Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 502
Filter
1.
Org Biomol Chem ; 22(19): 3979-3985, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38691112

ABSTRACT

Two new sesterterpenoids, sesterchaetins A and B (1 and 2), and two new diepoxide polyketides, chaetoketoics A and B (3 and 4), were characterized from the culture extract of Chaetomium globosum SD-347, a fungal strain derived from deep sea-sediment. Their structures and absolute configurations were unambiguously determined by detailed NMR, mass spectra, and X-ray crystallographic analysis. Compounds 1 and 2 contained a distinctive 5/8/6/5 tetracyclic carbon-ring-system, which represented a rarely occurring natural product framework. The new isolates 1-4 exhibited selective antimicrobial activities against human and aquatic pathogenic bacteria and plant-pathogenic fungi.


Subject(s)
Anti-Infective Agents , Chaetomium , Polyketides , Sesquiterpenes , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology , Polyketides/chemistry , Polyketides/isolation & purification , Aquatic Organisms/chemistry , Chaetomium/chemistry , Bacteria/drug effects , Crystallography, X-Ray
2.
Bioorg Chem ; 147: 107417, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701596

ABSTRACT

Marine natural products play an important role in biopesticides. Seven new secondary metabolites with different structural classes, including two cycloheptapeptides, scortide A (1) and scortide B (2), two 19-nor-diterpenoids, talascortene H (3) and talascortene I (4), two diterpenoid acids, talascortene J (5) and talascortene K (6), and one triterpenoid, talascortene L (7) were isolated and identified from the sea-anemone-derived endozoic fungus Talaromyces scorteus AS-242. Their structures were comprehensively assigned by spectroscopic data analysis, single-crystal X-ray diffraction, tandem mass spectrometry, and electronic circular dichroism (ECD) calculations. The result of the antimicrobial assay demonstrated that compounds 1 - 6 have inhibitory activity against several human, aquatic, and plant pathogens with minimum inhibitory concentration (MIC) values ranging from 1 to 64 µg/mL. Specially, compounds 2 and 4 showed significant activities against the pathogenic fungus Curvularia spicifera with the MIC value of 1 µg/mL, providing an experimental basis of 2 and 4 with the potential as lead compounds to be developed into biopesticides.


Subject(s)
Microbial Sensitivity Tests , Talaromyces , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Dose-Response Relationship, Drug , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/isolation & purification , Molecular Structure , Structure-Activity Relationship , Talaromyces/chemistry , Talaromyces/metabolism , Diterpenes/chemistry , Diterpenes/isolation & purification , Diterpenes/pharmacology
3.
Mar Drugs ; 22(5)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38786595

ABSTRACT

Thirty-two fungal polyketide derivatives, including eleven new compounds, namely (3R,5'R)-5-hydroxytalaroflavone (1), talaroisochromenols A-C (3, 5, and 11), (8R,9R,10aR)-5-hydroxyaltenuene (13), (8R,9R,10aS)-5-hydroxyaltenuene (14), (8R,9S,10aR)-5-hydroxyaltenuene (15), nemanecins D and E (25 and 26), 2,5-dimethyl-8-iodochromone (27), and talarofurolactone A (29), together with one new naturally occurring but previously synthesized metabolite, 6-hydroxy-4-methoxycoumarin (28), were isolated and identified from the deep-sea cold-seep-derived fungus Talaromyces sp. CS-258. Among them, racemic ((±)-11) or epimeric (13-15, 25, and 26) mixtures were successfully separated by chiral or gradient elution HPLC. Meanwhile, compound 27 represents a rarely reported naturally occurring iodinated compound. Their planar structures as well as absolute configurations were determined by extensive analysis via NMR, MS, single-crystal X-ray diffraction, Mosher's method, and ECD or NMR calculation (with DP4+ probability analysis). Possible biosynthetic routes of some isolated compounds, which are related to chromone or isochromone biosynthetic pathways, were put forward. The biological analysis results revealed that compounds 7, 9, 10, 18-22, 24, 30, and 31 showed broad-spectrum antibacterial activities against several human and aquatic pathogens with MIC ranges of 0.5-64 µg/mL.


