Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Brain Res ; 1842: 149099, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38942352

ABSTRACT

Oxidative stress plays a pivotal role in various neurological disorders, encompassing both neurodegenerative diseases such as Alzheimer's and Parkinson's, and mood disorders like depression. The balance between the generation of reactive oxygen species (ROS) and the cell's antioxidant defenses, when disrupted, can lead to neuronal damage and neurologic dysfunction. In this study, we focused on the pathogenic role of oxidative stress in various neurologic disease models in vitro and investigated the neuroprotective capabilities of some novel bicyclic γ-butyrolactone compounds, with particular emphasis on the compound designated as 'bd'. Our investigation leveraged the HT22 and SH-SY5Y cells to model oxidative stress induced by H2O2 or corticosterone (CORT), common triggers of neuronal damage in neurodegenerative and mood disorders. We discovered that compound bd robustly reduced ROS production and suppressed neuronal apoptosis, suggesting its potential in treating a wider array of neurological conditions influenced by oxidative stress. In conclusion, our research underscores the importance of addressing oxidative stress in the context of diverse neurological disorders. The identification of compound bd as a neuroprotective agent with potential efficacy against ROS-induced apoptosis in neural cells opens new horizons for therapeutic development, offering hope for patients suffering from neurodegenerative diseases, depression, and other stress-related neurological conditions.

2.
Int Immunopharmacol ; 123: 110761, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37544025

ABSTRACT

Astrocytes are crucially involved in neuroinflammation. Activated astrocytes exhibit at least two phenotypes, A1 (neurotoxic) and A2 (neuroprotective). The A1 phenotype is the major reactive astrocyte phenotype involved in aging and neurodegenerative diseases. Telmisartan, which is an antihypertensive agent, is a promising neuroprotective agent. This study aimed to investigate the effects of telmisartan on the phenotype of reactive astrocytes. Astrocytes were activated by culturing with the conditioned medium derived from lipopolysaccharide-stimulated microglia. This conditioned medium induced early, transient A2 astrocyte conversion (within 24 h) and late, sustained A1 conversion (beginning at 24 h and lasting up to 7 days), with a concomitant increase in the production of pro-inflammatory cytokines (interleukin [IL]-1ß, tumor necrosis factor [TNF]α, and IL-6) and phosphorylation of nuclear factor-κB (NF-κB)/p65. Telmisartan treatment promoted and inhibited A2 and A1 conversion, respectively. Telmisartan reduced total and phosphorylated p65 protein levels. Losartan, a specific angiotensin II type-1 receptor (AT1R) blocker, did not influence the reactive state of astrocytes. Additionally, AT1R activation by angiotensin II did not induce the expression of pro-inflammatory cytokines and A1/A2 markers, indicating that the AT1R signaling pathway is not involved in the astrocyte-mediated inflammatory response. A peroxisome proliferator-activated receptor γ (PPARγ) antagonist reversed the effects of telmisartan. Moreover, telmisartan-induced p65 downregulation was reversed by the proteasome inhibitor MG132. These results indicate that telmisartan suppresses activated microglia-induced neurotoxic A1 astrocyte conversion through p65 degradation. Our findings contribute towards the elucidation of the anti-inflammatory activity of telmisartan in brain disorders.


Subject(s)
NF-kappa B , PPAR gamma , Telmisartan/pharmacology , NF-kappa B/metabolism , PPAR gamma/metabolism , Astrocytes/metabolism , Microglia , Angiotensin II/metabolism , Culture Media, Conditioned/metabolism , Angiotensin II Type 1 Receptor Blockers/pharmacology , Cytokines/metabolism , Tumor Necrosis Factor-alpha/metabolism
3.
Drug Des Devel Ther ; 17: 2183-2192, 2023.
Article in English | MEDLINE | ID: mdl-37521036

