Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 501
Filter
1.
Plant Physiol Biochem ; 213: 108798, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38852238

ABSTRACT

Terpene synthases (TPSs) are enzymes responsible for catalyzing the production of diverse terpenes, the largest class of secondary metabolites in plants. Here, we identified 107 TPS gene loci encompassing 92 full-length TPS genes in upland cotton (Gossypium hirsutum L.). Phylogenetic analysis showed they were divided into six subfamilies. Segmental duplication and tandem duplication events contributed greatly to the expansion of TPS gene family, particularly the TPS-a and TPS-b subfamilies. Expression profile analysis screened out that GhTPSs may mediate the interaction between cotton and Verticillium dahliae. Three-dimensional structures and subcellular localizations of the two selected GhTPSs, GhTPS6 and GhTPS47, which belong to the TPS-a subfamily, demonstrated similarity in protein structures and nucleus and cytoplasm localization. Virus-induced gene silencing (VIGS) of the two GhTPSs yielded plants characterized by increased wilting and chlorosis, more severe vascular browning, and higher disease index than control plants. Additionally, knockdown of GhTPS6 and GhTPS47 led to the down-regulation of cotton terpene synthesis following V. dahliae infection, indicating that these two genes may positively regulate resistance to V. dahliae through the modulation of disease-resistant terpene biosynthesis. Overall, our study represents a comprehensive analysis of the G. hirsutum TPS gene family, revealing their potential roles in defense responses against Verticillium wilt.

2.
Sci Total Environ ; 931: 172949, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38703848

ABSTRACT

Biodegradable plastics (bio-plastics) are often viewed as viable option for mitigating plastic pollution. Nevertheless, the information regarding the potential risks of microplastics (MPs) released from bio-plastics in soil, particularly in flooded soils, is lacking. Here, our objective was to investigate the effect of polylactic acid MPs (PLA-MPs) and polyethylene MPs (PE-MPs) on soil properties, microbial community and plant growth under both non-flooded and flooded conditions. Our results demonstrated that PLA-MPs dramatically increased soil labile carbon (C) content and altered its composition and chemodiversity. The enrichment of labile C stimulated microbial N immobilization, resulting in a depletion of soil mineral nitrogen (N). This specialized environment created by PLA-MPs further filtered out specific microbial species, resulting in a low diversity and simplified microbial community. PLA-MPs caused an increase in denitrifiers (Noviherbaspirillum and Clostridium sensu stricto) and a decrease in nitrifiers (Nitrospira, MND1, and Ellin6067), potentially exacerbating the mineral N deficiency. The mineral N deficit caused by PLA-MPs inhibited wheatgrass growth. Conversely, PE-MPs had less effect on soil ecosystems, including soil properties, microbial community and wheatgrass growth. Overall, our study emphasizes that PLA-MPs cause more adverse effect on the ecosystem than PE-MPs in the short term, and that flooded conditions exacerbate and prolong these adverse effects. These results offer valuable insights for evaluating the potential threats of bio-MPs in both uplands and wetlands.


Subject(s)
Floods , Microbiota , Microplastics , Soil Microbiology , Soil Pollutants , Soil , Microplastics/toxicity , Soil/chemistry , Microbiota/drug effects , Biodegradable Plastics , Plant Development , Biodegradation, Environmental , Polyesters , Polyethylene
3.
ACS Nano ; 18(20): 13084-13097, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38727520

