Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Environ Toxicol Pharmacol ; 107: 104423, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521434

ABSTRACT

As an emerging environmental contaminant, di (2-ethylhexyl) phthalate (DEHP) is widely present in the aquatic environment, however, the effects and underlying mechanisms of DEHP on the aquatic organisms are poorly understood. This study systematically investigated the ecotoxicity induced by chronic exposure to environmental relevant concentrations of DEHP (0.03 mg/L, 0.1 mg/L, and 0.3 mg/L) on zebrafish brain. Results indicated that DEHP exposure significantly increased the levels of ROS and disturbance of the antioxidant enzymes activities in the brain, which may further enhance lipid peroxidation and DNA damage. Furthermore, acetylcholinesterase activity was first stimulated and inhibited by exposure to DEHP, and the antioxidant and apoptosis related genes were mainly upregulated. Risk assessment indicated that the ecotoxicity of DEHP on the zebrafish showed an "enhancement-reduction" trend as the exposure time was prolonged. Overall, these results provided new insights and useful information to ecological risk assessment and environmental management of DEHP pollution.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Animals , Diethylhexyl Phthalate/toxicity , Zebrafish/physiology , Antioxidants , Acetylcholinesterase
2.
J Hazard Mater ; 467: 133700, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38325098

ABSTRACT

Di(2-ethylhexyl) phthalate (DEHP) is perceived an emerging threat to terrestrial ecosystem, however, clear and accurate studies to fully understander ecotoxicity and underlying mechanisms of DEHP on the soil fauna remain poorly understood. Therefore, this study conducted a microcosm experiment of two earthworm ecotypes to investigate the ecological hazards of DHEP from multiple perspectives. The results showed that DEHP significantly increased the 8-hydroxy-deoxyguanosine (8-OHdG) content both in Eisenia foetida (13.76-133.0%) and Metaphire guillelmi (11.01-49.12%), leading to intracellular DNA damage. Meanwhile, DEHP negatively affected the expression of functional genes (ATP-6, NADH1, COX), which may be detrimental to mitochondrial respiration and oxidative stress at the gene level. The two earthworm guts shared analogous dominant bacteria however, the incorporation of DEHP drastically suppressed the homogeneity and diversity of the gut microbes, which further disrupted the homeostasis of the gut microbial ecological network. The keystone species in the gut of E. foetida decreased under DEHP stress but increased in the gut of M. guillelmi. Moreover, DEHP presented detrimental effects on soil enzyme activity, which is mainly associated with pollutant levels and earthworm activity. Collectively, the findings expand the understanding of soil ecological health and reveal the underlying mechanisms of the potential exposure risk to DEHP.


Subject(s)
Diethylhexyl Phthalate , Gastrointestinal Microbiome , Oligochaeta , Phthalic Acids , Animals , Diethylhexyl Phthalate/toxicity , Ecosystem , 8-Hydroxy-2'-Deoxyguanosine , DNA Damage , Soil
3.
J Hazard Mater ; 466: 133585, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38271877

ABSTRACT

Continued application of new chiral fungicide mefentrifluconazole (MFZ) increases its risk to soil ecosystem. However, the toxicity of MFZ enantiomers to soil fauna and whether stereoselectivity exists remains poorly elucidated. Based on multilevel toxicity endpoints and transcriptomics, we investigated the negative effects of racemic, R-(-)-, and S-(+)-MFZ on Eisenia fetida. After exposure to S-(+) configuration at 4 mg/kg for 28 day, its reactive oxygen species levels were elevated by 15.4% compared to R-(-) configuration, inducing enantiospecific oxidative stress and transcriptional aberrations. The S-(+) isomer induced more severe cell membrane damage and apoptosis than the R-(-) isomer, and notably, the selectivity of apoptosis is probably dominated by the mitochondrial pathway. Mechanistically, differential mitochondrial stress lies in: S-(+) isomer specifically up-regulated mitochondrial cellular component compared to R-(-) isomer and identified more serious mitochondrial fission. Furthermore, S-(+) conformation down-regulated biological processes associated with ATP synthesis and metabolism, with specific inhibition of mitochondrial respiratory electron transport chain complex I and IV activity resulting in more severe electron flow disturbances. These ultimately mediated enantioselective ontogenetic process disorders, which were supported at phenotypic (weight loss), genetic, and protein (reverse modulate TCTP and Sox2 expression) levels. Our findings offer an important reference for elucidating the enantioselective toxicological mechanism of MFZ in soil fauna.


