Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 322
Filter
1.
J Biophotonics ; : e202400200, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955356

ABSTRACT

Ovarian cancer is among the most common gynecological cancers and the eighth leading cause of cancer-related deaths among women worldwide. Surgery is among the most important options for cancer treatment. During surgery, a biopsy is generally required to screen for lesions; however, traditional case examinations are time consuming and laborious and require extensive experience and knowledge from pathologists. Therefore, this study proposes a simple, fast, and label-free ovarian cancer diagnosis method that combines second harmonic generation (SHG) imaging and deep learning. Unstained fresh human ovarian tissues were subjected to SHG imaging and accurately characterized using the Pyramid Vision Transformer V2 (PVTv2) model. The results showed that the SHG imaged collagen fibers could quantify ovarian cancer. In addition, the PVTv2 model could accurately differentiate the 3240 SHG images obtained from our imaging collection into benign, normal, and malignant images, with a final accuracy of 98.4%. These results demonstrate the great potential of SHG imaging techniques combined with deep learning models for diagnosing the diseased ovarian tissues.

2.
J Appl Psychol ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023992

ABSTRACT

Previous research on the consequences of ethical voice has largely focused on the performance or social relational consequences of ethical voice on multiple organizational stakeholders. The present research provides an important extension to the ethical voice literature by investigating the distinct intrapersonal and interpersonal moral self-regulatory processes that shape ethical voicers' own psychological experiences and their subsequent purposeful efforts to maintain a positive sense of moral self. On one hand, we argue that ethical voice heightens voicers' sense of responsibility over ethical matters at work (i.e., moral ownership), which motivates them to refrain from violating moral norms (i.e., disengaging from unethical behaviors). On the contrary, we argue that ethical voice generates psychological pressure for voicers as they become anxious about preserving their moral social image (i.e., moral reputation maintenance concerns), which motivates them to signal their moral character to others through symbolic acts (i.e., engaging in moral symbolization behaviors). Further, we expect gender differences in the moral consequences of ethical voice. Across two studies that varied in temporal focus (a multisource, time-lagged field study and a within-person weekly experience sampling study), we found support for most of our predictions. The results suggest that while potentially psychologically uplifting (for both men and women), ethical voice also generates psychological pressure for the voicer to preserve their favorable moral social image and thus motivates them (more so in the case of women voicers at the between-person level) to explicitly symbolize their moral character in the workplace. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

3.
Immunology ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866391

ABSTRACT

The cross-regulation of immunity and metabolism is currently a research hotspot in life sciences and immunology. Metabolic immunology plays an important role in cutting-edge fields such as metabolic regulatory mechanisms in immune cell development and function, and metabolic targets and immune-related disease pathways. Protein post-translational modification (PTM) is a key epigenetic mechanism that regulates various biological processes and highlights metabolite functions. Currently, more than 400 PTM types have been identified to affect the functions of several proteins. Among these, metabolic PTMs, particularly various newly identified histone or non-histone acylation modifications, can effectively regulate various functions, processes and diseases of the immune system, as well as immune-related diseases. Thus, drugs aimed at targeted acylation modification can have substantial therapeutic potential in regulating immunity, indicating a new direction for further clinical translational research. This review summarises the characteristics and functions of seven novel lysine acylation modifications, including succinylation, S-palmitoylation, lactylation, crotonylation, 2-hydroxyisobutyrylation, ß-hydroxybutyrylation and malonylation, and their association with immunity, thereby providing valuable references for the diagnosis and treatment of immune disorders associated with new acylation modifications.

