Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
1.
J Thorac Imaging ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38704662

ABSTRACT

PURPOSE: The relationship between plaque progression and pericoronary adipose tissue (PCAT) radiomics has not been comprehensively evaluated. We aim to predict plaque progression with PCAT radiomics features and evaluate their incremental value over quantitative plaque characteristics. PATIENTS AND METHODS: Between January 2009 and December 2020, 500 patients with suspected or known coronary artery disease who underwent serial coronary computed tomography angiography (CCTA) ≥2 years apart were retrospectively analyzed and randomly stratified into a training and testing data set with a ratio of 7:3. Plaque progression was defined with annual change in plaque burden exceeding the median value in the entire cohort. Quantitative plaque characteristics and PCAT radiomics features were extracted from baseline CCTA. Then we built 3 models including quantitative plaque characteristics (model 1), PCAT radiomics features (model 2), and the combined model (model 3) to compare the prediction performance evaluated by area under the curve. RESULTS: The quantitative plaque characteristics of the training set showed the values of noncalcified plaque volume (NCPV), fibrous plaque volume, lesion length, and PCAT attenuation were larger in the plaque progression group than in the nonprogression group ( P < 0.05 for all). In multivariable logistic analysis, NCPV and PCAT attenuation were independent predictors of coronary plaque progression. PCAT radiomics exhibited significantly superior prediction over quantitative plaque characteristics both in the training (area under the curve: 0.814 vs 0.615, P < 0.001) and testing (0.736 vs 0.594, P = 0.007) data sets. CONCLUSIONS: NCPV and PCAT attenuation were independent predictors of coronary plaque progression. PCAT radiomics derived from baseline CCTA achieved significantly better prediction than quantitative plaque characteristics.

2.
Bioresour Technol ; 402: 130842, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750828

ABSTRACT

Hydrophilic porous membranes, exemplified by polyvinylidene fluoride (PVDF) membranes, have demonstrated significant potential for replacing ion exchange membranes in microbial electrolysis cells (MECs). Membrane fouling remains a major challenge in MECs, impeding proton transport and consequently limiting hydrogen production. This study aims to investigate a synergistic antifouling strategy for PVDF membrane through the incorporation of a coating composed of polydopamine (PDA), polyethyleneimine (PEI), and silver nanoparticles (AgNPs). The PDA-PEI-Ag@PVDF membrane not only effectively mitigates fouling through steric and electrostatic repulsion forces, but also amplifies ion transport by facilitating water diffusion and electromigration. The PDA-PEI-Ag@PVDF membrane exhibited a reduced membrane resistance of 1.01 mΩ m2 and PDA-PEI-Ag modifying PVDF membrane was found to be effective in enhancing the proton transportation of PVDF membrane. Therefore, the enhanced hydrogen production rate of 2.65 ± 0.02 m3/m3/d was achieved in PDA-PEI-Ag@PVDF-MECs.


Subject(s)
Bioelectric Energy Sources , Biofouling , Electrolysis , Hydrogen , Indoles , Membranes, Artificial , Polyvinyls , Protons , Silver , Polyvinyls/chemistry , Hydrogen/metabolism , Biofouling/prevention & control , Silver/chemistry , Silver/pharmacology , Indoles/metabolism , Indoles/chemistry , Polymers/chemistry , Metal Nanoparticles/chemistry , Polyethyleneimine/chemistry , Fluorocarbon Polymers
3.
Chemosphere ; 356: 141840, 2024 May.
Article in English | MEDLINE | ID: mdl-38582167

ABSTRACT

The extensive use of tetracyclines (TCs) has led to their widespread distribution in the environment, causing serious harm to ecosystems because of their toxicity and resistance to decomposition. Adsorption is presently the principal approach to dispose of TCs, and the development of excellent adsorbents is crucial to TC removal. Herein, a novel amorphous cobalt carbonate hydroxide (ACCH) was successfully prepared by a one-step solvothermal method, which was identified as Co(CO3)0·63(OH)0.74·0.07H2O. The ultimate adsorption capacity of ACCH for TC reaches 2746 mg g-1, and the excellent adsorption performance can be maintained over a wide pH (3.0-11.0) and temperature (10-70 °C) range. Moreover, ACCH also exhibits a wonderful adsorption performance for other organic contaminants, such as ciprofloxacin and Rhodamine B. The TC adsorption process can be reasonably described by the pseudo-second-order kinetic model, intraparticle model and Langmuir isothermal model. The experimental results in this work suggest that the excellent adsorption performance of ACCH is ascribed to the large specific surface area, alkaline characteristics and numerous functional groups of ACCH. Accordingly, this work provides a promising strategy for the development of highly-efficient adsorbents and demonstrates their application prospects in environmental remediation.