ABSTRACT

Introduction: Temozolomide (TMZ) induces intestinal mucosa injury that cannot be fully counteracted by supportive treatment. Probiotics regulate gut microbial composition and the host immune system and may alleviate this side effect. We aimed to investigate the potential and mechanism of Lactobacillus rhamnosus GG (LGG) in relieving intestinal mucosal injury induced by TMZ. Methods: Glioblastoma mice were divided into four groups: CON (control), LGG (109 CFU/mL, treated for 7 days), TMZ (50 mg/kg·d, treated for 5 days), LGG+TMZ (LGG for 7 days and TMZ subsequently for 5 days). Body weight, food intake, and fecal pH were recorded. Intestinal tissue samples were collected 1 day after the end of TMZ treatment. Degree of damage to intestine, expression of IL1ß, IL6, TNFα, and IL10 in jejunum were determined. Levels of tight-junction proteins (ZO1, occludin), TLR4, IKKß, IκBα, and P65 with their phosphorylation in jejunum were measured. Results: Decreases in body weight, food intake, spleen index in the TMZ group were mitigated in the LGG+TMZ group, and the degree of intestinal shortening and damage to jejunum villus were also alleviated. The expression of tight-junction proteins in the LGG+TMZ group was significantly greater than that in the TMZ group. IκBα in intestinal tissue significantly decreased in the TMZ group, phos-IKKß and phos-P65 increased compared to the CON group, and LGG reversed such changes in IκBα and phos-P65 in the LGG+TMZ group. Intestinal inflammatory cytokines were significantly increased in the TMZ group, but lower in the LGG+TMZ group. Moreover, expression of TLR4 in LGG group was significantly lower than that in the CON group. LGG inhibited the rise of TLR4 after TMZ in the LGG+TMZ group compared to the TMZ group. Conclusion: LGG inhibits the activation of the TLR4-NFκB pathway and alleviates intestinal mucosal inflammation induced by TMZ, thereby protect the jejunum villi and mucosal physical barrier.


Subject(s)
Probiotics , Toll-Like Receptor 4 , Animals , Mice , Toll-Like Receptor 4/metabolism , NF-KappaB Inhibitor alpha/metabolism , I-kappa B Kinase/metabolism , Intestinal Mucosa/metabolism , Signal Transduction , Tight Junction Proteins/metabolism
4.
Nat Commun ; 14(1): 3397, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37296181

ABSTRACT

The nature of molecule-electrode interface is critical for the integration of atomically precise molecules as functional components into circuits. Herein, we demonstrate that the electric field localized metal cations in outer Helmholtz plane can modulate interfacial Au-carboxyl contacts, realizing a reversible single-molecule switch. STM break junction and I-V measurements show the electrochemical gating of aliphatic and aromatic carboxylic acids have a conductance ON/OFF behavior in electrolyte solution containing metal cations (i.e., Na+, K+, Mg2+ and Ca2+), compared to almost no change in conductance without metal cations. In situ Raman spectra reveal strong molecular carboxyl-metal cation coordination at the negatively charged electrode surface, hindering the formation of molecular junctions for electron tunnelling. This work validates the critical role of localized cations in the electric double layer to regulate electron transport at the single-molecule level.


Subject(s)
Metals , Nanotechnology , Metals/chemistry , Electron Transport , Electricity , Cations
5.
BMC Biol ; 21(1): 56, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36941615