4.
J Neurol ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913186

ABSTRACT

BACKGROUND: Although brain glymphatic dysfunction is a contributing factor to the cognitive deficits in Parkinson's disease (PD), its role in the longitudinal progression of cognitive dysfunction remains unknown. OBJECTIVE: To investigate the glymphatic function in PD with mild cognitive impairment (MCI) that progresses to dementia (PDD) and to determine its predictive value in identifying individuals at high risk for developing dementia. METHODS: We included 64 patients with PD meeting criteria for MCI and categorized them as either progressed to PDD (converters) (n = 29) or did not progress to PDD (nonconverters) (n = 35), depending on whether they developed dementia during follow-up. Meanwhile, 35 age- and gender-matched healthy controls (HC) were included. Bilateral diffusion-tensor imaging analysis along the perivascular space (DTI-ALPS) indices and enlarged perivascular spaces (EPVS) volume fraction in bilateral centrum semiovale, basal ganglia (BG), and midbrain were compared among the three groups. Correlations among the DTI-ALPS index and EPVS, as well as cognitive performance were analyzed. Additionally, we investigated the mediation effect of EPVS on DTI-ALPS and cognitive function. RESULTS: PDD converters had lower cognitive composites scores in the executive domains than did nonconverters (P < 0.001). Besides, PDD converters had a significantly lower DTI-ALPS index in the left hemisphere (P < 0.001) and a larger volume fraction of BG-PVS (P = 0.03) compared to HC and PDD nonconverters. Lower DTI-ALPS index and increased BG-PVS volume fraction were associated with worse performance in the global cognitive performance and executive function. However, there was no significant mediating effect. Receiver operating characteristic analysis revealed that the DTI-ALPS could effectively identify PDD converters with an area under the curve (AUC) of 0.850. CONCLUSION: The reduction of glymphatic activity, measured by the DTI-ALPS, could potentially be used as a non-invasive indicator in forecasting high risk of dementia conversion before the onset of dementia in PD patients.

5.
Food Chem Toxicol ; 191: 114826, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897284

ABSTRACT

OBJECTIVE: Aortic dissection (AD) is a prevalent and acute clinical catastrophe characterized by abrupt manifestation, swift progression, and elevated fatality rates. Despite smoking being a significant risk factor for AD, the precise pathological process remains elusive. This investigation endeavors to explore the mechanisms by which smoking accelerates AD through ferroptosis induction. METHODOLOGY: In this novel study, we detected considerable endothelial cell death by ferroptosis within the aortic inner lining of both human AD patients with a smoking history and murine AD models induced by ß-aminopropionitrile, angiotensin II, and nicotine. Utilizing bioinformatic approaches, we identified microRNAs regulating the expression of the ferroptosis inhibitor Glutathione peroxidase 4 (GPX4). Nicotine's impact on ferroptosis was further assessed in human umbilical vein endothelial cells (HUVECs) through modulation of miR-1909-5p. Additionally, the therapeutic potential of miR-1909-5p antagomir was evaluated in vivo in nicotine-exposed AD mice. FINDINGS: Our results indicate a predominance of ferroptosis over apoptosis, pyroptosis, and necroptosis in the aortas of AD patients who smoke. Nicotine exposure instigated ferroptosis in HUVECs, where the miR-1909-5p/GPX4 axis was implicated. Modulation of miR-1909-5p in these cells revealed its regulatory role over GPX4 levels and subsequent endothelial ferroptosis. In vivo, miR-1909-5p suppression reduced ferroptosis and mitigated AD progression in the murine model. CONCLUSIONS: Our data underscore the involvement of the miR-1909-5p/GPX4 axis in the pathogenesis of nicotine-induced endothelial ferroptosis in AD.

6.
Neurobiol Dis ; 199: 106578, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925316

ABSTRACT

OBJECTIVE: Our objective was to explore the patterns of resting-state network (RSN) connectivity alterations and investigate how the influences of individual-level network connections on cognition varied across clinical stages without assuming a constant relationship. METHODS: 108 PD patients with continuum of cognitive decline (PD-NC = 46, PD-MCI = 43, PDD = 19) and 34 healthy controls (HCs) underwent resting-state functional MRI and neuropsychological tests. Independent component analysis (ICA) and graph theory analyses (GTA) were employed to explore RSN connection changes. Additionally, stage-dependent differential impact of network communication on cognitive performance were examined using sparse varying coefficient modeling. RESULTS: Compared to HCs, the dorsal attention network (DAN) and dorsal sensorimotor network (dSMN) were central networks with decreased connections in PD-NC and PD-MCI stage, while the lateral visual network (LVN) emerged as a central network in patients with dementia. Additionally, connectivity of the cerebellum network (CBN) increased in the PD-NC and PD-MCI stages. GTA demonstrated decreased nodal metrics for DAN and dSMN, coupled with an increase for CBN. Moreover, the degree centrality (DC) values of DAN and dSMN exhibited a stage-dependent differential impact on cognitive performance across the continuum of cognitive decline. CONCLUSION: Our findings suggest that across the progression of cognitive impairment, the LVN gradually transitions into a core node with reduced connectivity, while the enhancement of connections in CBN diminishes. Furthermore, the non-linear relationship between the DC values of RSNs and cognitive decline indicates the potential for tailored interventions targeting specific stages.