ABSTRACT

In the current work, the foliar application of selenium nanomaterials (Se0 NMs) suppressed sheath blight in rice (Oryza sativa). The beneficial effects were nanoscale specific and concentration dependent. Specifically, foliar amendment of 5 mg/L Se0 NMs decreased the disease severity by 68.8% in Rhizoctonia solani-infected rice; this level of control was 1.57- and 2.20-fold greater than that of the Se ions with equivalent Se mass and a commercially available pesticide (Thifluzamide). Mechanistically, (1) the controlled release ability of Se0 NMs enabled a wider safe concentration range and greater bioavailability to Se0 NMs, and (2) transcriptomic and metabolomic analyses demonstrated that Se0 NMs simultaneously promoted the salicylic acid- and jasmonic-acid-dependent acquired disease resistance pathways, antioxidative system, and flavonoid biosynthesis. Additionally, Se0 NMs improved rice yield by 31.1%, increased the nutritional quality by 6.4-7.2%, enhanced organic Se content by 44.8%, and decreased arsenic and cadmium contents by 38.7 and 42.1%, respectively, in grains as compared with infected controls. Human simulated gastrointestinal tract model results showed that the application of Se0 NMs enhanced the bioaccessibility of Se in grains by 22.0% and decreased the bioaccessibility of As and Cd in grains by 20.3 and 13.4%, respectively. These findings demonstrate that Se0 NMs can serve as an effective and sustainable strategy to increase food quality and security.


Subject(s)
Nanostructures , Oryza , Plant Diseases , Rhizoctonia , Selenium , Oryza/microbiology , Oryza/metabolism , Oryza/drug effects , Selenium/pharmacology , Selenium/chemistry , Plant Diseases/microbiology , Plant Diseases/prevention & control , Humans , Rhizoctonia/drug effects , Nanostructures/chemistry , Nutritive Value , Disease Resistance/drug effects
4.
Anal Chem ; 96(21): 8830-8836, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38693713

ABSTRACT

Microbial surface transmission has aroused great attention since the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Developing a simple in situ detection method for viruses on solid surfaces is of great significance for timely public health surveillance. Taking advantage of the natural structure of SARS-CoV-2, we reported the assembly of Au@AgNPs on the surface of a single virus by the specific aptamer-spike protein interaction. Multiple hotspots can be created between the neighboring Au@AgNPs for the highly sensitive surface-enhanced Raman scattering (SERS) detection of SARS-CoV-2. Using two different aptamers labeled with Cy3 and Au@AgNPs, in situ SERS detection of pseudotyped SARS-CoV-2 (PSV) on packaging surfaces was achieved within 20 min, with a detection limit of 5.26 TCID50/mL. For the blind testing of 20 PSV-contaminated packaging samples, this SERS aptasensor had a sensitivity of 100% and an accuracy of 100%. This assay has been successfully applied to in situ detection of PSV on the surfaces of different packaging materials, suggesting its potential applicability.


Subject(s)
Aptamers, Nucleotide , COVID-19 , Gold , Limit of Detection , Metal Nanoparticles , SARS-CoV-2 , Silver , Spectrum Analysis, Raman , SARS-CoV-2/isolation & purification , Spectrum Analysis, Raman/methods , Gold/chemistry , Metal Nanoparticles/chemistry , COVID-19/diagnosis , COVID-19/virology , Silver/chemistry , Aptamers, Nucleotide/chemistry , Humans , Spike Glycoprotein, Coronavirus/analysis , Surface Properties
5.
Int J Antimicrob Agents ; : 107199, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38795931

ABSTRACT

OBJECTIVES: To establish a population pharmacokinetics (PopPK) model of nirmatrelvir in Chinese COVID-19 patients and provide reference for refining the dosing strategy of nirmatrelvir in patients confirmed to be infected with SARS-CoV-2. METHODS: A total of 80 blood samples were obtained from 35 mild moderate COVID-19 patients who were orally administered nirmatrelvir/ritonavir tablets. The PopPK model of nirmatrelvir was developed using a nonlinear mixed effects modeling approach. The stability and prediction of the final model were assessed through a combination of goodness-of-fit and bootstrap method. The exposure of nirmatrelvir across various clinical scenarios was simulated using Monte Carlo simulations. RESULTS: The pharmacokinetics of nirmatrelvir were well characterized by a one-compartment model with first-order absorption, and with creatinine clearance (Ccr) as the significant covariate. Typical population parameter estimates of apparent clearance and distribution volume for a patient with a Ccr of 95.5 mL·min-1were 3.45 L·h-1 and 48.71 L, respectively. The bootstrap and visual predictive check procedures demonstrated satisfactory predictive performance and robustness of the final model. CONCLUSION: The final model was capable of offering an early prediction of drug concentration ranges for different nirmatrelvir dosing regimens and optimize the dose regimen of nirmatrelvir in individuals with confirmed SARS-CoV-2 infection.