ABSTRACT

BACKGROUND: Analysis of the relationship between chromosomal structural variation (synteny breaks) and 3D-chromatin architectural changes among closely related species has the potential to reveal causes and correlates between chromosomal change and chromatin remodeling. Of note, contrary to extensive studies in animal species, the pace and pattern of chromatin architectural changes following the speciation of plants remain unexplored; moreover, there is little exploration of the occurrence of synteny breaks in the context of multiple genome topological hierarchies within the same model species. RESULTS: Here we used Hi-C and epigenomic analyses to characterize and compare the profiles of hierarchical chromatin architectural features in representative species of the cotton tribe (Gossypieae), including Gossypium arboreum, Gossypium raimondii, and Gossypioides kirkii, which differ with respect to chromosome rearrangements. We found that (i) overall chromatin architectural territories were preserved in Gossypioides and Gossypium, which was reflected in their similar intra-chromosomal contact patterns and spatial chromosomal distributions; (ii) the non-random preferential occurrence of synteny breaks in A compartment significantly associate with the B-to-A compartment switch in syntenic blocks flanking synteny breaks; (iii) synteny changes co-localize with open-chromatin boundaries of topologically associating domains, while TAD stabilization has a greater influence on regulating orthologous expression divergence than do rearrangements; and (iv) rearranged chromosome segments largely maintain ancestral in-cis interactions. CONCLUSIONS: Our findings provide insights into the non-random occurrence of epigenomic remodeling relative to the genomic landscape and its evolutionary and functional connections to alterations of hierarchical chromatin architecture, on a known evolutionary timescale.


Subject(s)
Chromatin , Gossypium , Animals , Chromatin/genetics , Gossypium/genetics , Evolution, Molecular , Genome , Genomics
6.
Chem Rev ; 123(3): 1166-1205, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36696538

ABSTRACT

Mass cytometry (cytometry by time-of-flight detection [CyTOF]) is a bioanalytical technique that enables the identification and quantification of diverse features of cellular systems with single-cell resolution. In suspension mass cytometry, cells are stained with stable heavy-atom isotope-tagged reagents, and then the cells are nebulized into an inductively coupled plasma time-of-flight mass spectrometry (ICP-TOF-MS) instrument. In imaging mass cytometry, a pulsed laser is used to ablate ca. 1 µm2 spots of a tissue section. The plume is then transferred to the CyTOF, generating an image of biomarker expression. Similar measurements are possible with multiplexed ion bean imaging (MIBI). The unit mass resolution of the ICP-TOF-MS detector allows for multiparametric analysis of (in principle) up to 130 different parameters. Currently available reagents, however, allow simultaneous measurement of up to 50 biomarkers. As new reagents are developed, the scope of information that can be obtained by mass cytometry continues to increase, particularly due to the development of new small molecule reagents which enable monitoring of active biochemistry at the cellular level. This review summarizes the history and current state of mass cytometry reagent development and elaborates on areas where there is a need for new reagents. Additionally, this review provides guidelines on how new reagents should be tested and how the data should be presented to make them most meaningful to the mass cytometry user community.


Subject(s)
Indicators and Reagents , Biomarkers/analysis
7.
J Integr Plant Biol ; 64(12): 2396-2410, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36194511

ABSTRACT

Associations between 3D chromatin architectures and epigenetic modifications have been characterized in animals. However, any impact of DNA methylation on chromatin architecture in plants is understudied, which is confined to Arabidopsis thaliana. Because plant species differ in genome size, composition, and overall chromatin packing, it is unclear to what extent findings from A. thaliana hold in other species. Moreover, the incomplete chromatin architectural profiles and the low-resolution high-throughput chromosome conformation capture (Hi-C) data from A. thaliana have hampered characterizing its subtle chromatin structures and their associations with DNA methylation. We constructed a high-resolution Hi-C interaction map for the null OsMET1-2 (the major CG methyltransferase in rice) mutant (osmet1-2) and isogenic wild-type rice (WT). Chromatin structural changes occurred in osmet1-2, including intra-/inter-chromosomal interactions, compartment transition, and topologically associated domains (TAD) variations. Our findings provide novel insights into the potential function of DNA methylation in TAD formation in rice and confirmed DNA methylation plays similar essential roles in chromatin packing in A. thaliana and rice.