Subject(s)
Anti-Bacterial Agents , Polyketides , Talaromyces , Talaromyces/chemistry , Talaromyces/metabolism , Polyketides/pharmacology , Polyketides/chemistry , Polyketides/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Microbial Sensitivity Tests , Molecular Structure
4.
J Nat Prod ; 87(5): 1347-1357, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38701173

ABSTRACT

A chemical investigation of a cold-seep-sediment-derived fungus, Pseudallescheria boydii CS-793, resulted in characterization of 10 novel bergamotene-derived sesquiterpenoids, pseuboyenes A-J (1-10). Their structures were elucidated by spectroscopic and X-ray crystallographic analyses as well as using the modified Mosher's method. Compound 1 represents the first example of a ß-bergamotene containing a 6-oxobicyclo[3.2.1]octane nucleus adducted with a methyl lactate unit, while 8-10 involve a skeletal rearrangement from bergamotene. Compounds 2-5 showed significant antifungal activities against Colletotrichum gloeosporioides Penz. and Fusarium oxysporum with MICs ranging from 0.5 to 8 µg/mL. Compound 4 exhibited an in vitro anti-F. proliferatum effect with an EC50 value of 1.0 µg/mL.


Subject(s)
Antifungal Agents , Microbial Sensitivity Tests , Pseudallescheria , Sesquiterpenes , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Molecular Structure , Colletotrichum/drug effects , Fusarium/drug effects , Crystallography, X-Ray
5.
Nat Commun ; 15(1): 2834, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38565846

ABSTRACT

The circadian clock regulates animal physiological activities. How temperature reorganizes circadian-dependent physiological activities remains elusive. Here, using in-vivo two-photon imaging with the temperature control device, we investigated the response of the Drosophila central circadian circuit to temperature variation and identified that DN1as serves as the most sensitive temperature-sensing neurons. The circadian clock gate DN1a's diurnal temperature response. Trans-synaptic tracing, connectome analysis, and functional imaging data reveal that DN1as bidirectionally targets two circadian neuronal subsets: activity-related E cells and sleep-promoting DN3s. Specifically, behavioral data demonstrate that the DN1a-E cell circuit modulates the evening locomotion peak in response to cold temperature, while the DN1a-DN3 circuit controls the warm temperature-induced nocturnal sleep reduction. Our findings systematically and comprehensively illustrate how the central circadian circuit dynamically integrates temperature and light signals to effectively coordinate wakefulness and sleep at different times of the day, shedding light on the conserved neural mechanisms underlying temperature-regulated circadian physiology in animals.


Subject(s)
Circadian Clocks , Drosophila Proteins , Animals , Circadian Rhythm/physiology , Temperature , Sleep/physiology , Drosophila , Circadian Clocks/physiology , Drosophila Proteins/genetics , Drosophila melanogaster/physiology
6.
Natl Sci Rev ; 11(4): nwae082, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38686177

ABSTRACT

The nucleus of Darkschewitsch (ND), mainly composed of GABAergic neurons, is widely recognized as a component of the eye-movement controlling system. However, the functional contribution of ND GABAergic neurons (NDGABA) in animal behavior is largely unknown. Here, we show that NDGABA neurons were selectively activated by different types of fear stimuli, such as predator odor and foot shock. Optogenetic and chemogenetic manipulations revealed that NDGABA neurons mediate freezing behavior. Moreover, using circuit-based optogenetic and neuroanatomical tracing methods, we identified an excitatory pathway from the lateral periaqueductal gray (lPAG) to the ND that induces freezing by exciting ND inhibitory outputs to the motor-related gigantocellular reticular nucleus, ventral part (GiV). Together, these findings indicate the NDGABA population as a novel hub for controlling defensive response by relaying fearful information from the lPAG to GiV, a mechanism critical for understanding how the freezing behavior is encoded in the mammalian brain.