Subject(s)
Fluconazole/analogs & derivatives , Oligochaeta , Pesticides , Soil Pollutants , Animals , Pesticides/toxicity , Pesticides/metabolism , Oligochaeta/metabolism , Stereoisomerism , Ecosystem , Soil Pollutants/metabolism , Soil
4.
Sci Total Environ ; 912: 168876, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38013100

ABSTRACT

As a ubiquitous contaminant in aquatic environments, diethyl phthalate (DEP) is a major threat to ecosystems because of its increasing utilization. However, the ecological responses to and toxicity mechanisms of DEP in aquatic organisms remain poorly understood. To address this environmental concern, we selected Chlorella vulgaris (C. vulgaris) as a model organism and investigated the toxicological effects of environmentally relevant DEP concentrations at the individual, physiological, biochemical, and molecular levels. Results showed that the incorporation of DEP significantly inhibited the growth of C. vulgaris, with inhibition rates ranging from 10.3 % to 83.47 %, and disrupted intracellular chloroplast structure at the individual level, while the decrease in photosynthetic pigments, with inhibition rates ranging from 8.95 % to 73.27 %, and the imbalance of redox homeostasis implied an adverse effect of DEP at the physio-biochemical level. Furthermore, DEP significantly reduced the metabolic activity of algal cells and negatively altered the cell membrane integrity and mitochondrial membrane potential. In addition, the apoptosis rate of algal cells presented a significant dose-effect relationship, which was mainly attributed to the fact that DEP pollutants regulated Ca2+ homeostasis and further increased the expression of Caspase-8, Caspase-9, and Caspase-3, which are associated with internal and external pathways. The gene transcriptional expression profile further revealed that DEP-mediated toxicity in C. vulgaris was mainly related to the destruction of the photosynthetic system, terpenoid backbone biosynthesis, and DNA replication. Overall, this study offers constructive understandings for a comprehensive assessment of the toxicity risks posed by DEP to C. vulgaris.


Subject(s)
Chlorella vulgaris , Phthalic Acids , Water Pollutants, Chemical , Chlorella vulgaris/metabolism , Ecosystem , Environmental Health , Phthalic Acids/metabolism , Water Pollutants, Chemical/metabolism
5.
Chemosphere ; 350: 141046, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38154674

ABSTRACT

As a kind of plasticizer, butyl benzyl phthalate (BBP) presents a serious hazard to the ecosystem. Therefore, there is a strong need for an effective technique to eliminate the risk of BBP. In this work, a new photocatalyst of Bi/Bi2O2CO3/Bi2S3 with an S-scheme heterojunction was synthesized using Bi(NO3)3 as the Bi source, Na2S as the S source, and DMF as the carbon source and reductant. Numerous techniques have been used to characterize Bi/Bi2O2CO3/Bi2S3, such as scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The improved photoactivity of Bi/Bi2O2CO3/Bi2S3 was evaluated by photoelectrochemical response, electrochemical impedance spectroscopy, photoluminescence, UV-Vis diffuse reflectance spectroscopy, and electrochemical Mott Schottky spectroscopy. The enhanced photocatalytic activity of this composite for BBP degradation under simulated sunlight irradiation could be attributed to the surface plasmon resonance effect of Bi metal and the heterojunction structure of Bi2O2CO3 and Bi2S3. The degradation rate of Bi/Bi2O2CO3/Bi2S3 was 85%, which was 4.52 and 1.52 times that of Bi2O2CO3 and Bi2S3, respectively. The prepared photocatalyst possessed good stability and reproducibility in eliminating BBP. The improved photocatalytic activity of Bi/Bi2O2CO3/Bi2S3 was demonstrated with the formation of an S-scheme heterojunction, and the degradation mechanism was discussed with a liquid chromatograph mass spectrometer.


Subject(s)
Ecosystem , Phthalic Acids , Sunlight , Reproducibility of Results , Carbon
6.
Environ Pollut ; 337: 122547, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37709123

ABSTRACT

Biodegradable microplastics (BMPs) pose serious environmental problems to soil organisms, and their adsorption capacity might make pesticides more dangerous for soil organisms. Therefore, in this study, polylactic acid (PLA) BMPs and imidacloprid (IMI) were used as a representative of BMPs and pesticides, respectively. Eisenia fetida was used as a test animal to investigate the effects of environmentally relevant concentrations of single and compound contaminated PLA BMPs and IMI on mortality, growth, number of offspring, tissue damage, and gut microorganisms of E.fetida. Exposure to PLA BMPs treatment and PLA BMPs + IMI treatment resulted in a sustained increase in E.fetida mortality, reaching 16.7% and 26.7%, respectively. The growth inhibition rate of single treatments was significantly increased. The compound contamination had the greatest effect on E.fetida offspring compared to the control. PLA BMPs and IMI cause histological damage to E.fetida, with the compound treatment causing the most severe damage. Based on the results of 16S sequencing, the bacterial communities in E.fetida gut and soil treated to PLA BMPs and IMI were significantly different. PLA BMPs + IMI treatment suppresses the abundance and diversity of E.fetida gut microorganisms, disrupting the homeostasis of bacterial communities and causing immune and metabolic dysfunction. These findings highlight the more severe damage of combined PLA BMPs and IMI pollution to E.fetida, and help to assess the risk of earthworm exposure to environmentally relevant concentrations of PLA BMPs and IMI.


Subject(s)
Gastrointestinal Microbiome , Oligochaeta , Pesticides , Soil Pollutants , Animals , Microplastics/metabolism , Plastics/toxicity , Soil Pollutants/analysis , Pesticides/metabolism , Polyesters/metabolism , Soil
7.
Sci Total Environ ; 904: 166972, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37699481

ABSTRACT

In recent years, the extensive distribution of phthalates (PAEs) in soils has attracted increasing attention. In this study, the concentrations of six types of PAEs were measured in five dissimilar regions of the Yellow River Delta (YRD), and regional differences, pollution characteristics and health risks of PAEs pollution were investigated. The detection rate of PAEs was 100 %, and the concentration range of Σ6PAEs was 0.709-9.565 mg/kg, with an average of 3.258 ± 2.031 mg/kg. There were different spatial distribution differences of PAEs in soils of the YRD, with residential living, chemical industrial, and crop growing areas being the main areas of PAEs distribution. It was worth noting that di (2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) are prominent contributors to PAEs in soils of the YRD. Correlation analyses showed that soils physicochemical properties such as SOM, TN and CEC were closely correlated to the transport and transformation of PAEs. Use by petrochemical industries, accumulation of plasticizers, additives (derived from cosmetics, food, pharmaceutical), fertilizers, pesticides, plastics, and atmospheric deposition are the principal sources of PAEs in the YRD. A health risk assessment showed that the health risk caused by non-dietary intake of PAEs was low and considered acceptable. PAEs pollution in the YRD soil is particularly noteworthy, especially for the prevention and control of DEHP and DBP pollution. This study provides basic data for an effective control of soil PAEs pollution in the YRD, which is conducive to the sustainable development of the region.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Soil Pollutants , Soil/chemistry , Phthalic Acids/analysis , Diethylhexyl Phthalate/analysis , Rivers/chemistry , Soil Pollutants/analysis , Esters/analysis , Dibutyl Phthalate/analysis , Risk Assessment , Vegetables , China
8.
J Hazard Mater ; 460: 132352, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37619280

ABSTRACT

Phthalate esters (PAEs) are organic contaminants that pose environmental threat and safety risks to soil health and crop production. However, the ecological toxicity of different PAEs to cotton and the underlying mechanisms are not clear. This study investigated the ecotoxic effects and potential mechanisms of different alkyl-chain PAEs, including dioctyl phthalate (DOP), dibutyl phthalate (DBP), and diethyl phthalate (DEP) on cotton seedlings at multiple levels. The results showed that PAEs significantly hindered the growth and development of cotton. The chlorophyll content decreased by 1.87-31.66 %, accompanied by non-stomatal photosynthetic inhibition. The antioxidant system was activated by the three PAEs in cotton seedlings, while the osmotic potential was boosted intracellularly. Additionally, PAEs significantly interfered with functional gene expression and exhibited genotoxicity. Risk assessment results indicated that the ecotoxicity was DOP >DBP >DEP, with a "dose-response" relationship. The affinity between the three PAEs and catalase increased as the alkyl chain length increased, further supporting the toxicity sequence. Surprisingly, the bioconcentration factors of short-chain DEP were 8.07 ± 5.89 times and 1837.49 ± 826.83 times higher than those of long-chain DBP and DOP, respectively. These results support the ecological risk assessment of PAEs in cotton and provide new insights into determining the toxicity levels of different PAEs.


Subject(s)
Diethylhexyl Phthalate , Gossypium , Seedlings , Antioxidants , Dibutyl Phthalate/toxicity , Diethylhexyl Phthalate/toxicity , Esters/toxicity
9.
Chemosphere ; 324: 138357, 2023 May.
Article in English | MEDLINE | ID: mdl-36898443

ABSTRACT

Bi2O2CO3/Bi2S3 heterojunction was prepared by one-step hydrothermal method, where Bi(NO3)3 was employed as Bi source, Na2S was used as a sulfur source, and CO(NH2)2 was adopted as C source. The load of Bi2S3 was adjusted by changing the content of Na2S. The prepared Bi2O2CO3/Bi2S3 illustrated strong photocatalytic activity towards dibutyl phthalate (DBP) degradation. The degradation rate was 73.6% under the irradiation of visible light for 3 h, which were 3.5 and 1.87 times for Bi2O2CO3 and Bi2S3, respectively. In addition, the mechanism for the enhanced photoactivity was investigated. After combined with Bi2S3, the formed heterojunction structure inhibited the recombination of photogenerated electron-hole pair, improved the visible light adsorption, and accelerated the migration rate of the photogenerated electron. As a result, analysis of the radical formation and the energy band structure revealed that Bi2O2CO3/Bi2S3 was consistent with the S-scheme heterojunction model. The S-scheme heterojunction allowed the Bi2O2CO3/Bi2S3 to possess high photocatalytic activity. The prepared photocatalyst presented acceptable cycle application stability. This work not only develops a facile one-step synthesis technique for Bi2O2CO3/Bi2S3, and also provides a good platform for the degradation of DBP.


Subject(s)
Dibutyl Phthalate , Electrons , Adsorption , Light
10.
Environ Pollut ; 322: 121204, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36754202

ABSTRACT

As one of the most critical soil faunas in agroecosystems, earthworms are significant in preserving soil ecological health. Di (2-ethylhexyl) phthalate (DEHP) is a major plasticizer and widely used in plastic products like agricultural films. However, it has become ubiquitous contaminant in agricultural soil and poses a potential threat to soil health. Although the awareness of the impacts of DEHP on soil ecology is increasing, its adverse effects on soil invertebrates, especially earthworms, are still not well developed. In this study, the ecotoxicological effects and underlying mechanisms of environmentally relevant doses DEHP on earthworms of different ecological niches were investigated at the individual, cytological, and biochemical levels, respectively. Results showed that the acute toxicity of DEHP to M. guillelmi was higher than E. foetida. DEHP induced reactive oxygen species (ROS) levels and further caused oxidative damage (including cellular DNA and lipid peroxidation damage) in both species, speculating that they may exhibit similar oxidative stress mechanisms. Furthermore, two earthworms presented the alleviated toxicity when re-cultured in uncontaminated circumstances, yet, the accumulated ROS in bodies could not be completely scavenged. Risk assessment indicated that the detrimental impacts of DEHP were more significant in the M. guillelmi than in E. foetida in whole experiments prides, and the biomarkers additionally showed a species-specific trend. Besides, molecular docking revealed that DEHP could bind to the active center of superoxide dismutase/catalase (SOD/CAT) by hydrogen bonding or hydrophobic interactions. Overall, this study will provide a novel insight for accurate contaminant risk assessment, and also highlight that the comprehensive biological effects of different species should be emphasized in soil ecological health diagnostics and environmental toxicology assays, as otherwise it may lead to underestimation or misestimation of the soil health risk of contaminants.


Subject(s)
Diethylhexyl Phthalate , Oligochaeta , Phthalic Acids , Soil Pollutants , Animals , Soil , Diethylhexyl Phthalate/metabolism , Soil Pollutants/analysis , Reactive Oxygen Species , Molecular Docking Simulation , Phthalic Acids/pharmacology , Oxidative Stress , Ecosystem
11.
Environ Pollut ; 323: 121285, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36796666

ABSTRACT

The environmental issues caused by biodegradable microplastics (BMPs) from polylactic acid (PLA) as well as pesticides are of increasing concern nowadays. In this study, the toxicological effects of the single and combined exposure of PLA BMPs and imidacloprid (IMI), a neonicotinoid insecticide, on earthworms (Eisenia fetida) were investigated in terms of oxidative stress, DNA damage, and gene expression, respectively. The results showed that compared with the control, SOD, CAT and AChE activities in the single and combined treatments decreased significantly, and POD activity showed an "inhibition-activation" trend. SOD and CAT activities of combined treatments on day 28 and AChE activity of combined treatment on day 21 were significantly higher than those of the single treatments. For the rest of the exposure period, SOD, CAT and AChE activities in the combined treatments were lower than those in the single treatments. POD activity in the combined treatment was significantly lower than those of single treatments at day 7 and higher than that of single treatments at day 28. MDA content showed an "inhibition-activation-inhibition" trend, and the ROS level and 8-OHdG content increased significantly in both the single and combined treatments. This shows that both single and combined treatments led to oxidative stress and DNA damage. ANN and HSP70 were expressed abnormally, while the SOD and CAT mRNA expression changes were generally consistent with the corresponding enzyme activities. The integrated biomarker response (IBR) values were higher under combined exposures than single exposures at both biochemical and molecular levels, indicating that combined treatment exacerbated the toxicity. However, the IBR value of the combined treatment decreased consistently at the time axis. Overall, our results suggest that PLA BMPs and IMI induce oxidative stress and gene expression in earthworms at environmentally relevant concentrations, thereby increasing the risk of earthworms.


Subject(s)
Oligochaeta , Soil Pollutants , Animals , Microplastics/metabolism , Plastics/metabolism , Oxidative Stress , Neonicotinoids/toxicity , Neonicotinoids/metabolism , Polyesters/metabolism , Superoxide Dismutase/metabolism , Gene Expression , Soil Pollutants/analysis , Catalase/metabolism , DNA Damage , Malondialdehyde/metabolism
12.
Chemosphere ; 316: 137846, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36646180

ABSTRACT

Propofol is an intravenous anesthetic injection extensively used in clinic, which has been proved to be neurotoxic in humans. Improper use and disposal of propofol may lead to its release into the aquatic environment, but the potential ecological risk of propofol to aquatic organisms remains poorly understood. For this study, we comprehensively explored the ecotoxicological effects and potential mechanisms of propofol (0.04, 0.2 and 2 mg L-1) on 120 hpf zebrafish (Danio rerio) embryos from physiological, biochemical, and molecular perspectives. The results showed that propofol has moderate toxicity on zebrafish embryos (96 h LC50 = 4.260 mg L-1), which could significantly reduce the hatchability and delay the development. Propofol can trigger reactive oxygen species (ROS) generation, lipid peroxidation (Malondialdehyde, MDA) and DNA damage (8-hydroxy-2-deoxyguanosine, 8-OHdG). The glutathione peroxidase (GPX) activity of zebrafish embryos in 0.04 and 0.2 mg L-1 propofol treatment group was activated in response to oxidative damage, while activities of superoxide dismutase (SOD), catalase (CAT) and GPX in zebrafish treated with 2 mg L-1 was significant inhibited compared with the control group (p<0.05). Moreover, the expression of antioxidant genes and related pathways was inhibited. Apoptosis was investigated at genes level and histochemistry. Molecular docking confirmed that propofol could change in the secondary structure of acetylcholinesterase (AChE) and competitively inhibited acetylcholine (ACh) binding to AChE, which may disturb the nervous system. These results described toxic response and molecular mechanism in zebrafish embryos, providing multiple aspects about ecological risk assessment of propofol in water environment.


Subject(s)
Propofol , Water Pollutants, Chemical , Animals , Humans , Zebrafish/metabolism , Propofol/toxicity , Propofol/metabolism , Acetylcholinesterase/metabolism , Molecular Docking Simulation , Embryo, Nonmammalian , Water Pollutants, Chemical/metabolism , Oxidative Stress , Antioxidants/metabolism , Superoxide Dismutase/metabolism
13.
Environ Res ; 220: 115196, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36592811

ABSTRACT

The widespread distribution of phthalates (PAEs) in agricultural soils is increasing drastically; however, the environmental occurrence and potential risk of PAEs in agricultural systems remain largely unreviewed. In this study, the occurrence, sources, ecotoxicity, exposure risks, and control measures of PAEs contaminants in agricultural soils are summarized, and it is concluded that PAEs have been widely detected and persist in the soil at concentrations ranging from a few µg/kg to tens of mg/kg, with spatial and vertical variations in China. Agrochemicals and atmospheric deposition have largely contributed to the elevated contamination status of PAEs in soils. In addition, PAEs cause multi-level hazards to soil organisms (survival, oxidative damage, genetic and molecular levels, etc.) and further disrupt the normal ecological functions of soil. The health hazards of PAEs to humans are mainly generated through dietary and non-dietary pathways, and children may be at a higher risk of exposure than adults. Improving the soil microenvironment and promoting biochemical reactions and metabolic processes of PAEs are the main mechanisms for mitigating contamination. Based on these reviews, this study provides a valuable framework for determining future study objectives to reveal environmental risks and reduce the resistance control of PAEs in agricultural soils.


Subject(s)
Phthalic Acids , Soil Pollutants , Child , Humans , Soil/chemistry , Phthalic Acids/toxicity , Soil Pollutants/toxicity , Soil Pollutants/analysis , Esters , Agriculture , China
14.
J Hazard Mater ; 447: 130816, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36680896

ABSTRACT

Di(2-ethylhexyl)phthalate esters (DEHP) has attracted widespread attention due to its ecotoxicological effects on organisms. In this study, wheat seedlings were exposed to DEHP- contaminated soil with 4 concentration gradients (0, 1, 10, and 100 mg kg-1, respectively) for 30 days. The growth index, physiological index, oxidative damage system, and gene expression of wheat seedlings were comprehensively measured and analyzed. The results revealed that DEHP could reduce the germination rate of wheat. Only the 100 mg kg-1 treatment group significantly inhibited root length, but no effect on plant height. At the biochemical level, photosynthetic pigments of wheat seedlings were promoted first and then inhibited, while the soluble sugar content presented a trend of "inhibition - activation - inhibition". The antioxidant enzymes (SOD and POD) presented an approximate parabolic trend, while it was opposite for CAT. Whereas the corresponding antioxidant enzyme genes were up-regulated, and the Hsp70 heat-shock protein gene was down-regulated. Finally, integrated biological response index (IBR) analysis showed that the DEHP toxicity to wheat seedlings was dose dependent. Molecular docking indicated that DEHP could stably bind to GBSS and GST by intermolecular force. Overall, this study provided constructive insights for a comprehensive assessment of the toxicity risk of DEHP to wheat.


Subject(s)
Diethylhexyl Phthalate , Diethylhexyl Phthalate/toxicity , Diethylhexyl Phthalate/metabolism , Triticum , Antioxidants/metabolism , Molecular Docking Simulation , Seedlings
15.
J Environ Manage ; 331: 117321, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36657203

ABSTRACT

Diisobutyl phthalate (DIBP), as a plasticizer, is widely used and has caused many extreme soil contamination scenarios, posing potential risks to soil fauna. However, the toxic effects and mechanisms of DIBP on soil fauna remain unclear. In this study, earthworms (Eisenia fetida) were used as model animals to explore the subchronic toxicity of extreme DIBP soil exposure (300, 600, and 1200 mg/kg) for 28 days. The results showed that the level of reactive oxygen species (ROS) and the contents of malondialdehyde (MDA) and 8-hydroxydeoxyguanosine (8-OHdG) in E. fetida were significantly increased during continuous DIBP exposure. In addition, the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were significantly inhibited while glutathione S-transferase (GST) activity was activated during continuous exposure. Integrated biological response (IBR) analysis showed that DIBP had positive dose-dependent toxicity and negative time-dependent toxicity to E. fetida, and SOD/CAT were selected as sensitive biomarkers. The molecular docking study found that DIBP could stably bind to SOD/CAT through hydrogen bonding, which further proved its sensitivity. This study provides primary data for ecological and environmental risk assessment of extreme dose DIBP soil pollution.


Subject(s)
Oligochaeta , Soil Pollutants , Animals , Oligochaeta/metabolism , Molecular Docking Simulation , Soil Pollutants/metabolism , Oxidative Stress , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase/pharmacology , DNA Damage , Soil/chemistry
16.
Environ Pollut ; 317: 120764, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36455772

ABSTRACT

Propofol, one of the most widely used intravenous anesthetic in clinical practice, has been reported to impair cognitive and memory function. However, the toxicological effects of propofol on aquatic organisms are still poorly understood. This study explored the toxic effects of chronic propofol exposure (0.008, 0.04, and 0.2 mg L-1) on adult zebrafish from biochemical, transcriptional, and molecular level after 7, 14, 21 and 28 days of exposure. Results indicated that the reactive oxygen species (ROS) levels were significantly upregulated during the 28 days exposure period, and excessive ROS caused lipid peroxidation, resulting in increased malondialdehyde (MDA) contents in the zebrafish brain. In order to relieve the oxidative damage induced by the excessive ROS, the activities of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT)) were significantly activated, and detoxification enzyme (glutathione S-transferase, GST) activities showed an "activation-inhibition" trend. However, the antioxidant enzymes and detoxification enzyme system could not eliminate the excessive ROS in time and thus caused DNA damage in zebrafish brain. The olive tail moment (OTM) values displayed a "dose-response" relationship with propofol concentrations. Meanwhile, the transcription of related genes of Nrf2-Keap1 pathway was activated. Further molecular simulation experiments suggested that propofol could directly combine with SOD/CAT to change the activity of its biological enzyme. These findings indicated that zebrafish could regulate antioxidant capacity to combat oxidative stress at the early exposure stage, but the activity of antioxidant enzymes were significantly inhibited with the increase of propofol exposure time. Our results are of great importance for understanding toxicological effects of propofol on aquatic organisms.


Subject(s)
Propofol , Water Pollutants, Chemical , Animals , Zebrafish/metabolism , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , Propofol/toxicity , Propofol/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Superoxide Dismutase/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Catalase/metabolism , Water Pollutants, Chemical/metabolism
17.
Sci Total Environ ; 858(Pt 3): 160109, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36370777

ABSTRACT

Butyl benzyl phthalate (BBP), a typical phthalate plasticizer, is frequently detected in aquatic environments, but its possible effects on fish liver are unknown. In this study, adult zebrafish were exposed to 5-500 µg/L BBP and cultured for 28 days. The toxicity mechanism of environmentally relevant concentrations of BBP in the liver was explored using integrated biomarker response (IBR), molecular docking, and histopathological analysis, based on the tests of oxidative stress, apoptosis, and tissue damage, respectively. The results revealed that exposure to 500 µg/L BBP caused lipid peroxidation and DNA damage and induced inflammatory responses in the liver and intestinal tissues. The accumulation of reactive oxygen species (ROS) is the primary manifestation of BBP toxicity and is accompanied by changes in the activities of antioxidant and detoxification enzymes. Notably, the pro-apoptotic genes (p53 and caspase-3) were still significantly upregulated in the 50 µg/L and 500 µg/L treatment groups on day 28. Moreover, BBP interfered with apoptosis by forming a stable complex with apoptosis proteins (P53 and Caspase-3). Our findings are helpful for understanding the toxicity mechanisms of BBP, which could further promote the assessment of the potential environmental risks of BBP.


Subject(s)
Tumor Suppressor Protein p53 , Zebrafish , Animals , Caspase 3 , Molecular Docking Simulation , Oxidative Stress , Liver , Apoptosis
18.
Sci Total Environ ; 849: 157943, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-35952877

ABSTRACT

Dibutyl phthalate (DBP) is a typical persistent organic pollutant with a high load in the agricultural soils of vegetable crops. Currently, studies on the toxicity of DBP in vegetable crops are limited. Therefore, in this study, pakchoi (Brassica campestris L.), a typical vegetable crop, was used to evaluate the toxic effects of DBP. Pakchoi was exposed to DBP for 24 d at three doses (2, 20, and 200 mg/kg), and the phenotypic, biochemical, and molecular indicators were determined. The results revealed that DBP could reduce the emergence of pakchoi and inhibit plant height, root length, fresh weight, and leaf area. At the biochemical level, DBP exposure could reduce the content of three typical photosynthetic pigments (chlorophyll a and b and carotenoids). The effects of DBP exposure on the quality of pakchoi were primarily through reduced soluble sugar and increased proline contents. In addition, O2·- and H2O2 levels increased after DBP stress, and the corresponding antioxidant enzymes (SOD, POD, and CAT) were activated to resist oxidative damage. The dose- and time-dependent toxicities of DBP to pakchoi were demonstrated using an integrated biological response index. Finally, the molecular-level results on Day 24 showed that the three antioxidant enzyme genes (sod, pod, and cat) were significantly downregulated, and the antioxidant enzyme genes were more sensitive biomarkers than the enzyme activities. However, the expression level of enzyme genes was opposite to that of enzyme activity (SOD and POD); thus, DBP might directly interact with these enzymes. Molecular docking showed that DBP could stably bind near the SOD/POD active center through intermolecular interaction forces. This study provides essential information on the risk of DBP toxicity to vegetable crops.


Subject(s)
Brassica , Soil Pollutants , Antioxidants/metabolism , Brassica/metabolism , Carotenoids/metabolism , Chlorophyll A/metabolism , Crops, Agricultural/metabolism , Dibutyl Phthalate/metabolism , Dibutyl Phthalate/toxicity , Hydrogen Peroxide/metabolism , Molecular Docking Simulation , Persistent Organic Pollutants , Proline/metabolism , Proline/pharmacology , Soil/chemistry , Soil Pollutants/analysis , Sugars/metabolism , Superoxide Dismutase/metabolism , Vegetables/metabolism
19.
Bull Environ Contam Toxicol ; 109(3): 548-555, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35689130

ABSTRACT

This study explored occurrence of phthalic acid esters (PAEs) in protected agriculture soils and assessed their potential health risks to humans. Results showed that DEHP and DBP were the most abundant PAEs congeners, with mean concentrations of 318.68 µg/kg and 137.56 µg/kg, respectively. DOP and BBP concentrations were relatively low, and DMP and DEP were not detected in all samples. DBP concentrations were higher than the allowable concentration standard value. Additionally, soil pH and organic matter were key environmental parameters which may play the vital roles to the occurrence of organic pollutants. Heath risk assessment results indicated that dermal contact was the predominant human exposure route under non-dietary conditions, and children obtained higher health risk scores than adults. In summary, the overall health risk scores were at an acceptable level. These results provide insights for assessing soil environmental safety and ecological risks in protected agricultural soil.


Subject(s)
Phthalic Acids , Soil Pollutants , Agriculture/methods , Child , China , Dibutyl Phthalate , Esters , Humans , Soil , Soil Pollutants/analysis
20.
Sci Total Environ ; 822: 153563, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35104518

ABSTRACT

Phthalate esters (PAEs) are widely used as plasticizers and can be ubiquitously detected in environment. However, the toxic effects and mechanisms of diisononyl phthalate (DINP) on earthworms are still poorly understood. In this study, earthworms (Eisenia fetida) were exposed to DINP at various doses (0, 300, 600, 1200, and 2400 mg/kg) to investigate their subchronic toxicity. The results demonstrated that the reactive oxygen species (ROS) levels displayed an "increase-decrease" trend with the increasing DINP doses after DINP exposure on days 7, 14, 21, and 28. The malondialdehyde (MDA) content increased with increasing DINP doses on days 7, 14, and then decreased on days 21, 28. The values of superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) showed similar variation patterns and reached a maximum level on 21 d. Moreover, on day 28, the SOD and CAT gene expression levels were upregulated, while the GST gene expression levels were downregulated. Meanwhile, 16S rRNA genes of E. fetida gut bacteria and surrounding soil bacteria were measured after 28 days of exposure to DINP. The Chao index of E. fetida gut bacteria decreased when the treatment with the highest concentration (2400 mg/kg) was applied. At the phylum level, the abundance of Chloroflexi was significantly lower in the gut of E. fetida. In addition, the abundance of Proteobacteria at the phylum level and Ottowia at the genus level significantly increased in the surrounding soil. Overall, our results shed light on the toxic mechanism of DINP at biochemical, molecular, and omics levels, and contributed to a better understanding of the ecotoxicity of DINP.


Subject(s)
Oligochaeta , Soil Pollutants , Animals , Catalase/metabolism , Malondialdehyde/metabolism , Oligochaeta/metabolism , Oxidative Stress , Phthalic Acids , RNA, Ribosomal, 16S , Soil Pollutants/metabolism , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...