Subject(s)
Arabidopsis , Oryza , Animals , Oryza/genetics , Loss of Function Mutation , Arabidopsis/genetics , Chromatin , Methyltransferases , Plants/genetics
8.
Proc Natl Acad Sci U S A ; 119(34): e2200106119, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35969751

ABSTRACT

Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo) has long been studied from many perspectives. As a multisubunit (large subunits [LSUs] and small subunits[SSUs]) protein encoded by genes residing in the chloroplast (rbcL) and nuclear (rbcS) genomes, RuBisCo also is a model for cytonuclear coevolution following allopolyploid speciation in plants. Here, we studied the genomic and transcriptional cytonuclear coordination of auxiliary chaperonin and chaperones that facilitate RuBisCo biogenesis across multiple natural and artificially synthesized plant allopolyploids. We found similar genomic and transcriptional cytonuclear responses, including respective paternal-to-maternal conversions and maternal homeologous biased expression, in chaperonin/chaperon-assisted folding and assembly of RuBisCo in different allopolyploids. One observation is about the temporally attenuated genomic and transcriptional cytonuclear evolutionary responses during early folding and later assembly process of RuBisCo biogenesis, which were established by long-term evolution and immediate onset of allopolyploidy, respectively. Our study not only points to the potential widespread and hitherto unrecognized features of cytonuclear evolution but also bears implications for the structural interaction interface between LSU and Cpn60 chaperonin and the functioning stage of the Raf2 chaperone.


Subject(s)
Chaperonins/metabolism , Plant Proteins/metabolism , Ribulose-Bisphosphate Carboxylase , Cell Nucleus/metabolism , Chaperonin 60/genetics , Chaperonin 60/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Plants/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism
9.
Langmuir ; 38(19): 6209-6216, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35508432

ABSTRACT

Probing the adlayer structures on an electrode/electrolyte interface is one of the most important tasks in modern electrochemistry for clarifying the electrochemical processes. Herein, we have combined cyclic voltammetry and electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy techniques to explore the potential-dependent adlayer structures on Au(111) in a room-temperature ionic liquid of 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF6) without or with pyridine (Py). It is clearly found that the BMI+ cations strongly adsorb on the negatively charged surface with a flat-lying orientation, leaving a little space for Py adsorption. Upon increasing the potentials of the electrode, the variations of Raman band intensities and frequencies reveal that the interaction between the BMI+ cations and the Au surface becomes weak; meanwhile, the Py adsorption becomes strong, and its geometry turns from flat, tilted to vertical. Finally, BMI+ cations desorb and leave plenty of surface sites for Py adsorption in bulk solution, and a N-bonded compact Py adlayer is formed on the very positively charged surface. This causes obvious anodic peaks in cyclic voltammograms, and the peak currents increase with the square root of the scanning rate. The present work provides a fair molecular-level understanding of electrochemical interfaces and molecular adsorption of Py in ionic liquids.

10.
Chem Commun (Camb) ; 58(32): 4962-4965, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35388389

ABSTRACT

Significant variability issues in metal-molecule contacts, such as adsorption geometry, lead to characteristic variability in the electrical responses of individual molecules. Herein, co-assembling 1-ethylimidazole (EIM) on Au(111) has been shown to be a feasible and effective strategy for tuning the binding configurations of pyridine-linked molecular junctions in the most common aqueous environments and atmospheric environments. The single-molecule conductance measurements clearly show a transition from multiple conductance peaks to a single conductance peak with increasing EIM concentration. Raman spectroscopy and DFT calculations suggest that the thermodynamically favorable EIM adsorbate results in the vertical orientation of the bipyridine.

11.
Analyst ; 147(7): 1341-1347, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35244130

ABSTRACT

The electroreductive cleavage of carbon-halogen bonds has attracted increasing attention in both electrosynthesis and pollution remediation. Herein, by employing the in situ electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) technique, we have successfully investigated the electroreductive dehalogenation process of aryl halides with the thiol group on a smooth Au electrode in aqueous solution at different pH values. The obtained potential-dependent Raman spectra directly reveal a mixture of the reduction products 4,4'-biphenyldithiol (BPDT) and thiophenol (TP). The conversion ratios of the C-Cl and C-Br bonds at pH = 7 are 37% and 55%, respectively. Furthermore, quantitative analysis of the intensity variations of ν(C-Cl), ν(C-Br) and aromatic ν(CC) stretching modes suggests electroreductive dehalogenation via both direct electron transfer reduction and electrocatalytic hydrodehalogenation. Molecular evidence for the C-C cross coupling process through TP reaction with benzene free radical intermediates is found at negative potentials, which leads to the increasing selectivity of biphenyl products.

12.
Drug Des Devel Ther ; 15: 1641-1652, 2021.
Article in English | MEDLINE | ID: mdl-33907383

ABSTRACT

BACKGROUND: Gut microbiota is associated with the progression of brain tumors. However, the alterations in gut microbiota observed during glioma growth and temozolomide (TMZ) therapy remain poorly understood. METHODS: C57BL/6 male mice were implanted with GL261 glioma cells. TMZ/sodium carboxymethyl cellulose (SCC) was administered through gavage for five consecutive days (from 8 to 12 days after implantation). Fecal samples were collected before (T0) and on days 7 (T1), 14 (T2), and 28 (T3) after implantation. The gut microbiota was analyzed using 16S ribosomal DNA sequencing followed by absolute and relative quantitation analyses. RESULTS: Nineteen genera were altered during glioma progression with the most dramatic changes in Firmicutes and Bacteroidetes phyla. During glioma growth, Lactobacillus abundance decreased in the early stage (T1) and then gradually increased (T2, T3); Intestinimonas abundance exhibited a persistent increase; Anaerotruncus showed a transient increase (T2) and then a subsequent decrease (T3). Similar longitudinal changes in Intestinimonas and Anaerotruncus abundance were observed in TMZ-treated mice, but the decrease of Anaerotruncus at T3 in the TMZ-treated group was less than that in the vehicle-treated group. No significant change in Lactobacillus was observed after TMZ treatment. Additionally, compared to vehicle control, TMZ treatment led to an enrichment in Akkermansia and Bifidobacterium. CONCLUSION: Glioma development and progression altered the composition of gut microbiota. Induction of Akkermansia and Bifidobacterium as well as the prevention of the reduction in Anaerotruncus may contribute to the anti-tumor effect of TMZ. This study helps to reveal the association between levels of specific microbial species in the gut and the anti-tumor effect of TMZ.


Subject(s)
Antineoplastic Agents, Alkylating/pharmacology , Brain Neoplasms/drug therapy , Disease Models, Animal , Gastrointestinal Microbiome/drug effects , Glioma/drug therapy , Temozolomide/pharmacology , Animals , Brain Neoplasms/pathology , Cell Line, Tumor , Glioma/pathology , Male , Mice , Mice, Inbred C57BL
13.
G3 (Bethesda) ; 11(4)2021 04 15.
Article in English | MEDLINE | ID: mdl-33617633

ABSTRACT

Plant long non-coding RNAs (lncRNAs) function in diverse biological processes, and lncRNA expression is under epigenetic regulation, including by cytosine DNA methylation. However, it remains unclear whether 5-methylcytosine (5mC) plays a similar role in different sequence contexts (CG, CHG, and CHH). In this study, we characterized and compared the profiles of genome-wide lncRNA profiles (including long intergenic non-coding RNAs [lincRNAs] and long noncoding natural antisense transcripts [lncNATs]) of a null mutant of the rice DNA methyltransferase 1, OsMET1-2 (designated OsMET1-2-/-) and its isogenic wild type (OsMET1-2+/+). The En/Spm transposable element (TE) family, which was heavily methylated in OsMET1-2+/+, was transcriptionally de-repressed in OsMET1-2-/- due to genome-wide erasure of CG methylation, and this led to abundant production of specific lncRNAs. In addition, RdDM-mediated CHH hypermethylation was increased in the 5'-upstream genomic regions of lncRNAs in OsMET1-2-/-. The positive correlation between the expression of lincRNAs and that of their proximal protein-coding genes was also analyzed. Our study shows that CG methylation negatively regulates the TE-related expression of lncRNA and demonstrates that CHH methylation is also involved in the regulation of lncRNA expression.