7.
Angew Chem Int Ed Engl ; : e202403963, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635317

ABSTRACT

(±)-Penindolenes A-D (1-4), the first representatives of indole terpenoids featuring a γ-lactam skeleton, were isolated from the mangrove-derived endophytic fungus Penicillium brocae MA-231. Our bioactivity tests revealed their potent antimicrobial and acetylcholinesterase inhibitory activities. The biosynthetic reactions by the five enzymes PbaABCDE leading to γ-lactam ring formation were identified with heterologous expression and in vitro enzymatic assays. Remarkably, the cytochrome P450 monooxygenase PbaB and its homolog in Aspergillus oryzae catalyzed the 2,3-cleavage of the indole ring to generate two keto groups in 1. This is the first example of the oxidative cleavage of indole by a P450 monooxygenase. In addition, rare secondary amide bond formation by the glutamine synthetase-like enzyme PbaD was reported. These findings will contribute to the engineered biosynthesis of unnatural, bioactive indole terpenoids.

8.
Prog Neurobiol ; 236: 102614, 2024 May.
Article in English | MEDLINE | ID: mdl-38641040

ABSTRACT

Complement activation and prefrontal cortical dysfunction both contribute to the pathogenesis of major depressive disorder (MDD), but their interplay in MDD is unclear. We here studied the role of complement C3a receptor (C3aR) in the medial prefrontal cortex (mPFC) and its influence on depressive-like behaviors induced by systematic lipopolysaccharides (LPS) administration. C3aR knockout (KO) or intra-mPFC C3aR antagonism confers resilience, whereas C3aR expression in mPFC neurons makes KO mice susceptible to LPS-induced depressive-like behaviors. Importantly, the excitation and inhibition of mPFC neurons have opposing effects on depressive-like behaviors, aligning with increased and decreased excitability by C3aR deletion and activation in cortical neurons. In particular, inhibiting mPFC glutamatergic (mPFCGlu) neurons, the main neuronal subpopulation expresses C3aR, induces depressive-like behaviors in saline-treated WT and KO mice, but not in LPS-treated KO mice. Compared to hypoexcitable mPFCGlu neurons in LPS-treated WT mice, C3aR-null mPFCGlu neurons display hyperexcitability upon LPS treatment, and enhanced excitation of mPFCGlu neurons is anti-depressant, suggesting a protective role of C3aR deficiency in these circumstances. In conclusion, C3aR modulates susceptibility to LPS-induced depressive-like behaviors through mPFCGlu neuronal excitability. This study identifies C3aR as a pivotal intersection of complement activation, mPFC dysfunction, and depression and a promising therapeutic target for MDD.


Subject(s)
Depression , Lipopolysaccharides , Mice, Knockout , Neurons , Prefrontal Cortex , Animals , Prefrontal Cortex/metabolism , Prefrontal Cortex/drug effects , Lipopolysaccharides/pharmacology , Neurons/metabolism , Neurons/drug effects , Mice , Depression/metabolism , Depression/chemically induced , Receptors, Complement/metabolism , Mice, Inbred C57BL , Male , Glutamic Acid/metabolism
9.
Heliyon ; 10(6): e27494, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38515687