Subject(s)
Carbonates , Cobalt , Tetracycline , Cobalt/chemistry , Adsorption , Tetracycline/chemistry , Carbonates/chemistry , Kinetics , Water Pollutants, Chemical/chemistry , Nanostructures/chemistry , Hydrogen-Ion Concentration , Temperature , Anti-Bacterial Agents/chemistry
4.
J Neurosci Res ; 102(3): e25307, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38444265

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive decline. Sex differences in the progression of AD exist, but the neural mechanisms are not well understood. The purpose of the current study was to explore sex differences in brain functional connectivity (FC) at different stages of AD and their predictive ability on Montreal Cognitive Assessment (MoCA) scores using connectome-based predictive modeling (CPM). Resting-state functional magnetic resonance imaging was collected from 81 AD patients (44 females), 78 amnestic mild cognitive impairment patients (44 females), and 92 healthy controls (50 females). The FC analysis was conducted and the interaction effect between sex and group was investigated using two-factor variance analysis. The CPM was used to predict MoCA scores. There were sex-by-group interaction effects on FC between the left dorsolateral superior frontal gyrus and left middle temporal gyrus, left precuneus and right calcarine fissure surrounding cortex, left precuneus and left middle occipital gyrus, left middle temporal gyrus and left precentral gyrus, and between the left middle temporal gyrus and right cuneus. In the CPM, the positive network predictive model significantly predicted MoCA scores in both males and females. There were significant sex-by-group interaction effects on FC between the left precuneus and left middle occipital gyrus, and between the left middle temporal gyrus and right cuneus could predict MoCA scores in female patients. Our results suggest that there are sex differences in FC at different stages of AD. The sex-specific FC can further predict MoCA scores at individual level.


Subject(s)
Alzheimer Disease , Connectome , Neurodegenerative Diseases , Female , Humans , Male , Alzheimer Disease/diagnostic imaging , Sex Characteristics , Temporal Lobe
6.
Front Endocrinol (Lausanne) ; 15: 1335899, 2024.
Article in English | MEDLINE | ID: mdl-38510696

ABSTRACT

Objective: This study aims to determine the effectiveness of T1ρ in detecting myocardial fibrosis in type 2 diabetes mellitus (T2DM) patients by comparing with native T1 and extracellular volume (ECV) fraction. Methods: T2DM patients (n = 35) and healthy controls (n = 30) underwent cardiac magnetic resonance. ECV, T1ρ, native T1, and global longitudinal strain (GLS) values were assessed. Diagnostic performance was analyzed using receiver operating curves. Results: The global ECV and T1ρ of T2DM group (ECV = 32.1 ± 3.2%, T1ρ = 51.6 ± 3.8 msec) were significantly higher than those of controls (ECV = 26.2 ± 1.6%, T1ρ = 46.8 ± 2.0 msec) (all P < 0.001), whether there was no significant difference in native T1 between T2DM and controls (P = 0.264). The GLS decreased significantly in T2DM patients compared with controls (-16.5 ± 2.4% vs. -18.3 ± 2.6%, P = 0.015). The T1ρ and native T1 were associated with ECV (Pearson's r = 0.50 and 0.25, respectively, both P < 0.001); the native T1, T1ρ, and ECV were associated with hemoglobin A1c (Pearson's r = 0.41, 0.52, and 0.61, respectively, all P < 0.05); and the ECV was associated with diabetes duration (Pearson's r = 0.41, P = 0.016). The AUC of ECV, T1ρ, GLS, and native T1 were 0.869, 0.810, 0.659, and 0.524, respectively. Conclusion: In T2DM patients, T1ρ may be a new non-contrast cardiac magnetic resonance technique for identifying myocardial diffuse fibrosis, and T1ρ may be more sensitive than native T1 in the detection of myocardial diffuse fibrosis.