Subject(s)
Oryza , RNA, Long Noncoding , DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation, Plant , Genome, Plant , Methyltransferases/genetics , Mutation , Oryza/genetics , RNA, Long Noncoding/genetics
14.
RSC Adv ; 11(25): 15258-15263, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-35424020

ABSTRACT

In this study, hierarchical Ni-Co-Mn hydroxide hollow architectures were successfully achieved via an etching process. We first performed the synthesis of NiCoMn-glycerate solid spheres via a solvothermal route, and then NiCoMn-glycerate as the template was etched to convert into hierarchical Ni-Co-Mn hydroxide hollow architectures in the mixed solvents of water and 1-methyl-2-pyrrolidone. Hollow architectures and high surface area enabled Ni-Co-Mn hydroxide to manifest a specific capacitance of 1626 F g-1 at 3.0 A g-1, and it remained as large as 1380 F g-1 even at 3.0 A g-1. The Ni-Co-Mn hydroxide electrodes also displayed notable cycle performance with a decline of 1.6% over 5000 cycles at 12 A g-1. Moreover, an asymmetric supercapacitor assembled with this electrode exhibited an energy density of 44.4 W h kg-1 at 1650 W kg-1 and 28.5 W h kg-1 at 12 374 W kg-1. These attractive results demonstrate that hierarchical Ni-Co-Mn hydroxide hollow architectures have broad application prospects in supercapacitors.

15.
Opt Lett ; 45(19): 5389-5392, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33001901

ABSTRACT

The first results of the study on photobleaching and thermally induced recovery in Bi-doped phosphosilicate fiber have been presented. It was revealed that the rate of bleaching of phosphor-related Bi active center (BAC-P) becomes slower with the decrease of photon energy. The quadratic dependence of the bleaching rate of BAC-P on laser power is obtained under 532 nm laser irradiation. The effect of temperature on the bleaching dynamics of BAC-P is also investigated under 532 nm radiation, suggesting a thermally aggravated bleaching process upon heating at certain temperatures (≥300∘C). Furthermore, the thermal recovery of bleached Bi-doped silica-based fiber (BDF) is investigated and a 13% increase of luminescence is achieved upon thermal quenching for 5 min at 400ºC. The underlying mechanism of photobleaching and thermo-stimulated recovery process of BAC-P is also discussed.

16.
Front Chem ; 7: 59, 2019.
Article in English | MEDLINE | ID: mdl-30805332

ABSTRACT

Mesoporous silica nanoparticles (MSN) covered by polymer coatings, cross-linked by weak coordination bonds were expected to present a reversible responsiveness under on-off ultrasound stimuli. Herein, we prepared a sodium alginate (SA) modified MSN with carboxyl-calcium (COO--Ca2+) coordination bonds in the modified layer, which could block the mesopores of MSN and effectively prevent the cargo from pre-releasing before stimulation. The coordination bonds would be destroyed under the stimulation of low intensity ultrasound (20 kHz) or high intensity focused ultrasound (HIFU, 1.1 MHz), leading to a rapid and significant cargo release, and then they could be reformed when ultrasound was turned off, resulting in an instant cargo release stopping. The reversible cleavage and reformation of this coordination bonds under on-off ultrasound stimulus were confirmed by the gel-sol transition behaviors of the SA-CaCl2 gels. An excellent real-time control of rhodamine B (RhB) release performance was obtained under the ultrasound stimuli. Obviously, the cargo release ratio could reach to nearly 40% when HIFU (80 W) was turned on for 5 min, and remained basically constant when ultrasound was turned off, which would finally reach to nearly 100% within 30 min under this on-off pulsatile status. These hybrid MSN based nanoparticles with excellent reversible ultrasound on-off responsiveness were of great interest in on-demand drug delivery applications in the future.