ABSTRACT

Objective: Laryngeal cancer (LC) is one of the most common squamous cell carcinomas of the head and neck in clinical practice, and its incidence has been increasing in recent years, but the prognosis of the patients is not favorable. Hence, it is critical to re-understand and deeply study the causes and mechanisms of LC and explore new effective treatment methods and strategies. In this study, we analyzed the effect of Dihydroartemisinin (DHA) on the pathological progression of LC through the periostin (POSTN)/Yes-associated protein (YAP)/interleukin (IL)-6 pathway, which can provide new clinical references and guidelines. Methods: POSTN, YAP, and IL-6 levels in 18 pairs of fresh LC tissues and adjacent counterparts in our hospital were detected. Additionally, LC TU686 cell line was purchased for DHA treatment of various concentrations to detect changes in cell biological behavior. Finally, we built a tumor-bearing mouse model with C57BL/6 mice and intragastrically administrated DHA to the animals to observe the growth of living tumors and to measure POSTN, YAP, and IL-6 expression in tumor tissues. Results: As indicated by PCR, Western blotting, and immunohistochemistry, POSTN, YAP, and IL-6 presented higher expression in LC tissues than in adjacent counterparts. In cell experiments, the cloning rate of LC cells decreased and the apoptosis rate increased after DHA intervention, with 160 µmol/L DHA contributing to the most significant effect on LC activity inhibition. Furthermore, DHA-intervened cells exhibited markedly reduced POSTN, YAP, and IL-6 levels. Finally, the tumorigenesis experiment in nude mice showed inhibited tumor growth after DHA administration. And consistently, the expressions of POSTN, YAP, and IL-6 in living tumors decreased. Conclusions: DHA can inhibit POSTN/YAP/IL-6 transduction, accelerate LC cell apoptosis, and alleviate the malignant progression of LC.

10.
Chem Biodivers ; : e202400584, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38544421

ABSTRACT

Two pairs of new enantiomeric hydroxyphenylacetic acid derivatives, (±)-corylophenols A and B ((±)-1 and (±)-2), a new α-pyrone analogue, corylopyrone A (3), and six andrastin-type meroterpenoids (4-9) were isolated and identified from the deep-sea cold-seep sediment-derived fungus Penicillium corylophilum CS-682. Their structures and stereo configurations were determined by detailed spectroscopic analysis of NMR and MS data, chiral HPLC analysis, J-based configuration analysis, and quantum chemical calculations of ECD, specific rotation, and NMR (with DP4+ probability analysis). Compound 3 showed inhibitory activity against some strains of pathogenic bacteria.

11.
Exp Neurol ; 376: 114758, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513970

ABSTRACT

Impaired long-term memory, a complication of traumatic stress including hemorrhage shock and resuscitation (HSR), has been reported to be associated with multiple neurodegenerations. The ventral tegmental area (VTA) participates in both learned appetitive and aversive behaviors. In addition to being prospective targets for the therapy of addiction, depression, and other stress-related diseases, VTA glutamatergic neurons are becoming more widely acknowledged as powerful regulators of reward and aversion. This study revealed that HSR exposure induces memory impairments and decreases the activation in glutamatergic neurons, and decreased ß power in the VTA. We also found that optogenetic activation of glutamatergic neurons in the VTA mitigated HSR-induced memory impairments, and restored ß power. Moreover, hydrogen sulfide (H2S), a gasotransmitter with pleiotropic roles, has neuroprotective functions at physiological concentrations. In vivo, H2S administration improved HSR-induced memory deficits, elevated c-fos-positive vesicular glutamate transporters (Vglut2) neurons, increased ß power, and restored the balance of γ-aminobutyric acid (GABA) and glutamate in the VTA. This work suggests that glutamatergic neuron stimulation via optogenetic assay and exogenous H2S may be useful therapeutic approaches for improving memory deficits following HSR.


Subject(s)
Disease Models, Animal , Glutamic Acid , Hydrogen Sulfide , Memory Disorders , Mice, Inbred C57BL , Neurons , Animals , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/therapeutic use , Mice , Memory Disorders/drug therapy , Memory Disorders/etiology , Memory Disorders/therapy , Male , Neurons/drug effects , Neurons/metabolism , Glutamic Acid/metabolism , Glutamic Acid/toxicity , Shock, Hemorrhagic , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/metabolism , Optogenetics/methods
12.
Phytomedicine ; 128: 155507, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38552430

ABSTRACT

BACKGROUND: Abnormal activation of astrocytes in the amygdala contributes to anxiety after hemorrhagic shock and resuscitation (HSR). Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB)-associated epigenetic reprogramming of astrocytic activation is crucial to anxiety. A bioactive monomer derived from Epimedium icariin (ICA) has been reported to modulate NF-κB signaling and astrocytic activation. PURPOSE: The present study aimed to investigate the effects of ICA on post-HSR anxiety disorders and its potential mechanism of action. METHODS: We first induced HSR in mice through a bleeding and re-transfusion model and selectively inhibited and activated astrocytes in the amygdala using chemogenetics. Then, ICA (40 mg/kg) was administered by oral gavage once daily for 21 days. Behavioral, electrophysiological, and pathological changes were assessed after HSR using the light-dark transition test, elevated plus maze, recording of local field potential (LFP), and immunofluorescence assays. RESULTS: Exposure to HSR reduced the duration of the light chamber and attenuated open-arm entries. Moreover, HSR exposure increased the theta oscillation power in the amygdala and upregulated NF-κB p65, H3K27ac, and H3K4me3 expression. Contrarily, chemogenetic inhibition of astrocytes significantly reversed these changes. Chemogenetic inhibition in astrocytes was simulated by ICA, but chemogenetic activation of astrocytes blocked the neuroprotective effects of ICA. CONCLUSION: ICA mitigated anxiety-like behaviors induced by HSR in mice via inhibiting astrocytic activation, which is possibly associated with NF-κB-induced epigenetic reprogramming.


Subject(s)
Anxiety , Astrocytes , Flavonoids , Shock, Hemorrhagic , Animals , Astrocytes/drug effects , Flavonoids/pharmacology , Shock, Hemorrhagic/drug therapy , Mice , Anxiety/drug therapy , Male , Resuscitation/methods , Disease Models, Animal , Mice, Inbred C57BL , NF-kappa B/metabolism , Behavior, Animal/drug effects , Amygdala/drug effects , Epimedium/chemistry
13.
Beilstein J Org Chem ; 20: 470-478, 2024.
Article in English | MEDLINE | ID: mdl-38440169

ABSTRACT

Pseudallenes A and B (1 and 2), the new and rare examples of sulfur-containing ovalicin derivatives, along with three known analogues 3-5, were isolated and identified from the culture extract of Pseudallescheria boydii CS-793, a fungus obtained from the deep-sea cold seep sediments. Their structures were established by detailed interpretation of NMR spectroscopic and mass spectrometric data. X-ray crystallographic analysis confirmed and established the structures and absolute configurations of compounds 1-3, thus providing the first characterized crystal structure of an ovalicin-type sesquiterpenoid. In the antimicrobial assays, compounds 1-3 showed broad-spectrum inhibitory activities against several plant pathogens with MIC values ranging from 2 to 16 µg/mL.

14.
Nat Neurosci ; 27(3): 514-526, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38347199

ABSTRACT

Fear-related disorders (for example, phobias and anxiety) cause a substantial public health problem. To date, studies of the neural basis of fear have mostly focused on the amygdala. Here we identify a molecularly defined amygdala-independent tetra-synaptic pathway for olfaction-evoked innate fear and anxiety in male mice. This pathway starts with inputs from the olfactory bulb mitral and tufted cells to pyramidal neurons in the dorsal peduncular cortex that in turn connect to cholecystokinin-expressing (Cck+) neurons in the superior part of lateral parabrachial nucleus, which project to tachykinin 1-expressing (Tac1+) neurons in the parasubthalamic nucleus. Notably, the identified pathway is specifically involved in odor-driven innate fear. Selective activation of this pathway induces innate fear, while its inhibition suppresses odor-driven innate fear. In addition, the pathway is both necessary and sufficient for stress-induced anxiety-like behaviors. These findings reveal a forebrain-to-hindbrain neural substrate for sensory-triggered fear and anxiety that bypasses the amygdala.