6.
Water Res ; 259: 121831, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38810346

ABSTRACT

Heteroaggregation between nanoplastics (NPs) and titanium dioxide nanoparticles (TiO2NPs) determines their environmental fates and ecological risks in aquatic environments. However, the co-photoaging scenario of NPs and TiO2NPs, interaction mechanisms of TiO2NPs with (aged) NPs, as well as the dependence of their heteroaggregation on TiO2NPs facets remain elusive. We found the critical coagulation concentration (CCC) of polystyrene nanoplastics (PSNPs) with coexisting RTiO2NPs was 1.9 - 2.2 times larger than that with coexisting ATiO2NPs, suggesting a better suspension stability of PSNPs+RTiO2NPs. In addition, CCC of TiO2NPs with coexisting photoaged PSNPs (APSNPs) was larger 1.7 - 2.2 times than that with PSNPs coexisting, indicating photoaging inhibited their heteroaggregation due to increasing electrostatic repulsion derived from increased negative charges on APSNPs and the polymer-derived dissolved organic carbon. Coexisted TiO2NPs promoted oxidation of PSNPs with the action of HO· and O2·- under UV light, leading to inhibited heteroaggregation. Moreover, Van der Waals and Lewis-acid interaction dominated the formation of primary heteroaggregates of PSNPs-TiO2NPs (ESE = ‒2.20 ∼ ‒2.78 eV) and APSNPs-TiO2NPs (ESE = ‒3.29 ∼ ‒3.67 eV), respectively. The findings provide a mechanistic insight into the environmental process of NPs and TiO2NPs, and are significant for better understanding their environmental risks in aquatic environments.

7.
Research (Wash D C) ; 7: 0383, 2024.
Article in English | MEDLINE | ID: mdl-38779489

ABSTRACT

The conductive polymer poly-3,4-ethylenedioxythiophene (PEDOT), recognized for its superior electrical conductivity and biocompatibility, has become an attractive material for developing wearable technologies and bioelectronics. Nevertheless, the complexities associated with PEDOT's patterning synthesis on diverse substrates persist despite recent technological progress. In this study, we introduce a novel deep eutectic solvent (DES)-induced vapor phase polymerization technique, facilitating nonrestrictive patterning polymerization of PEDOT across diverse substrates. By controlling the quantity of DES adsorbed per unit area on the substrates, PEDOT can be effectively patternized on cellulose, wood, plastic, glass, and even hydrogels. The resultant patterned PEDOT exhibits numerous benefits, such as an impressive electronic conductivity of 282 S·m-1, a high specific surface area of 5.29 m2·g-1, and an extensive electrochemical stability range from -1.4 to 2.4 V in a phosphate-buffered saline. To underscore the practicality and diverse applications of this DES-induced approach, we present multiple examples emphasizing its integration into self-supporting flexible electrodes, neuroelectrode interfaces, and precision circuit repair methodologies.

8.
Genes (Basel) ; 15(5)2024 04 26.
Article in English | MEDLINE | ID: mdl-38790184

ABSTRACT

The ionic toxicity induced by salinization has adverse effects on the growth and development of crops. However, researches on ionic toxicity and salt tolerance in plants have focused primarily on cations such as sodium ions (Na+), with very limited studies on chloride ions (Cl-). Here, we cloned the homologous genes of Arabidopsis thaliana AtCLCc, GhCLCc-1A/D, from upland cotton (Gossypium hirsutum), which were significantly induced by NaCl or KCl treatments. Subcellular localization showed that GhCLCc-1A/D were both localized to the tonoplast. Complementation of Arabidopsis atclcc mutant with GhCLCc-1 rescued its salt-sensitive phenotype. In addition, the silencing of the GhCLCc-1 gene led to an increased accumulation of Cl- in the roots, stems, and leaves of cotton seedlings under salt treatments, resulting in compromised salt tolerance. And ectopic expression of the GhCLCc-1 gene in Arabidopsis reduced the accumulation of Cl- in transgenic lines under salt treatments, thereby enhancing salt tolerance. These findings elucidate that GhCLCc-1 positively regulates salt tolerance by modulating Cl- accumulation and could be a potential target gene for improving salt tolerance in plants.


Subject(s)
Arabidopsis , Chloride Channels , Chlorides , Gene Expression Regulation, Plant , Gossypium , Plant Proteins , Plants, Genetically Modified , Salt Tolerance , Gossypium/genetics , Gossypium/metabolism , Gossypium/growth & development , Salt Tolerance/genetics , Chloride Channels/genetics , Chloride Channels/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Chlorides/metabolism , Plants, Genetically Modified/genetics , Sodium Chloride/metabolism
9.
Res Nurs Health ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722081

ABSTRACT

Disease recurrence perception plays a key role in disease management and subsequent disease recurrence prevention. However, there are no specific tools for assessing disease recurrence perception in patients with inflammatory bowel disease (IBD) characterized by alternating remission and recurrence. To develop and validate an instrument for measuring disease recurrence perception of patients with IBD, the study was conducted in two steps: (1) instrument development and (2) psychometric tests. A total of 623 patients with IBD participated in the study. The common sense model of illness self-regulation (CSM) was used as a framework for instrument development. The administered version contained 48 items intended to be relevant to at least one of the six dimensions of the model. Based on preliminary analyzes, 12 items were deleted leaving 36 items for more detailed psychometric and factor analyzes. The Cronbach's alpha coefficient of the total 36-item instrument was 0.915. The content validity indexes at item and scale levels were satisfactory. The test-retest reliability of the total instrument was 0.870. Exploratory principal components analysis (n = 278) was used to identify six components congruent with intended CSM constructs that accounted for 62.6% of total item variance. Confirmatory factor analysis (n = 345) found acceptable fit for the six factor measurement model (χ2/df = 1.999, GFI = 0.846, NFI = 0.855, IFI = 0.922, TLI = 0.910, CFI = 0.921, RMSEA = 0.054). Overall, the DRPSIBD demonstrated satisfactory reliability and validity to warrant further development as a measure of disease recurrence perception of patients with IBD.

10.
Future Microbiol ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38629898

ABSTRACT

Objective: This study investigates the application of metagenomic next-generation sequencing (mNGS) in the diagnosis of neurobrucellosis (NB). Methods: We retrospectively analyzed patients diagnosed with NB who underwent cerebrospinal fluid (CSF) mNGS testing in Xijing Hospital from 2015 to 2021. Results: Among the 20 individuals included in the study, the serum rose bengal test was positive in 11 out of 16 cases, serum agglutination test was positive in 13 out of 16 cases, CSF culture was positive in 6 out of 11 cases, and CSF mNGS tests were positive in 18 out of 20 cases. Conclusion: CSF mNGS demonstrates superior sensitivity; therefore, it is recommended to collect CSF for mNGS testing prior to antibiotic therapy when NB is suspected.


Neurobrucellosis (NB) is a disease of the nervous system caused by a type of bacteria called Brucella. It is rare, serious and manifests inconsistently, making it hard to diagnose. Metagenomic next-generation sequencing (mNGS) is a new way to detect disease-causing bacteria by looking at their genetic material. mNGS is fast, accurate and covers a wide range of disease-causing bacteria. We looked back at patients diagnosed with NB at Xijing Hospital between 2015 and 2021 and tested samples of the fluid surrounding the brain and the spinal cord, called cerebrospinal fluid (CSF), by mNGS. A total of 20 patients were included in the study. Compared with the traditional methods, mNGS of CSF samples showed advantages in diagnosing NB. However, antibiotics may affect the results.