17.
Langmuir ; 34(34): 9974-9981, 2018 08 28.
Article in English | MEDLINE | ID: mdl-30056720

ABSTRACT

A pH- and ultrasound dual-responsive drug release pattern was successfully achieved using mesoporous silica nanoparticles (MSNs) coated with polydopamine (PDA). In this paper, the PDA shell on the MSN surface was obtained through oxidative self-polymerization under the alkaline condition. The morphology and structure of this composite nanoparticle were fully characterized by a series of analyses, such as infrared (IR), transmission electron microscopy, and thermogravimetric analysis. Doxorubicin hydrochloride (DOX)-loaded composite nanoparticles were used to study the performances of responsive drug storage/release behavior, and this kind of hybrid material displayed an apparent pH response in DOX releasing under the acidic condition. Beyond that, upon high-intensity focused ultrasound exposure, loaded DOX in composite nanoparticles was successfully triggered to release from pores because of the ultrasonic cavitation effect, and the DOX-releasing pattern could be optimized into a unique pulsatile fashion by switching the on/off status. From the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, it was observed that our blank nanoparticles showed no toxicity to HeLa cells, but DOX-loaded nanoparticles could inhibit the growth of tumor cells. Furthermore, these composite nanoparticles displayed an effective near-IR photothermal conversion capability with a relatively high conversion efficiency (∼37%). These as-desired drug delivery carriers might have a great potential for future cancer treatment that combine the chemotherapy and photothermal therapy.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Doxorubicin/pharmacology , Drug Carriers/chemistry , Indoles/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Silicon Dioxide/chemistry , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/toxicity , Doxorubicin/chemistry , Doxorubicin/toxicity , Drug Carriers/radiation effects , Drug Carriers/toxicity , Drug Liberation , HeLa Cells , Humans , Hydrogen Bonding , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Indoles/chemical synthesis , Indoles/radiation effects , Indoles/toxicity , Infrared Rays , Nanocomposites/chemistry , Nanocomposites/radiation effects , Nanocomposites/toxicity , Nanoparticles/radiation effects , Nanoparticles/toxicity , Polymers/chemical synthesis , Polymers/radiation effects , Polymers/toxicity , Porosity , Silicon Dioxide/chemical synthesis , Silicon Dioxide/radiation effects , Silicon Dioxide/toxicity , Ultrasonic Waves
18.
Plant J ; 94(6): 1141-1156, 2018 06.
Article in English | MEDLINE | ID: mdl-29660196

ABSTRACT

The non-random spatial packing of chromosomes in the nucleus plays a critical role in orchestrating gene expression and genome function. Here, we present a Hi-C analysis of the chromatin interaction patterns in rice (Oryza sativa L.) at hierarchical architectural levels. We confirm that rice chromosomes occupy their own territories with certain preferential inter-chromosomal associations. Moderate compartment delimitation and extensive TADs (Topologically Associated Domains) were determined to be associated with heterogeneous genomic compositions and epigenetic marks in the rice genome. We found subtle features including chromatin loops, gene loops, and off-/near-diagonal intensive interaction regions. Gene chromatin loops associated with H3K27me3 could be positively involved in gene expression. In addition to insulated enhancing effects for neighbor gene expression, the identified rice gene loops could bi-directionally (+/-) affect the expression of looped genes themselves. Finally, web-interleaved off-diagonal IHIs/KEEs (Interactive Heterochromatic Islands or KNOT ENGAGED ELEMENTs) could trap transposable elements (TEs) via the enrichment of silencing epigenetic marks. In parallel, the near-diagonal FIREs (Frequently Interacting Regions) could positively affect the expression of involved genes. Our results suggest that the chromatin packing pattern in rice is generally similar to that in Arabidopsis thaliana but with clear differences at specific structural levels. We conclude that genomic composition, epigenetic modification, and transcriptional activity could act in combination to shape global and local chromatin packing in rice. Our results confirm recent observations in rice and A. thaliana but also provide additional insights into the patterns and features of chromatin organization in higher plants.