Subject(s)
Amygdala , Odorants , Mice , Male , Animals , Amygdala/physiology , Anxiety , Fear/physiology , Smell/physiology , Olfactory Bulb/physiology
15.
Phytochemistry ; 220: 114000, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38278465

ABSTRACT

Sumalarins D-G (1-4), four previously undescribed curvularin derivatives, along with two known related metabolites, curvularin (5) and dehydrocurvularin (6), were isolated and identified from the mangrove-derived fungus Penicillium sumatrense MA-325. Among them, sumalarin D (1) represents a unique example of curvularin derivative featuring a 5-methylfuran-2-yl-methyl group. Their structures were elucidated based on analysis of NMR and MS data as well as comparison of ECD spectra and quantum chemical calculations of NMR, and compound 1 was confirmed by X-ray crystallographic analysis. Compounds 1, 2, 5, and 6 are active against aquatic pathogenic bacteria Vibrio alginolyticus and V. harveyi with MIC values ranging from 4 to 64 µg/mL, while compound 6 is cytotoxic against tumor cell lines 5673, HCT 116, 786-O, and Hela with IC50 values of 3.5, 10.6, 10.9, and 14.9 µM, respectively.


Subject(s)
Antineoplastic Agents , Penicillium , Zearalenone/analogs & derivatives , Molecular Structure , Penicillium/chemistry , Antineoplastic Agents/chemistry
16.
Zhongguo Gu Shang ; 37(1): 26-32, 2024 Jan 25.
Article in Chinese | MEDLINE | ID: mdl-38286448

ABSTRACT

OBJECTIVE: To observe the alteration of thoracic and lumbar physiological curvature in adolescent idiopathic scoliosis(AIS) and the difference of physiological curvature between different types of scoliosis. METHODS: A retrospective analysis was conducted on 305 adolescent patients taken full spine X-ray in our hospital from January 2017 to December 2021. The patients were divided into normal group and scoliosis group. The normal group was composed of 179 patients, 79 males and 100 females, aged 10 to 18 years old with an average of (12.84±2.10) years old, with cobb agle less than 10 degrees. The scoliosis group was composed of 126 patients, 33 males and 93 females, aged 10 to 18 years old with an average of (13.92±2.20) years old. The gender, age, Risser sign, thoracic kyphosis(TK) and lumbar lordosis(LL) in 2 groups were compared, and the TK and LL were also compared between different genders, different degrees of scoliosis and different segments of scoliosis. RESULTS: The female ratio(P=0.001) and age (P<0.001) in scoliosis group were higher than them in normal group; the ratio of low-grade ossification was higher in normal group than in scoliosis group(P=0.038). TK was significantly smaller in scoliosis group than in normal group(P<0.001), but there was no significant difference in LL between the 2 groups(P=0.147). There were no significant difference in TK and LL between male and female. The TK was significantly bigger in mild AIS patients than in moderate AIS patients(P<0.05), but there was no significant difference in LL between mild and moderate patients(P>0.05). The TK and LL in different segments scoliosis were not found significant difference. CONCLUSION: The physiological curvature of thoracic and lumbar spine is independent of gender. The thoracic physiological curvature becomes smaller in AIS patients, but lumbar curvature remains unchanged. The thoracic physiological curvature in mild AIS patients is greater than that in moderate AIS patients, but the lumbar curvature is almost unchanged between mild and moderate scoliosis and is similar with that in normal adolescent. The alteration of thoracic and lumbar physiological curvature in AIS patients may be related to relative anterior spinal overgrowth, and the specific detailed mechanism needs to be further studied.


Subject(s)
Kyphosis , Lordosis , Scoliosis , Spinal Fusion , Female , Humans , Male , Adolescent , Child , Scoliosis/diagnostic imaging , Retrospective Studies , Thoracic Vertebrae/diagnostic imaging , Lumbar Vertebrae/diagnostic imaging , Spinal Fusion/methods
17.
Cell Mol Life Sci ; 81(1): 57, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38279052