Subject(s)
Cardiomyopathies , Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnostic imaging , Diabetes Mellitus, Type 2/pathology , Myocardium/pathology , Heart , Cardiomyopathies/pathology , Fibrosis , Magnetic Resonance Spectroscopy
7.
J Imaging Inform Med ; 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388867

ABSTRACT

The aim of this study is to assess the feasibility of compressed sensing (CS) acceleration methods compared to conventional segmented cine (Seg) cardiac magnetic resonance (CMR) for evaluating left ventricular (LV) function and strain by feature tracking (FT). In this prospective study, 45 healthy volunteers underwent CMR imaging used Seg, threefold (CS3), fourfold (CS4), and eightfold (CS8) CS acceleration. Cine images were scored for quality (1-5 scale). LV volumetric and functional parameters and global longitudinal (GLS), circumferential (GCS), and radial strains (GRS) were quantified. LV volumetric and functional parameters exhibited no differences between Seg and all CS cines (all P > 0.05). The strains were similar for Seg, CS3, and CS4 (all P > 0.05). Similarly, no significant differences were observed in GRS and GCS between Seg and CS8 (all P > 0.05), but the global longitudinal strain was significantly lower for CS8 versus Seg (P < 0.001). Image quality declined with CS acceleration, especially in long-axis views with CS8. CS cine MRI at acceleration factor 4 maintained good image quality and accurate measurements of LV function and strain, although there was a slight reduction in the quality of long-axis images and GLS with CS8. CS acceleration up to a factor of 4 enabled fast CMR evaluations, making it suitable for clinical use.

8.
Medicine (Baltimore) ; 103(7): e35828, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38363895

ABSTRACT

Glioblastoma multiforme (GBM) is a highly malignant primary brain tumor with a poor prognosis. Reactive oxygen species that accumulate during tumorigenesis can cause oxidative stress (OS), which plays a crucial role in cancer cell survival. Clinical and transcriptome data of TCGA-GBM dataset from UCSC Xena database were analyzed. Consensus clustering analysis was conducted to identify OS-related molecular subtypes for GBM. The immune infiltrate level between subtypes were characterized by ESTIMATE algorithm. Differentially expressed genes (DEGs) between subtypes were screened by DESeq2 package. Two OS-related molecular subtypes of GBM were identified, and cluster 2 had poorer overall survival and higher immune infiltration levels than cluster 1. Enrichment analysis showed that 54 DEGs in cluster 2 were significantly enriched in cytokine/chemokine-related functions or pathways. Ten hub genes (CSF2, CSF3, CCL7, LCN2, CXCL6, MMP8, CCR8, TNFSF11, IL22RA2, and ORM1) were identified in GBM subtype 2 through protein-protein interaction network, most of which were positively correlated with immune factors and immune checkpoints. A total of 55 small molecule drugs obtained from drug gene interaction database (DGIdb) may have potential therapeutic effects in GBM subtype 2 patients. Our study identified 10 hub genes as potential therapeutic targets in GBM subtype 2 patients, who have poorer overall survival and higher immune infiltration levels. These findings could pave the way for new treatments for this aggressive form of brain cancer.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/genetics , Oxidative Stress/genetics , Reactive Oxygen Species , Aggression , Brain Neoplasms/genetics , Prognosis
9.
J Magn Reson Imaging ; 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168067

ABSTRACT

BACKGROUND: To facilitate the clinical use of cardiac T1ρ, it is important to understand the impact of age and sex on T1ρ values of the myocardium. PURPOSE: To investigate the impact of age and gender on myocardial T1ρ values. STUDY TYPE: Cross-sectional. POPULATION: Two hundred ten healthy Han Chinese volunteers without cardiovascular risk factors (85 males, mean age 34.4 ± 12.5 years; 125 females, mean age 37.9 ± 14.8 years). FIELD STRENGTH/SEQUENCE: 1.5 T; T1ρ-prepared steady-state free precession (T1ρ mapping) sequence. ASSESSMENT: Basal, mid, and apical short-axis left ventricular T1ρ maps were acquired. T1ρ maps acquired with spin-lock frequencies of 5 and 400 Hz were subtracted to create a myocardial fibrosis index (mFI) map. T1ρ and mFI values across different age decades, sex, and slice locations were compared. STATISTICAL TESTS: Shapiro-Wilk test, Student's t test, Mann-Whitney U test, linear regression analysis, one-way analysis of variance and intraclass correlation coefficient. SIGNIFICANCE: P value <0.05. RESULTS: Women had significantly higher T1ρ and mFI values than men (50.3 ± 2.0 msec vs. 47.7 ± 2.4 msec and 4.7 ± 1.0 msec vs. 4.3 ± 1.1 msec, respectively). Additionally, in males and females combined, there was a significant positive but weak correlation between T1ρ values and age (r = 0.27), while no correlation was observed between the mFI values and age (P = 0.969). DATA CONCLUSION: We report potential reference values for cardiac T1ρ by sex, age distribution, and slice location in a Chinese population. T1ρ was significantly correlated with age and sex, while mFI was only associated with sex. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.