7.
J Pharmacol Exp Ther ; 390(2): 240-249, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38902033

ABSTRACT

Sympathetic hyperinnervation is the leading cause of fatal ventricular arrhythmia (VA) after myocardial infarction (MI). Cardiac mast cells cause arrhythmias directly through degranulation. However, the role and mechanism of mast cell degranulation in sympathetic remodeling remain unknown. We investigated the role of oxytocin (OT) in stabilizing cardiac mast cells and improving sympathetic innervation in rats. MI was induced by coronary artery ligation. Western blotting, immunofluorescence, and toluidine staining of mast cells were performed to determine the expression and location of target protein. Mast cells accumulated significantly in peri-infarcted tissues and were present in a degranulated state. They expressed OT receptor (OTR), and OT infusion reduced the number of degranulated cardiac mast cells post-MI. Sympathetic hyperinnervation was attenuated as assessed by immunofluorescence for tyrosine hydroxylase (TH). Seven days post-MI, the arrhythmia score of programmed electrical stimulation was higher in vehicle-treated rats with MI than in rats treated with OT. An in vitro study showed that OT stabilized mast cells via the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway. Further in vivo studies on OTR-deficient mice showed worsening mast cell degranulation and worsening sympathetic innervation. OT pretreatment inhibited cardiac mast cell degranulation post-MI and prevented sympathetic hyperinnervation, along with mast cell stabilization via the PI3K/Akt pathway. SIGNIFICANCE STATEMENT: This is the first study to elucidate the role and mechanism of oxytocin (OT) in inflammatory-sympathetic communication mediated sympathetic hyperinnervation after myocardial infarction (MI), providing new approaches to prevent fatal arrhythmias.


Subject(s)
Cell Degranulation , Mast Cells , Myocardial Infarction , Oxytocin , Rats, Sprague-Dawley , Receptors, Oxytocin , Sympathetic Nervous System , Animals , Oxytocin/pharmacology , Oxytocin/metabolism , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Mast Cells/drug effects , Mast Cells/metabolism , Rats , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/metabolism , Male , Cell Degranulation/drug effects , Receptors, Oxytocin/metabolism , Receptors, Oxytocin/antagonists & inhibitors , Mice , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/etiology
8.
Aging (Albany NY) ; 16(10): 8965-8979, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38787373

ABSTRACT

BACKGROUND: Bone formation and homeostasis are greatly dependent on the osteogenic differentiation of human bone marrow stem cells (BMSCs). Therefore, revealing the mechanisms underlying osteogenic differentiation of BMSCs will provide new candidate therapeutic targets for osteoporosis. METHODS: The osteogenic differentiation of BMSCs was measured by analyzing ALP activity and expression levels of osteogenic markers. Cellular Fe and ROS levels and cell viability were applied to evaluate the ferroptosis of BMSCs. qRT-PCR, Western blotting, and co-immunoprecipitation assays were harnessed to study the molecular mechanism. RESULTS: The mRNA level of CRYAB was decreased in the plasma of osteoporosis patients. Overexpression of CRYAB increased the expression of osteogenic markers including OCN, OPN, RUNX2, and COLI, and also augmented the ALP activity in BMSCs, on the contrary, knockdown of CRYAB had opposite effects. IP-MS technology identified CRYAB-interacted proteins and further found that CRYAB interacted with ferritin heavy chain 1 (FTH1) and maintained the stability of FTH1 via the proteasome mechanism. Mechanically, we unraveled that CRYAB regulated FTH1 protein stability in a lactylation-dependent manner. Knockdown of FTH1 suppressed the osteogenic differentiation of BMSCs, and increased the cellular Fe and ROS levels, and eventually promoted ferroptosis. Rescue experiments revealed that CRYAB suppressed ferroptosis and promoted osteogenic differentiation of BMSCs via regulating FTH1. The mRNA level of FTH1 was decreased in the plasma of osteoporosis patients. CONCLUSIONS: Downregulation of CRYAB boosted FTH1 degradation and increased cellular Fe and ROS levels, and finally improved the ferroptosis and lessened the osteogenic differentiation of BMSCs.


Subject(s)
Cell Differentiation , Ferroptosis , Osteogenesis , Osteoporosis , Humans , Osteogenesis/drug effects , Osteoporosis/metabolism , Osteoporosis/pathology , Mesenchymal Stem Cells/metabolism , alpha-Crystallin B Chain/metabolism , alpha-Crystallin B Chain/genetics , Ferritins/metabolism , Protein Stability , Reactive Oxygen Species/metabolism , Cells, Cultured , Bone Marrow Cells/metabolism , Female , Oxidoreductases
9.
J Hazard Mater ; 472: 134510, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38704909

ABSTRACT

Nitrogen removal is essential for restoring eutrophic lakes. Microorganisms and aquatic plants in lakes are both crucial for removing excess nitrogen. However, microplastic (MP) pollution and the invasion of exotic aquatic plants have become increasingly serious in lake ecosystems due to human activity and plant-dominant traits. This field mesocosm study explored how the diversity of invasive submerged macrophytes affects denitrification (DNF), anammox (ANA), and dissimilatory nitrate reduction to ammonium (DNRA) in lake sediments with varying MPs. Results showed that invasive macrophytes suppressed DNF rates, but DNRA and ANA were less sensitive than DNF to the diversity of invasive species. Sediment MPs increased the biomass of invasive species more than native species, but did not affect microbial processes. The effects of MPs on nitrate dissimilatory reduction were process-specific. MPs increased DNF rates and the competitive advantage of DNF over DNRA by changing the sediment environment. The decoupling of DNF and ANA was also observed, with increased DNF rates and decreased ANA rates. The study findings suggested new insights into how the invasion of exotic submerged macrophytes affects the sediment nitrogen cycle complex environments.


Subject(s)
Geologic Sediments , Introduced Species , Lakes , Microplastics , Nitrates , Plants , Geologic Sediments/microbiology , Nitrates/metabolism , Plants/metabolism , Microplastics/metabolism , Lakes/microbiology , Water Pollutants, Chemical/metabolism , Oxidation-Reduction , Biodiversity , Denitrification
10.
Neural Regen Res ; 19(12): 2723-2734, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-38595290

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202412000-00028/figure1/v/2024-04-08T165401Z/r/image-tiff Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal cord injury. They can greatly affect nerve regeneration and functional recovery. However, there is still limited understanding of the peripheral immune inflammatory response in spinal cord injury. In this study, we obtained microRNA expression profiles from the peripheral blood of patients with spinal cord injury using high-throughput sequencing. We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus (GEO) database (GSE151371). We identified 54 differentially expressed microRNAs and 1656 differentially expressed genes using bioinformatics approaches. Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways, such as neutrophil extracellular trap formation pathway, T cell receptor signaling pathway, and nuclear factor-κB signal pathway, were abnormally activated or inhibited in spinal cord injury patient samples. We applied an integrated strategy that combines weighted gene co-expression network analysis, LASSO logistic regression, and SVM-RFE algorithm and identified three biomarkers associated with spinal cord injury: ANO10, BST1, and ZFP36L2. We verified the expression levels and diagnostic performance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve. Quantitative polymerase chain reaction results showed that ANO10 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients. We also constructed a small RNA-mRNA interaction network using Cytoscape. Additionally, we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal cord injury patients using the CIBERSORT tool. The proportions of naïve B cells, plasma cells, monocytes, and neutrophils were increased while the proportions of memory B cells, CD8+ T cells, resting natural killer cells, resting dendritic cells, and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects, and ANO10, BST1 and ZFP26L2 were closely related to the proportion of certain immune cell types. The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal cord injury and suggest that ANO10, BST1, and ZFP36L2 are potential biomarkers for spinal cord injury. The study was registered in the Chinese Clinical Trial Registry (registration No. ChiCTR2200066985, December 12, 2022).

11.
Neurobiol Dis ; 195: 106504, 2024 06 01.
Article in English | MEDLINE | ID: mdl-38615913

ABSTRACT

OBJECTIVE: Freezing of gait (FOG), a specific survival-threatening gait impairment, needs to be urgently explored in patients with multiple system atrophy (MSA), which is characterized by rapid progression and death within 10 years of symptom onset. The objective of this study was to explore the topological organisation of both low- and high-order functional networks in patients with MAS and FOG. METHOD: Low-order functional connectivity (LOFC) and high-order functional connectivity FC (HOFC) networks were calculated and further analysed using the graph theory approach in 24 patients with MSA without FOG, 20 patients with FOG, and 25 healthy controls. The relationship between brain activity and the severity of freezing symptoms was investigated in patients with FOG. RESULTS: Regarding global topological properties, patients with FOG exhibited alterations in the whole-brain network, dorsal attention network (DAN), frontoparietal network (FPN), and default network (DMN), compared with patients without FOG. At the node level, patients with FOG showed decreased nodal centralities in sensorimotor network (SMN), DAN, ventral attention network (VAN), FPN, limbic regions, hippocampal network and basal ganglia network (BG), and increased nodal centralities in the FPN, DMN, visual network (VIN) and, cerebellar network. The nodal centralities of the right inferior frontal sulcus, left lateral amygdala and left nucleus accumbens (NAC) were negatively correlated with the FOG severity. CONCLUSION: This study identified a disrupted topology of functional interactions at both low and high levels with extensive alterations in topological properties in MSA patients with FOG, especially those associated with damage to the FPN. These findings offer new insights into the dysfunctional mechanisms of complex networks and suggest potential neuroimaging biomarkers for FOG in patients with MSA.


Subject(s)
Gait Disorders, Neurologic , Magnetic Resonance Imaging , Multiple System Atrophy , Nerve Net , Humans , Multiple System Atrophy/physiopathology , Multiple System Atrophy/diagnostic imaging , Multiple System Atrophy/complications , Male , Female , Gait Disorders, Neurologic/physiopathology , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/diagnostic imaging , Middle Aged , Aged , Magnetic Resonance Imaging/methods , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Brain/physiopathology , Brain/diagnostic imaging
12.
J Adv Res ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38621622

ABSTRACT

INTRODUCTION: Necroptosis triggered by H2O2 is hypothesized to be a critical factor in the rupture of atherosclerotic plaques, which may precipitate acute cardiovascular events. Nevertheless, the specific regulatory molecules of this development remain unclear. We aims to elucidate a mechanism from the perspective of circular RNA. OBJECTIVES: There are few studies on circRNA in VSMCs necroptosis. The objective of our research is to shed light on the intricate roles that circHIPK3 plays in the process of necroptosis in VSMCs and the development of atherosclerotic plaques that are prone to rupture. Our study elucidates the specific molecular mechanisms by which circHIPK3 regulates necroptosis and atherosclerotic vulnerable plaque formation through targeted proteins. Identifying this mechanism at the cellular level offers a molecular framework for understanding plaque progression and stability regulation, as well as a potential biomarker for the prognosis of susceptible atherosclerotic plaques. METHODS: We collected clinical vascular tissue for HE staining and Masson staining to determine the presence and stability of plaques. Then, NCBI database was used to screen out circRNA with elevated expression level in plaque tissue, and the up-regulated circRNA, circHIPK3, was verified by qRT-PCR and FISH. Further, we synthesized circHIPK3's small interference sequence and overexpressed plasmid in vitro, and verified its regulation effect on necroptosis of VSMCs under physiological and pathological conditions by WB, qRT-PCR and PI staining. Through RNA pull down, mass spectrometry and RNA immunoprecipitation, DRP1 was identified as circHIPK3 binding protein and was positively regulated by circHIPK3. Meanwhile, on the basis of silencing of DRP1, the regulation of circHIPK3 on necroptosis is verified to be mediated by DRP1. Finally, we validated the regulation of circHIPK3 on vulnerable plaque formation in ApoE-/- mice. RESULTS: We investigated that circHIPK3 was highly expressed in vulnerable plaques, and the increase in expression level promoted H2O2 induced necroptosis of VSMCs. CircHIPK3 targeted the protein DRP1, leading to an elevation in mitochondrial division rate, resulting in increased reactive oxygen species and impaired mitochondrial function, ultimately leading to necroptosis of VSMCs and vulnerable plaque formation. CONCLUSION: CircHIPK3 interact with DRP1 involve in H2O2 induced Mitochondrial damage and necroptosis of VSMCs, and Silencing circHIPK3 in vivo can reduce atherosclerotic vulnerable plaque formation. Our research findings may have applications in providing diagnostic biomarkers for vulnerable plaques.

13.
Sci Data ; 11(1): 396, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637640

ABSTRACT

Stag beetles (Coleoptera: Lucanidae) represent a significant saproxylic assemblage in forest ecosystems and are noted for their enlarged mandibles and male polymorphism. Despite their relevance as ideal models for the study of exaggerated mandibles that aid in attracting mates, the regulatory mechanisms associated with these traits remain understudied, and restricted by the lack of high-quality reference genomes for stag beetles. To address this limitation, we successfully assembled the first chromosome-level genome of a representative species Dorcus hopei. The genome was 496.58 Mb in length, with a scaffold N50 size of 54.61 Mb, BUSCO values of 99.8%, and 96.8% of scaffolds anchored to nine pairs of chromosomes. We identified 285.27 Mb (57.45%) of repeat sequences and annotated 11,231 protein-coding genes. This genome will be a valuable resource for further understanding the evolution and ecology of stag beetles, and provides a basis for studying the mechanisms of exaggerated mandibles through comparative analysis.


Subject(s)
Coleoptera , Genome, Insect , Animals , Male , Coleoptera/genetics , Forests , Phylogeny , Polymorphism, Genetic , Chromosomes, Insect
14.
Cell Death Discov ; 10(1): 186, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649363

ABSTRACT

Neuroblastoma (NB) is a common childhood tumor with a high incidence worldwide. The regulatory role of RNA N6-methyladenosine (m6A) in gene expression has attracted significant attention, and the impact of methyltransferase-like 14 (METTL14) on tumor progression has been extensively studied in various types of cancer. However, the specific influence of METTL14 on NB remains unexplored. Using data from the Target database, our study revealed significant upregulation of METTL14 expression in high-risk NB patients, with strong correlation with poor prognosis. Furthermore, we identified ETS1 and YY1 as upstream regulators that control the expression of METTL14. In vitro experiments involving the knockdown of METTL14 in NB cells demonstrated significant inhibition of cell proliferation, migration, and invasion. In addition, suppressing METTL14 inhibited NB tumorigenesis in nude mouse models. Through MeRIP-seq and RNA-seq analyses, we further discovered that YWHAH is a downstream target gene of METTL14. Mechanistically, we observed that methylated YWHAH transcripts, particularly those in the 5' UTR, were specifically recognized by the m6A "reader" protein YTHDF1, leading to the degradation of YWHAH mRNA. Moreover, the downregulation of YWHAH expression activated the PI3K/AKT signaling pathway, promoting NB cell activity. Overall, our study provides valuable insights into the oncogenic effects of METTL14 in NB cells, highlighting its role in inhibiting YWHAH expression through an m6A-YTHDF1-dependent mechanism. These findings also suggest the potential utility of a biomarker panel for prognostic prediction in NB patients.

15.
J Food Sci ; 89(5): 3078-3093, 2024 May.
Article in English | MEDLINE | ID: mdl-38605580

ABSTRACT

Human milk contains a variety of microorganisms that exert benefit for human health. In the current study, we isolated a novel Lactobacillus gasseri strain named Lactobacillus gasseri (L. gasseri) SHMB 0001 from human milk and aimed to evaluate the probiotic characteristics and protective effects on murine colitis of the strain. The results showed that L. gasseri SHMB 0001 possessed promising potential probiotic characteristics, including good tolerance against artificial gastric and intestinal fluids, adhesion to Caco-2 cells, susceptibility to antibiotic, no hemolytic activity, and without signs of toxicity or infection in mice. Administration of L. gasseri SHMB 0001 (1 × 108 CFU per gram of mouse weight per day) reduced weight loss, the disease activity index, and colon shortening in mice during murine colitis conditions. Histopathological analysis revealed that L. gasseri SHMB 0001 treatment attenuated epithelial damage and inflammatory infiltration in the colon. L. gasseri SHMB 0001 treatment increased the expression of colonic occludin and claudin-1 while decreasing the expression of pro-inflammatory cytokine genes. L. gasseri SHMB 0001 modified the composition and structure of the gut microbiota community and partially recovered the Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways altered by dextran sulfate sodium (DSS). Overall, our results indicated that the human breast milk-derived L. gasseri SHMB 0001 exhibited promising probiotic properties and ameliorative effect on DSS-induced colitis in mice. L. gasseri SHMB 0001 may be applied as a promising probiotic against intestinal inflammation in the future. PRACTICAL APPLICATION: L. gasseri SHMB 0001 isolated from human breast milk showed good tolerance to gastrointestinal environment, safety, and protective effect against DSS-induced mice colitis via enforcing gut barrier, downregulating pro-inflammatory cytokines, and modulating gut microbiota. L. gasseri SHMB 0001 may be a promising probiotic candidate for the treatment of intestinal inflammation.


Subject(s)
Colitis , Dextran Sulfate , Gastrointestinal Microbiome , Lactobacillus gasseri , Milk, Human , Probiotics , Probiotics/pharmacology , Animals , Humans , Mice , Colitis/chemically induced , Colitis/therapy , Colitis/microbiology , Dextran Sulfate/adverse effects , Gastrointestinal Microbiome/drug effects , Caco-2 Cells , Female , Colon/microbiology , Colon/pathology , Colon/metabolism , Cytokines/metabolism , Disease Models, Animal
16.
Cancer Lett ; 591: 216882, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38636893

ABSTRACT

Super enhancers (SEs) are genomic regions comprising multiple closely spaced enhancers, typically occupied by a high density of cell-type-specific master transcription factors (TFs) and frequently enriched in key oncogenes in various tumors, including neuroblastoma (NB), one of the most prevalent malignant solid tumors in children originating from the neural crest. Cyclin-dependent kinase 5 regulatory subunit-associated protein 3 (CDK5RAP3) is a newly identified super-enhancer-driven gene regulated by master TFs in NB; however, its function in NB remains unclear. Through an integrated study of publicly available datasets and microarrays, we observed a significantly elevated CDK5RAP3 expression level in NB, associated with poor patient prognosis. Further research demonstrated that CDK5RAP3 promotes the growth of NB cells, both in vitro and in vivo. Mechanistically, defective CDK5RAP3 interfered with the UFMylation system, thereby triggering endoplasmic reticulum (ER) phagy. Additionally, we provide evidence that CDK5RAP3 maintains the stability of MEIS2, a master TF in NB, and in turn, contributes to the high expression of CDK5RAP3. Overall, our findings shed light on the molecular mechanisms by which CDK5RAP3 promotes tumor progression and suggest that its inhibition may represent a novel therapeutic strategy for NB.


Subject(s)
Cell Cycle Proteins , Gene Expression Regulation, Neoplastic , Neuroblastoma , Humans , Neuroblastoma/genetics , Neuroblastoma/pathology , Neuroblastoma/metabolism , Animals , Cell Line, Tumor , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Endoplasmic Reticulum/metabolism , Enhancer Elements, Genetic , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Mice , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Proliferation , Mice, Nude , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Prognosis
17.
J Hazard Mater ; 469: 134032, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38492389

ABSTRACT

Plant invasions and microplastics (MPs) have significantly altered the structure and function of aquatic habitats worldwide, resulting in severe damage to aquatic ecosystem health. However, the effects of MPs on plant invasion and the underlying mechanisms remain largely unknown. In this study, we conducted mesocosm experiments over a 90-day period to assess the effects of polystyrene microplastics on the invasion of exotic submerged macrophytes, sediment physicochemical properties, and sediment bacterial communities. Our results showed that PS-MPs significantly promoted the performance of functional traits and the invasive ability of exotic submerged macrophytes, while native plants remained unaffected. Moreover, PS-MPs addition significantly decreased sediment pH while increasing sediment carbon and nitrogen content. Additionally, MPs increased the diversity of sediment bacterial community but inhibited its structural stability, thereby impacting sediment bacterial multifunctionality to varying degrees. Importantly, we identified sediment properties, bacterial composition, and bacterial multifunctionality as key mediators that greatly enhance the invasion of exotic submerged macrophytes. These findings provide compelling evidence that the increase in MPs may exacerbate the invasion risk of exotic submerged macrophytes through multiple pathways. Overall, this study enhances our understanding of the ecological impacts of MPs on aquatic plant invasion and the health of aquatic ecosystems.