ABSTRACT

The Wnt/ß-catenin pathway is critical to maintaining cell fate decisions. Recent study showed that liquid-liquid-phase separation (LLPS) of Axin organized the ß-catenin destruction complex condensates in a normal cellular state. Mutations inactivating the APC gene are found in approximately 80% of all human colorectal cancer (CRC). However, the molecular mechanism of the formation of ß-catenin destruction complex condensates organized by Axin phase separation and how APC mutations impact the condensates are still unclear. Here, we report that the ß-catenin destruction complex, which is constructed by Axin, was assembled condensates via a phase separation process in CRC cells. The key role of wild-type APC is to stabilize destruction complex condensates. Surprisingly, truncated APC did not affect the formation of condensates, and GSK 3ß and CK1α were unsuccessfully recruited, preventing ß-catenin phosphorylation and resulting in accumulation in the cytoplasm of CRCs. Besides, we propose that the phase separation ability of Axin participates in the nucleus translocation of ß-catenin and be incorporated and concentrated into transcriptional condensates, affecting the transcriptional activity of Wnt signaling pathway.


Subject(s)
Axin Signaling Complex , beta Catenin , Humans , Axin Signaling Complex/genetics , Axin Protein/genetics , Axin Protein/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Phase Separation , Mutation/genetics , Wnt Signaling Pathway/genetics , Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli Protein/metabolism
18.
Bioorg Chem ; 143: 107073, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176375

ABSTRACT

Six new highly oxygenated and polycyclic andrastin-type meroterpenoids, namely, bialorastins A-F (1-6), were discovered from the culture of Penicillium bialowiezense CS-283, a fungus isolated from the deep-sea cold seep squat lobster Shinkaia crosnieri. The planar structures and absolute configurations of these compounds were determined by detailed analysis of spectroscopic data, single crystal X-ray diffraction, and TDDFT-ECD calculations. Structurally, bialorastin A (1) represents a rare 17-nor-andrastin that possesses an unusual 2-oxaspiro[4.5]decane-1,4-dione moiety with a unique 6/6/6/6/5 polycyclic system, while bialorastin B (2) is also a 17-nor-andrastin featuring a gem-propane-1,2-dione moiety. Additionally, bialorastins C-E (3-5) possess a 6/6/6/6/5/5 fused hexacyclic skeleton, characterized by distinctive 3,23-acetal/lactone-bridged functionalities. All isolated compounds were evaluated for their proangiogenic activities in transgenic zebrafish. Compound 3 exhibited significant proangiogenic activity, which notably increased the number and length of intersegmental blood vessels in model zebrafish in a dose-dependent manner at concentrations of 20 and 40 µM. On a molecular scale, the tested compounds were modeled through molecular docking to have insight into the interactions with the possible target VEGFR2. Mechanistically, RT-qPCR results revealed that compound 3 could promote angiogenesis via activating VEGFR2 and subsequently activating the downstream PI3K/AKT and MAPK signaling pathways. These findings indicate that 3 could be a potential lead compound for developing angiogenesis agents.


Subject(s)
Penicillium , Terpenes , Zebrafish , Animals , Fungi , Molecular Docking Simulation , Molecular Structure , Penicillium/chemistry , Phosphatidylinositol 3-Kinases , Terpenes/chemistry , Terpenes/pharmacology
19.
J Nat Prod ; 87(2): 381-387, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38289330

ABSTRACT

Tryptoquivalines are highly toxic metabolites initially isolated from the fungus Aspergillus clavatus. The relative and absolute configuration of tryptoquivaline derivates was primarily established by comparison of the chemical shifts, NOE data, and ECD calculations. A de novo determination of the complete relative configuration using NMR spectroscopy was challenging due to multiple spatially separated stereocenters, including one nonprotonated carbon. In this study, we isolated a new tryptoquivaline derivative, 12S-deoxynortryptoquivaline (1), from the marine ascidian-derived fungus Aspergillus clavatus AS-107. The correct assignment of the relative configuration of 1 was accomplished using anisotropic NMR spectroscopy, while the absolute configuration was determined by comparing calculated and experimental ECD spectra. This case study highlights the effectiveness of anisotropic NMR parameters over isotropic NMR parameters in determining the relative configuration of complex natural products without the need for crystallization.