Subject(s)
Chromatin Assembly and Disassembly/genetics , Chromatin/genetics , Chromosomes, Plant/genetics , Oryza/genetics , Chromatin/metabolism , Chromosomes, Plant/physiology , Epigenesis, Genetic/genetics , Genetic Markers/genetics , Genome-Wide Association Study
19.
Genome Biol Evol ; 9(12): 3328-3344, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29194487

ABSTRACT

Long-distance insular dispersal is associated with divergence and speciation because of founder effects and strong genetic drift. The cotton tribe (Gossypieae) has experienced multiple transoceanic dispersals, generating an aggregate geographic range that encompasses much of the tropics and subtropics worldwide. Two genera in the Gossypieae, Kokia and Gossypioides, exhibit a remarkable geographic disjunction, being restricted to the Hawaiian Islands and Madagascar/East Africa, respectively. We assembled and use de novo genome sequences to address questions regarding the divergence of these two genera from each other and from their sister-group, Gossypium. In addition, we explore processes underlying the genome downsizing that characterizes Kokia and Gossypioides relative to other genera in the tribe. Using 13,000 gene orthologs and synonymous substitution rates, we show that the two disjuncts last shared a common ancestor ∼5 Ma, or half as long ago as their divergence from Gossypium. We report relative stasis in the transposable element fraction. In comparison to Gossypium, there is loss of ∼30% of the gene content in the two disjunct genera and a history of genome-wide accumulation of deletions. In both genera, there is a genome-wide bias toward deletions over insertions, and the number of gene losses exceeds the number of gains by ∼2- to 4-fold. The genomic analyses presented here elucidate genomic consequences of the demographic and biogeographic history of these closest relatives of Gossypium, and enhance their value as phylogenetic outgroups.


Subject(s)
Evolution, Molecular , Genetic Variation , Genome Size , Genome, Plant , Gossypium/genetics , DNA Copy Number Variations , Genomics , Gossypium/classification , INDEL Mutation , Molecular Sequence Data , Phylogeny , Repetitive Sequences, Nucleic Acid/genetics
20.
Front Pharmacol ; 8: 233, 2017.
Article in English | MEDLINE | ID: mdl-28555106

ABSTRACT

To investigate the role of hepatic 18-carbon fatty acids (FA) accumulation in regulating CYP2A5/2A6 and the significance of Nrf2 in the process during hepatocytes steatosis, Nrf2-null, and wild type mice fed with high-fat diet (HFD), and Nrf2 silenced or over expressed HepG2 cells administered with 18-carbon FA were used. HE and Oil Red O staining were used for mice hepatic pathological examination. The mRNA and protein expressions were measured with real-time PCR and Western blot. The results showed that hepatic CYP2A5 and Nrf2 expression levels were increased in HFD fed mice accompanied with hepatic 18-carbon FA accumulation. The Nrf2 expression was increased dose-dependently in cells administered with increasing concentrations of stearic acid, oleic acid, and alpha-linolenic acid. The Nrf2 expression was dose-dependently decreased in cells treated with increasing concentrations of linoleic acid, but the Nrf2 expression level was still found higher than the control cells. The CYP2A6 expression was increased dose-dependently in increasing 18-carbon FA treated cells. The HFD-induced up-regulation of hepatic CYP2A5 in vivo and the 18-carbon FA treatment induced up-regulation of CYP2A6 in HepG2 cells were, respectively, inhibited by Nrf2 deficiency and Nrf2 silencing. While the basal expression of mouse hepatic CYP2A5 was not impeded by Nrf2 deletion. Nrf2 over expression improved the up-regulation of CYP2A6 induced by 18-carbon FA. As the classical target gene of Nrf2, GSTA1 mRNA relative expression was increased in Nrf2 over expressed cells and was decreased in Nrf2 silenced cells. In presence or absence of 18-carbon FA treatment, the change of CYP2A6 expression level was similar to GSTA1 in Nrf2 silenced or over expressed HepG2 cells. It was concluded that HFD-induced hepatic 18-carbon FA accumulation contributes to the up-regulation of CYP2A5/2A6 via activating Nrf2. However, the CYP2A5/2A6 expression does not only depend on Nrf2.

SELECTION OF CITATIONS
SEARCH DETAIL
...