11.
J Hazard Mater ; 470: 134192, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38569346

ABSTRACT

Nanoplastics (NPs) inevitably interact with iron minerals (IMs) after being released into aquatic environments, changing their transport and fate. In this study, batch heteroaggregation kinetics of four types of NPs, i.e., polymethyl methacrylate (PMMA), polystyrene (PS-Bare), amino-polystyrene (PS-NH2), and carboxyl-polystyrene (PS-COOH), with two different IMs (hematite and magnetite) were conducted. We found that the heteroaggregation of NPs and IMs and the associated interfacial interaction mechanisms are both NPs-dependent and IMs-dependent. Specifically, the NPs had stronger heteroaggregation with hematite than magnetite; the heteroaggregation order of two IMs with NPs was PMMA > PS-NH2 > PS-Bare > PS-COOH. Moreover, hydrogen bond, complexation, hydrophobic, cation-π, and electrostatic interaction were involved in the interfacial reaction between NPs and hematite, and electrons were transferred from the NPs to the hematite, causing the reduction of Fe3+ into Fe2+. Furthermore, we first revealed that both pre-homoaggregation of NPs and IMs could affect their subsequent heteroaggregation, and the homoaggregates of IMs could be interrupted by PMMA or PS-COOH NPs introduction. Therefore, the emerging NPs pollution is likely to generate an ecological effect in terms of elemental cycles such as iron cycle. This work provides new insights into assessing the environmental transfer and ecological effects of NPs in aquatic environments.

12.
J Hazard Mater ; 471: 134426, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38688220

ABSTRACT

Nanoplastics (NPs) aggregation determines their bioavailability and risks in natural aquatic environments, which is driven by multiple environmental and polymer factors. The back propagation artificial neural network (BP-ANN) model in machine learning (R2 = 0.814) can fit the complex NPs aggregation, and the feature importance was in the order of surface charge of NPs > dissolved organic matter (DOM) > functional group of NPs > ionic strength and pH > concentration of NPs. Meta-analysis results specified low surface charge (0 ≤ |ζ| < 10 mV) of NPs, low concentration (< 1 mg/L) and low molecular weight (< 10 kg/mol) of DOM, NPs with amino groups, high ionic strength (IS > 700 mM) and acidic solution, and high concentration (≥ 20 mg/L) of NPs with smaller size (< 100 nm) contribute to NPs aggregation, which is consistent with the prediction in machine learning. Feature interaction synergistically (e.g., DOM and pH) or antagonistically (e.g., DOM and cation potential) changed NPs aggregation. Therefore, NPs were predicted to aggregate in the dry period and estuary of Poyang Lake. Research on aggregation of NPs with different particle size,shapes, and functional groups, heteroaggregation of NPs with coexisting particles and aging effects should be strengthened in the future. This study supports better assessments of the NPs fate and risks in environments.

13.
Ecotoxicol Environ Saf ; 277: 116338, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38640799

ABSTRACT

Various phthalic acid esters (PAEs) such as dibutyl phthalate (DBP) and butyl benzyl phthalate (BBP) co-exist with nanopollutants in aquatic environment. In this study, Daphnia magna was exposed to nano-CuO and DBP or BBP at environmental relevant concentrations for 21-days to investigate these combined toxic effects. Acute EC50 values (48 h) of nano-CuO, DBP, and BBP were 12.572 mg/L, 8.978 mg/L, and 4.785 mg/L, respectively. Results showed that co-exposure with nano-CuO (500 µg/L) for 21 days significantly enhanced the toxicity of DBP (100 µg/L) and BBP (100 µg/L) to Daphnia magna by 18.37% and 18.11%, respectively. The activities of superoxide dismutase, catalase, and glutathione S-transferase were enhanced by 10.95% and 14.07%, 25.63% and 25.91%, and 39.93% and 35.01% in nano-CuO+DBP and nano-CuO+BBP treatments as compared to the individual exposure groups, verifying that antioxidative defense responses were activated. Furthermore, the co-exposure of nano-CuO and PAEs decreased the population richness and diversity microbiota, and changed the microbial community composition in Daphnia magna. Metabolomic analysis elucidated that nano-CuO + PAEs exposure induced stronger disturbance on metabolic network and molecular function, including amino acid, nucleotides, and lipid metabolism-related metabolic pathways, as comparison to PAEs single exposure treatments. In summary, the integration of physiological, microflora, and untargeted metabolomics analysis offers a fresh perspective into the potential ecological risk associated with nanopollutants and phthalate pollution in aquatic ecosystems.