Subject(s)
Microbiota , Microplastics , Microplastics/toxicity , Ecosystem , Plastics , Polystyrenes , Bacteria
18.
World J Gastrointest Oncol ; 16(2): 414-435, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38425399

ABSTRACT

BACKGROUND: Aberrant methylation is common during the initiation and progression of colorectal cancer (CRC), and detecting these changes that occur during early adenoma (ADE) formation and CRC progression has clinical value. AIM: To identify potential DNA methylation markers specific to ADE and CRC. METHODS: Here, we performed SeqCap targeted bisulfite sequencing and RNA-seq analysis of colorectal ADE and CRC samples to profile the epigenomic-transcriptomic landscape. RESULTS: Comparing 22 CRC and 25 ADE samples, global methylation was higher in the former, but both showed similar methylation patterns regarding differentially methylated gene positions, chromatin signatures, and repeated elements. High-grade CRC tended to exhibit elevated methylation levels in gene promoter regions compared to those in low-grade CRC. Combined with RNA-seq gene expression data, we identified 14 methylation-regulated differentially expressed genes, of which only AGTR1 and NECAB1 methylation had prognostic significance. CONCLUSION: Our results suggest that genome-wide alterations in DNA methylation occur during the early stages of CRC and demonstrate the methylation signatures associated with colorectal ADEs and CRC, suggesting prognostic biomarkers for CRC.

19.
Carcinogenesis ; 45(6): 424-435, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38302114

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is a highly aggressive hematologic malignancy originating from T progenitor cells. It accounts for 15% of childhood and 25% of adult ALL cases. GNE-987 is a novel chimeric molecule developed using proteolysis-targeting chimeras (PROTAC) technology for targeted therapy. It consists of a potent inhibitor of the bromodomain and extraterminal (BET) protein, as well as the E3 ubiquitin ligase Von Hippel-Lindau (VHL), which enables the effective induction of proteasomal degradation of BRD4. Although GNE-987 has shown persistent inhibition of cell proliferation and apoptosis, its specific antitumor activity in T-ALL remains unclear. In this study, we aimed to investigate the molecular mechanisms underlying the antitumor effect of GNE-987 in T-ALL. To achieve this, we employed technologies including RNA sequencing (RNA-seq), chromatin immunoprecipitation sequencing (ChIP-seq) and CUT&Tag. The degradation of BET proteins, specifically BRD4, by GNE-987 has a profound impact on T-ALL cell. In in vivo experiments, sh-BRD4 lentivirus reduced T-ALL cell proliferation and invasion, extending the survival time of mice. The RNA-seq and CUT&Tag analyses provided further insights into the mechanism of action of GNE-987 in T-ALL. These analyses revealed that GNE-987 possesses the ability to suppress the expression of various genes associated with super-enhancers (SEs), including lymphoblastic leukemia 1 (LCK). By targeting these SE-associated genes, GNE-987 effectively inhibits the progression of T-ALL. Importantly, SE-related oncogenes like LCK were identified as critical targets of GNE-987. Based on these findings, GNE-987 holds promise as a potential novel candidate drug for the treatment of T-ALL.


Subject(s)
Apoptosis , Cell Proliferation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Transcription Factors , Xenograft Model Antitumor Assays , Humans , Animals , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Cell Proliferation/drug effects , Apoptosis/drug effects , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Enhancer Elements, Genetic , Bromodomain Containing Proteins
20.
Cancer Cell Int ; 24(1): 81, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38383388

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) is a malignancy of the hematopoietic system, and childhood AML accounts for about 20% of pediatric leukemia. ANP32B, an important nuclear protein associated with proliferation, has been found to regulate hematopoiesis and CML leukemogenesis by inhibiting p53 activity. However, recent study suggests that ANP32B exerts a suppressive effect on B-cell acute lymphoblastic leukemia (ALL) in mice by activating PU.1. Nevertheless, the precise underlying mechanism of ANP32B in AML remains elusive. RESULTS: Super enhancer related gene ANP32B was significantly upregulated in AML patients. The expression of ANP32B exhibited a negative correlation with overall survival. Knocking down ANP32B suppressed the proliferation of AML cell lines MV4-11 and Kasumi-1, along with downregulation of C-MYC expression. Additionally, it led to a significant decrease in H3K27ac levels in AML cell lines. In vivo experiments further demonstrated that ANP32B knockdown effectively inhibited tumor growth. CONCLUSIONS: ANP32B plays a significant role in promoting tumor proliferation in AML. The downregulation of ANP32B induces cell cycle arrest and promotes apoptosis in AML cell lines. Mechanistic analysis suggests that ANP32B may epigenetically regulate the expression of MYC through histone H3K27 acetylation. ANP32B could serve as a prognostic biomarker and potential therapeutic target for AML patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...