Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 355
Filter
1.
Front Immunol ; 15: 1392499, 2024.
Article in English | MEDLINE | ID: mdl-38846948

ABSTRACT

Background: Several studies have explored the effectiveness of PD-1/PD-L1 inhibitors combined with neoadjuvant chemoradiotherapy (nCRT) in the treatment of locally advanced rectal cancer(LARC), particularly in microsatellite stable(MSS) or mismatch repair proficient(pMMR) LARC patients. We undertook a single-arm systematic review to comprehensively evaluate the advantages and potential risks associated with the use of PD-1/PD-L1 inhibitors in conjunction with nCRT for patients diagnosed with locally advanced rectal cancer. Methods: The PubMed, Embase, Cochrane Library, ClinicalTrials.gov, ASCO and ESMO were searched for related studies. The main outcomes were pathologic complete response (pCR), major pathological response (MPR), anal preservation, and adverse effects (AEs). Results: Fourteen articles including 533 locally advanced rectal cancer (LARC) patients were analyzed. The pooled pCR, MPR, and anal preservation rates were 36%, 66% and 86%. Grade ≥3 adverse events occurred in 20%. Subgroup analysis showed that; dMMR/MSI-H had a pooled pCR (100%) and MPR (100%), pMMR/MSS had a pooled pCR (38%) and MPR (60%); the short-course radiotherapy and long-course radiotherapy had pooled pCR rates of 51% and 30%, respectively. The rates of pCR for the concurrent and sequential immuno-chemoradiotherapy subgroups at 30% and 40%, mirroring pCR rates for the PD-L1 and PD-1 inhibitor subgroups were 32% and 40%, respectively. