarkers/blood , Parkinson Disease/blood , Parkinson Disease/diagnosis , Protein Serine-Threonine Kinases/blood , Protein Serine-Threonine Kinases/genetics , RNA, Messenger/blood , Aged , Aged, 80 and over , Animals , Case-Control Studies , Early Diagnosis , Female , Gene Expression , Genetic Predisposition to Disease , Heterozygote , Humans , Jews/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Male , Mice , Mice, Transgenic , Middle Aged , Mutation , Parkinson Disease/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...