10.
Insights Imaging ; 15(1): 24, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38270718

ABSTRACT

OBJECTIVES: To explore the characteristics of myocardial involvement in Wilson Disease (WD) patients by cardiac magnetic resonance (CMR). METHODS: We prospectively included WD patients and age- and sex-matched healthy population. We applied CMR to analyze cardiac function, strain, T1 maps, T2 maps, extracellular volume fraction (ECV) maps, and LGE images. Subgroup analyzes were performed for patients with WD with predominantly neurologic manifestations (WD-neuro +) or only hepatic manifestations (WD-neuro -). RESULTS: Forty-one WD patients (age 27.9 ± 8.0 years) and 40 healthy controls (age 25.4 ± 2.9 years) were included in this study. Compared to controls, the T1, T2, and ECV values were significantly increased in the WD group (T1 1085.1 ± 39.1 vs. 1046.5 ± 33.1 ms, T2 54.2 ± 3.3 ms vs. 51.5 ± 2.6 ms, ECV 31.8 ± 3.6% vs. 24.3 ± 3.7%) (all p < 0.001). LGE analysis revealed that LGE in WD patients was predominantly localized to the right ventricular insertion point and interventricular septum. Furthermore, the WD-neuro + group showed more severe myocardial damage compared to WD-neuro - group. The Unified Wilson Disease Rating Scale score was significantly correlated with ECV (Pearson's r = 0.64, p < 0.001). CONCLUSIONS: CMR could detect early myocardial involvement in WD patients without overt cardiac function dysfunction. Furthermore, characteristics of myocardial involvement were different between WD-neuro + and WD-neuro - , and myocardial involvement might be more severe in WD-neuro + patients. CRITICAL RELEVANCE STATEMENT: Cardiac magnetic resonance enables early detection of myocardial involvement in Wilson disease patients, contributing to the understanding of distinct myocardial characteristics in different subgroups and potentially aiding in the assessment of disease severity. KEY POINTS: • CMR detects WD myocardial involvement with increased T1, T2, ECV. • WD-neuro + patients show more severe myocardial damage and correlation with ECV. • Differences of myocardial characteristics exist between WD-neuro + and WD-neuro - patients.

11.
Plant J ; 118(2): 457-468, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38198228

ABSTRACT

Carotenoids perform a broad range of important functions in humans; therefore, carotenoid biofortification of maize (Zea mays L.), one of the most highly produced cereal crops worldwide, would have a global impact on human health. PLASTID TERMINAL OXIDASE (PTOX) genes play an important role in carotenoid metabolism; however, the possible function of PTOX in carotenoid biosynthesis in maize has not yet been explored. In this study, we characterized the maize PTOX locus by forward- and reverse-genetic analyses. While most higher plant species possess a single copy of the PTOX gene, maize carries two tandemly duplicated copies. Characterization of mutants revealed that disruption of either copy resulted in a carotenoid-deficient phenotype. We identified mutations in the PTOX genes as being causal of the classic maize mutant, albescent1. Remarkably, overexpression of ZmPTOX1 significantly improved the content of carotenoids, especially ß-carotene (provitamin A), which was increased by ~threefold, in maize kernels. Overall, our study shows that maize PTOX locus plays an important role in carotenoid biosynthesis in maize kernels and suggests that fine-tuning the expression of this gene could improve the nutritional value of cereal grains.