Subject(s)
Copper , Daphnia , Dibutyl Phthalate , Phthalic Acids , Water Pollutants, Chemical , Animals , Daphnia/drug effects , Phthalic Acids/toxicity , Water Pollutants, Chemical/toxicity , Copper/toxicity , Dibutyl Phthalate/toxicity , Metal Nanoparticles/toxicity , Esters/toxicity , Microbiota/drug effects , Glutathione Transferase/metabolism , Metabolomics , Oxidative Stress/drug effects , Superoxide Dismutase/metabolism , Metabolome/drug effects , Daphnia magna
14.
Nanomaterials (Basel) ; 14(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38668175

ABSTRACT

Theanine, polyphenols, and caffeine not only affect the flavor of tea, but also play an important role in human health benefits. However, the specific regulatory mechanism of Se NMs on fat-reducing components is still unclear. In this study, the synthesis of fat-reducing components in Fuding Dabai (FDDB) tea was investigated. The results indicated that the 100-bud weight, theanine, EGCG, total catechin, and caffeine contents of tea buds were optimally promoted by 10 mg·L-1 Se NMs in the range of 24.3%, 36.2%, 53.9%, 67.1%, and 30.9%, respectively. Mechanically, Se NMs promoted photosynthesis in tea plants, increased the soluble sugar content in tea leaves (30.3%), and provided energy for the metabolic processes, including the TCA cycle, pyruvate metabolism, amino acid metabolism, and the glutamine/glutamic acid cycle, ultimately increasing the content of amino acids and antioxidant substances (catechins) in tea buds; the relative expressions of key genes for catechin synthesis, CsPAL, CsC4H, CsCHI, CsDFR, CsANS, CsANR, CsLAR, and UGGT, were significantly upregulated by 45.1-619.1%. The expressions of theanine synthesis genes CsTs, CsGs, and CsGOGAT were upregulated by 138.8-693.7%. Moreover, Se NMs promoted more sucrose transfer to the roots, with the upregulations of CsSUT1, CsSUT2, CsSUT3, and CsSWEET1a by 125.8-560.5%. Correspondingly, Se NMs enriched the beneficial rhizosphere microbiota (Roseiarcus, Acidothermus, Acidibacter, Conexicter, and Pedosphaeraceae), enhancing the absorption and utilization of ammonium nitrogen by tea plants, contributing to the accumulation of theanine. This study provides compelling evidence supporting the application of Se NMs in promoting the lipid-reducing components of tea by enhancing its nitrogen metabolism.

15.
J Agric Food Chem ; 72(17): 9755-9767, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38635872

ABSTRACT

Diabetic nephropathy (DN) is a common microvascular complication of diabetes. Fucoidan, a polysaccharide containing fucose and sulfate group, ameliorates DN. However, the underlying mechanism has not been fully understood. This study aimed to explore the effects and mechanism of fucoidan on DN in high-fat diet-induced diabetic mice. A total of 90 C57BL/6J mice were randomly assigned to six groups (n = 15) as follows: normal control (NC), diabetes mellitus (DM), metformin (MTF), low-dose fucoidan (LFC), medium-dose fucoidan (MFC), and high-dose fucoidan (HFC). A technique based on fluorescein isothiocyanate (FITC-sinistin) elimination kinetics measured percutaneously was applied to determine the glomerular filtration rate (GFR). After 24 weeks, the mice were sacrificed and an early stage DN model was confirmed by GFR hyperfiltration, elevated urinary creatinine, normal urinary albumin, tubulointerstitial fibrosis, and glomerular hypertrophy. Fucoidan significantly improved the GFR hyperfiltration and renal fibrosis. An enriched SCFAs-producing bacteria and increased acetic concentration in cecum contents were found in fucoidan groups, as well as increased renal ATP levels and improved mitochondrial dysfunction. The renal inflammation and fibrosis were ameliorated through inhibiting the MAPKs pathway. In conclusion, fucoidan improved early stage DN targeting the microbiota-mitochondria axis by ameliorating mitochondrial oxidative stress and inhibiting the MAPKs pathway.


Subject(s)
Diabetic Nephropathies , Diet, High-Fat , Gastrointestinal Microbiome , Mice, Inbred C57BL , Mitochondria , Polysaccharides , Animals , Polysaccharides/administration & dosage , Polysaccharides/pharmacology , Polysaccharides/chemistry , Gastrointestinal Microbiome/drug effects , Mice , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/physiopathology , Diet, High-Fat/adverse effects , Male , Mitochondria/drug effects , Mitochondria/metabolism , Humans , Bacteria/classification , Bacteria/isolation & purification , Bacteria/drug effects , Bacteria/genetics , Glomerular Filtration Rate/drug effects , Kidney/drug effects , Kidney/metabolism , Kidney/physiopathology
16.
Angew Chem Int Ed Engl ; : e202401373, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659181

ABSTRACT

Inorganic solid-state electrolytes (SSEs) play a vital role in high-energy all-solid-state batteries (ASSBs). However, the current method of SSE preparation usually involves high-energy mechanical ball milling and/or a high-temperature annealing process, which is not suitable for practical application. Here, a facile strategy is developed to realize the scalable synthesis of cost-effective aluminum-based oxyhalide SSEs, which involves a self-propagating method by the exothermic reaction of the raw materials. This strategy enables the synthesis of various aluminum-based oxyhalide SSEs with tunable components and high ionic conductivities (over 10-3 S cm-1 at 25 °C) for different cations (Li+, Na+, Ag+). It is elucidated that the amorphous matrix, which mainly consists of various oxidized chloroaluminate species that provide numerous sites for smooth ion migration, is actually the key factor for the achieved high conductivities. Benefit from their easy synthesis, low cost, and low weight, the aluminum-based oxyhalide SSEs synthesized by our approach could further promote practical application of high-energy-density ASSBs.

17.
Dalton Trans ; 53(19): 8347-8355, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38666520

ABSTRACT

A fundamental understanding of the exact structural characteristics and reaction mechanisms of interface active sites is vital to engineering an energetic metal-support boundary in heterogeneous catalysis. Herein, benefiting from a newly developed high-temperature ion trap reactor, the reverse water-gas shift (RWGS) (CO2 + H2 → CO + H2O) catalyzed by a series of compositionally and structurally well-defined RhnVO3,4- (n = 3-7) clusters were identified under variable temperatures (298-773 K). It is discovered that the Rh5-7VO3,4- clusters can function more effectively to drive RWGS at relatively low temperatures. The experimentally observed size-dependent catalytic behavior was rationalized by quantum-chemical calculations; the framework of RhnVO3,4- is constructed by depositing the Rhn clusters on the VO3,4 "support", and a sandwiched base-acid-base [Rhout--Rhin+-VO3,4-; Rhout and Rhin represent the outer and inner Rh atoms, respectively] feature in Rh5-7VO3,4- governs the adsorption and activation of reactants as well as the facile desorption of the products. In contrast, isolated Rh5-7- clusters without the electronic modification of the VO3,4 "support" can only catalyze RWGS under relatively high-temperature conditions.

18.
Eco Environ Health ; 3(2): 227-237, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38680731

ABSTRACT

Soil metabolomics is an emerging approach for profiling diverse small molecule metabolites, i.e., metabolomes, in the soil. Soil metabolites, including fatty acids, amino acids, lipids, organic acids, sugars, and volatile organic compounds, often contain essential nutrients such as nitrogen, phosphorus, and sulfur and are directly linked to soil biogeochemical cycles driven by soil microorganisms. This paper presents an overview of methods for analyzing soil metabolites and the state-of-the-art of soil metabolomics in relation to soil nutrient cycling. We describe important applications of metabolomics in studying soil carbon cycling and sequestration, and the response of soil organic pools to changing environmental conditions. This includes using metabolomics to provide new insights into the close relationships between soil microbiome and metabolome, as well as responses of soil metabolome to plant and environmental stresses such as soil contamination. We also highlight the advantage of using soil metabolomics to study the biogeochemical cycles of elements and suggest that future research needs to better understand factors driving soil function and health.