Subject(s)
Urochordata , Animals , Magnetic Resonance Spectroscopy/methods , Aspergillus/chemistry , Fungi , Molecular Structure
20.
Spine J ; 24(2): 195-209, 2024 02.
Article in English | MEDLINE | ID: mdl-37939919

ABSTRACT

BACKGROUND: Intervertebral disc degeneration (IVDD) is a common degenerative condition, which is thought to be a major cause of lower back pain (LBP). However, the etiology and pathophysiology of IVDD are not yet completely clear. PURPOSE: To examine potential causal effects of modifiable risk factors on IVDD. STUDY DESIGN: Bidirectional Mendelian randomization (MR) study. PATIENT SAMPLE: Genome-wide association studies (GWAS) with sample sizes between 54,358 and 766,345 participants. OUTCOME MEASURES: Outcomes included (1) modifiable risk factors associated with IVDD use in the forward MR; and (2) modifiable risk factors that were determined to have a causal association with IVDD in the reverse MR, including smoking, alcohol intake, standing height, education level, household income, sleeplessness, hypertension, hip osteoarthritis, HDL, triglycerides, apolipoprotein A-I, type 2 diabetes, fasting glucose, HbA1c, BMI and obesity trait. METHODS: We obtained genetic variants associated with 33 exposure factors from genome-wide association studies. Summary statistics for IVDD were obtained from the FinnGen consortium. The risk factors of IVDD were analyzed by inverse variance weighting method, MR-Egger method, weighted median method, MR-PRESSO method and multivariate MR Method. Reverse Mendelian randomization analysis was performed on risk factors found to be caustically associated with IVDD in the forward Mendelian randomization analysis. The heterogeneity of instrumental variables was quantified using Cochran's Q statistic. RESULTS: Genetic predisposition to smoking (OR=1.221, 95% CI: 1.068-1.396), alcohol intake (OR=1.208, 95% CI: 1.056-1.328) and standing height (OR=1.149, 95% CI: 1.072-1.231) were associated with increased risk of IVDD. In addition, education level (OR=0.573, 95%CI: 0.502-0.654)and household income (OR=0.614, 95%CI: 0.445-0.847) had a protective effect on IVDD. Sleeplessness (OR=1.799, 95%CI: 1.162-2.783), hypertension (OR=2.113, 95%CI: 1.132-3.944) and type 2 diabetes (OR=1.069, 95%CI: 1.024-1.115) are three important risk factors causally associated with the IVDD. In addition, we demonstrated that increased levels of triglycerides (OR=1.080, 95%CI:1.013-1.151), fasting glucose (OR=1.189, 95%CI:1.007-1.405), and HbA1c (OR=1.308, 95%CI:1.017-1.683) could significantly increase the odds of IVDD. Hip osteoarthritis, HDL, apolipoprotein A-I, BMI and obesity trait factors showed bidirectional causal associations with IVDD, therefore we considered the causal associations between these risk factors and IVDD to be uncertain. CONCLUSIONS: This MR study provides evidence of complex causal associations between modifiable risk factors and IVDD. It is noteworthy that metabolic disturbances appear to have a more significant effect on IVDD than biomechanical alterations, as individuals with type 2 diabetes, elevated triglycerides, fasting glucose, and elevated HbA1c are at higher risk for IVDD, and the causal association of obesity-related characteristics with IVDD incidence is unclear. These findings provide new insights into potential therapeutic and prevention strategies. Further research is needed to clarify the mechanisms of these risk factors on IVDD.


Subject(s)
Diabetes Mellitus, Type 2 , Hypertension , Intervertebral Disc Degeneration , Osteoarthritis, Hip , Sleep Initiation and Maintenance Disorders , Humans , Apolipoprotein A-I , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Genome-Wide Association Study , Glycated Hemoglobin , Intervertebral Disc Degeneration/epidemiology , Intervertebral Disc Degeneration/genetics , Risk Factors , Obesity , Glucose , Triglycerides
SELECTION OF CITATIONS
SEARCH DETAIL
...