Subject(s)
Oxidoreductases , Zea mays , Humans , Oxidoreductases/genetics , Oxidoreductases/metabolism , Zea mays/genetics , Zea mays/metabolism , Carotenoids/metabolism , beta Carotene/metabolism , Edible Grain/genetics , Edible Grain/metabolism , Plastids/genetics , Plastids/metabolism
12.
J Periodontal Res ; 59(2): 299-310, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38014515

ABSTRACT

BACKGROUND: Numerous studies have proposed that periodontitis is a potential risk factor for Alzheimer's disease. However, the association between periodontitis and brain normal cognition in aged and elderly individuals (NCs) is unclear. Such a link could provide clues to Alzheimer's disease development and strategies for early prevention. OBJECTIVE: To explore the associations between periodontal condition and metrics of both brain structure and function among NCs with the help of multimodal magnetic resonance imaging (MRI). METHODS: High-resolution T1-weighted structural data, resting-state functional-MRI data, and measures of periodontal condition were collected from 40 NCs. Cortical volume, thickness, and area as well as regional homogeneity were calculated with the aid of DPABISurf software. Correlation analyses were then conducted between each imaging metric and periodontal index. RESULTS: Consistent negative correlations were observed between severity of periodontitis (mild, moderate, severe) and cortical volume, area, and thickness, not only in brain regions that took charge of primary function but also in brain regions associated with advanced cognition behavior. Among participants with mild attachment loss (AL) and a shallow periodontal pocket depth (PPD), periodontal index was positively correlated with most measures of brain structure and function, while among participants with severe AL and deep PPD, periodontal index was negatively correlated with measures of brain structure and function (all p < .005 for each hemisphere). CONCLUSIONS: Our results demonstrate that periodontitis is associated with widespread changes in brain structure and function among middle-aged and elderly adults without signs of cognitive decline, which might be a potential risk factor for brain damage.


Subject(s)
Alzheimer Disease , Periodontal Diseases , Periodontitis , Aged , Adult , Middle Aged , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Periodontitis/complications , Periodontitis/diagnostic imaging , Periodontitis/pathology , Cognition , Brain/diagnostic imaging , Brain/pathology , Periodontal Diseases/pathology
13.
Arthritis Care Res (Hoboken) ; 76(5): 616-626, 2024 May.
Article in English | MEDLINE | ID: mdl-38148547

ABSTRACT

OBJECTIVE: Juvenile localized scleroderma (jLS) is a chronic autoimmune disease commonly associated with poor outcomes, including contractures, hemiatrophy, uveitis, and seizures. Despite improvements in treatment, >25% of patients with jLS have functional impairment. To improve patient evaluation, our workgroup developed the Localized scleroderma Total Severity Scale (LoTSS), an overall disease severity measure. METHODS: LoTSS was developed as a weighted measure by a consensus process involving literature review, surveys, case vignettes, and multicriteria decision analysis. Feasibility was assessed in larger Childhood Arthritis and Rheumatology Research Alliance groups. Construct validity with physician assessment and inter-rater reliability was assessed using case vignettes. Additional evaluation was performed in a prospective patient cohort initiating treatment. RESULTS: LoTSS severity items were organized into modules that reflect jLS disease patterns, with modules for skin, extracutaneous, and craniofacial manifestations. Construct validity of LoTSS was supported by a strong positive correlation with the Physician Global Assessment (PGA) of severity and damage and weak positive correlation with PGA-Activity, as expected. LoTSS was responsive, with a small effect size identified. Moderate-to-excellent inter-rater reliability was demonstrated. LoTSS was able to discriminate between patient subsets, with higher scores identified in those with greater disease burden and functional limitation. CONCLUSION: We developed a new LS measure for assessing cutaneous and extracutaneous severity and have shown it to be reliable, valid, and responsive. LoTSS is the first measure that assesses and scores all the major extracutaneous manifestations in LS. Our findings suggest LoTSS could aid assessment and management of patients and facilitate outcome evaluation in treatment studies.


Subject(s)
Scleroderma, Localized , Scleroderma, Systemic , Severity of Illness Index , Humans , Scleroderma, Localized/diagnosis , Scleroderma, Localized/physiopathology , Scleroderma, Localized/complications , Female , Male , Child , Reproducibility of Results , Adolescent , Feasibility Studies , Prospective Studies , Consensus , Observer Variation
14.
J Phys Chem Lett ; 14(40): 9126-9135, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37793127

ABSTRACT

Based on the nonadiabatic molecular dynamics (NAMD) simulations and the first-principles calculations, we explore the overall water-splitting schemes and the photogenerated carrier dynamics for two configurations (CG and CyG) of the CrS3/GeSe van der Waals heterostructures. The photocatalytic direct Z-schemes and carrier migration pathways for hydrogen and oxygen evolution reactions (HER/OER) are constructed based on the electronic properties. The solar-to-hydrogen efficiency (η'STH values) of the schemes can reach 10.60% and 10.17% and further rise under tensile strain. The NAMD results demonstrate similar transfer times of the electron/hole for HER/OER and more rapid electron-hole recombination in CG enables it to be superior to CyG in photocatalytic performance. Moreover, the Gibbs free energy indicates that both the HERs and OERs turn to spontaneously proceed with CG and CyG at pH = 0-12.37 and pH = 2.55-11.01, respectively. These facts reveal that the CrS3/GeSe heterostructure is promising in photocatalytic overall water splitting.

15.
Sci Adv ; 9(36): eadi5060, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37682989

ABSTRACT

The 1-indenyl (C9H7•) radical, a prototype aromatic and resonantly stabilized free radical carrying a six- and a five-membered ring, has emerged as a fundamental molecular building block of nonplanar polycyclic aromatic hydrocarbons (PAHs) and carbonaceous nanostructures in deep space and combustion systems. However, the underlying formation mechanisms have remained elusive. Here, we reveal an unconventional low-temperature gas-phase formation of 1-indenyl via barrierless ring annulation involving reactions of atomic carbon [C(3P)] with styrene (C6H5C2H3) and propargyl (C3H3•) with phenyl (C6H5•). Macroscopic environments like molecular clouds act as natural low-temperature laboratories, where rapid molecular mass growth to 1-indenyl and subsequently complex PAHs involving vinyl side-chained aromatics and aryl radicals can occur. These reactions may account for the formation of PAHs and their derivatives in the interstellar medium and carbonaceous chondrites and could close the gap of timescales of their production and destruction in our carbonaceous universe.

16.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(4): 692-699, 2023 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-37666759

ABSTRACT

With inherent sparse spike-based coding and asynchronous event-driven computation, spiking neural network (SNN) is naturally suitable for processing event stream data of event cameras. In order to improve the feature extraction and classification performance of bio-inspired hierarchical SNNs, in this paper an event camera object recognition system based on biological synaptic plasticity is proposed. In our system input event streams were firstly segmented adaptively using spiking neuron potential to improve computational efficiency of the system. Multi-layer feature learning and classification are implemented by our bio-inspired hierarchical SNN with synaptic plasticity. After Gabor filter-based event-driven convolution layer which extracted primary visual features of event streams, we used a feature learning layer with unsupervised spiking timing dependent plasticity (STDP) rule to help the network extract frequent salient features, and a feature learning layer with reward-modulated STDP rule to help the network learn diagnostic features. The classification accuracies of the network proposed in this paper on the four benchmark event stream datasets were better than the existing bio-inspired hierarchical SNNs. Moreover, our method showed good classification ability for short event stream input data, and was robust to input event stream noise. The results show that our method can improve the feature extraction and classification performance of this kind of SNNs for event camera object recognition.


Subject(s)
Learning , Visual Perception , Action Potentials , Neural Networks, Computer , Neuronal Plasticity
17.
Sci Total Environ ; 904: 166955, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37704144

ABSTRACT

Cadmium (Cd) is a commonly found environmental pollutant and is known to damage multiple organs with kidneys being the most common one. N-methyl-d-aspartate receptor 1 (NMDAR1) is a ligand-gated ion channel that is highly permeable to calcium ion (Ca2+). Because Cd2+ and Ca2+ have structural and physicochemical similarities, whether and how Cd could interfere NMDAR1 function to cause renal epithelial cells dysfunction remains unknown. In this study, we investigated the role of NMDAR1 in Cd-induced renal damage and found that Cd treatment upregulated NMDAR1 expression and promoted epithelial-mesenchymal transition (EMT) in mouse kidneys in vivo and human proximal tubular epithelial HK-2 cells in vitro, which were accompanied with activation of the inositol-requiring enzyme 1 (IRE-1α) / spliced X box binding protein-1 (XBP-1s) pathway, an indicative of endoplasmic reticulum (ER) stress. Mechanistically, NMDAR1 upregulation by Cd promoted Ca2+ channel opening and Ca2+ influx, resulting in ER stress and subsequently EMT in HK-2 cells. Inhibition of NMDAR1 by pharmacological antagonist MK-801 significantly attenuated Cd-induced Ca2+ influx, ER stress, and EMT. Pretreatment with the IRE-1α/XBP-1s pathway inhibitor STF-083010 also restored the epithelial phenotype of Cd-treated HK-2 cells. Therefore, our findings suggest that NMDAR1 activation mediates Cd-induced EMT in proximal epithelial cells likely through the IRE-1α/XBP-1s pathway, supporting the idea that NMDAR1 could be a potential therapeutic target for Cd-induced renal damage.


Subject(s)
Cadmium , Epithelial-Mesenchymal Transition , Mice , Animals , Humans , Cadmium/toxicity , Cadmium/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Cell Line , Epithelial Cells
18.
Adv Sci (Weinh) ; 10(30): e2302141, 2023 10.
Article in English | MEDLINE | ID: mdl-37688340

ABSTRACT

Radiotherapy (RT), a widely used clinical treatment modality for cancer, uses high-energy irradiation for reactive oxygen species (ROS) production and DNA damage. However, its therapeutic effect is primarily limited owing to insufficient DNA damage to tumors and harmful effects on normal tissues. Herein, a core-shell structure of metal-semiconductors (Au@AgBiS2 nanoparticles) that can function as pyroptosis inducers to both kill cancer cells directly and trigger a robust anti-tumor immune against 4T1 triple-negative murine breast cancer and metastasis is rationally designed. Metal-semiconductor composites can enhance the generation of considerable ROS and simultaneously DNA damage for RT sensitization. Moreover, Au@AgBiS2 , a pyroptosis inducer, induces caspase-3 protein activation, gasdermin E cleavage, and the release of damage-associated molecular patterns. In vivo studies in BALB/c mice reveal that Au@AgBiS2 nanoparticles combined with RT exhibit remarkable antitumor immune activity, preventing tumor growth, and lung metastasis. Therefore, this core-shell structure is an alternative for designing highly effective radiosensitizers for radioimmunotherapy.


Subject(s)
Lung Neoplasms , Nanoparticles , Radiation-Sensitizing Agents , Mice , Animals , Reactive Oxygen Species/metabolism , Pyroptosis , Radioimmunotherapy , Nanoparticles/therapeutic use , Nanoparticles/chemistry , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/therapeutic use , Mice, Inbred BALB C
19.
BMC Cardiovasc Disord ; 23(1): 397, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37568080

ABSTRACT

BACKGROUND: Danon disease (DD) is an exceptionally uncommon X-linked dominant lysosomal glycogen storage disorder characterized by pronounced ventricular hypertrophy and cardiac insufficiency. The timely identification of cardiac impairment in individuals with DD holds significant clinical importance. CASE PRESENTATION: We present a case of Danon Disease in a three-generation pedigree from Anhui Province, China. Clinical features and laboratory data were collected and analyzed for a 16-year-old male proband (III-1) and two affected female family members (II-2 and II-3). The proband exhibited Wolf-Parkinson-White syndrome, hypertrophic cardiomyopathy, abnormal cognitive function, and muscle weakness. Gene sequencing confirmed a mutation (c.963G > A) in the LAMP-2 gene. CONCLUSION: Patients with DD may present both dilated and hypertrophic cardiomyopathy. Comprehensive myocardial tissue characterization by MRI plays a key role in the diagnosis of the disease.


Subject(s)
Cardiomyopathy, Hypertrophic , Glycogen Storage Disease Type IIb , Wolff-Parkinson-White Syndrome , Male , Female , Humans , Glycogen Storage Disease Type IIb/diagnosis , Glycogen Storage Disease Type IIb/genetics , Cardiomyopathy, Hypertrophic/diagnostic imaging , Cardiomyopathy, Hypertrophic/genetics , Mutation , Wolff-Parkinson-White Syndrome/diagnostic imaging , Wolff-Parkinson-White Syndrome/genetics , Magnetic Resonance Imaging
20.
Chem Commun (Camb) ; 59(73): 10972-10975, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37614187

ABSTRACT

A composite catalytic system using sulfur-vacancy-containing ZnIn2S4-Sv as a light-harvesting material and nickel-based polyoxometalate Na6K4[Ni4(H2O)2(PW9O34)2] (Ni4POM) as a co-catalyst was developed. The Ni4POM/ZnIn2S4-Sv composite gave a good hydrogen production rate of 337.5 µmol h-1, a value 11.8 times higher than that of ZnIn2S4-Sv. The direction of electron transfer, from ZnIn2S4-Sv to Ni4POM, was verified using surface photovoltage spectra.

SELECTION OF CITATIONS
SEARCH DETAIL
...