19.
Mar Drugs ; 22(4)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38667801

ABSTRACT

Fucosylated chondroitin sulfate is a unique glycosaminoglycan isolated from sea cucumbers, with excellent anticoagulant activity. The fucosyl branch in FCS is generally located at the 3-OH of D-glucuronic acid but, recently, a novel structure with α-L-fucose linked to the 6-OH of N-acetyl-galactosamine has been found. Here, using functionalized monosaccharide building blocks, we prepared novel FCS tetrasaccharides with fucosyl branches both at the 6-OH of GalNAc and 3-OH of GlcA. In the synthesis, the protective group strategy of selective O-sulfation, as well as stereoselective glycosylation, was established, which enabled the efficient synthesis of the specific tetrasaccharide compounds. This research enriches knowledge on the structural types of FCS oligosaccharides and facilitates the exploration of the structure-activity relationship in the future.


Subject(s)
Chondroitin Sulfates , Oligosaccharides , Sea Cucumbers , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/chemical synthesis , Chondroitin Sulfates/pharmacology , Animals , Oligosaccharides/chemical synthesis , Oligosaccharides/chemistry , Sea Cucumbers/chemistry , Glycosylation , Fucose/chemistry , Anticoagulants/pharmacology , Anticoagulants/chemistry , Anticoagulants/chemical synthesis , Structure-Activity Relationship , Acetylgalactosamine/chemistry , Acetylgalactosamine/analogs & derivatives
20.
JAMA Netw Open ; 7(4): e244592, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38602679

ABSTRACT

Importance: Changes in cervical length in twin pregnancies exhibit various patterns, but it is unclear whether the mechanism underlying spontaneous preterm birth (sPTB) is consistent. The existence of detailed phenomena in singleton pregnancies is also unclear. Objectives: To explore the different patterns in cervical length trajectories in singleton and twin pregnancies and to analyze whether the immunological mechanisms of sPTB are consistent among these cervical length patterns. Design, Setting, and Participants: This cohort study recruited pregnant individuals who received antenatal care and delivered at Peking University Third Hospital in Beijing, China, between January 1, 2014, and December 31, 2022. Individuals with singleton and twin pregnancies were included. Exposures: Cervical length measurements and white blood cell (WBC) indicators. Main Outcomes and Measures: The primary outcome was sPTB. Longitudinal trajectory cluster analysis was used to identify patterns of changes in cervical length in singleton and twin pregnancies. A random-effects model with cubic spline was used to fit and compare the longitudinal trajectory of WBC indicators among early preterm birth, moderate to late preterm birth, and term birth. Results: A total of 43 559 pregnant individuals were included; of these, 41 706 had singleton pregnancies (mean [SD)] maternal age, 33.0 [4.0] years) and 1853 had twin pregnancies (mean [SD] maternal age, 33.3 [3.6] years). Two distinct patterns of cervical length changes were observed in both singleton and twin pregnancies: shortened (21 366 singletons and 546 twins) and stable (20 340 singletons and 1307 twins). In singleton pregnancies, WBC count was associated with early sPTB in individuals with both shortened cervix (odds ratio [OR], 1.35; 95% CI, 1.00-1.82) and stable cervix (OR, 1.64; 95% CI, 1.07-2.50). However, for twin pregnancies, the association of WBC count (OR, 3.13; 95% CI, 1.58-6.18) with the risk of early sPTB was observed only in individuals with a shortened cervix. Conclusions and Relevance: This study identified 2 distinct cervical length patterns: shortened and stable. These patterns revealed 2 preterm birth mechanisms in twin pregnancies, with the immunopathogenesis of sPTB found only in the shortened cervix pattern; in singleton pregnancies, maternal immune response was associated with a higher risk of sPTB regardless of a shortened or stable cervix.


Subject(s)
Pregnancy, Twin , Premature Birth , Infant, Newborn , Pregnancy , Humans , Female , Adult , Cervical Length Measurement , Cohort Studies , Premature Birth/epidemiology , China/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...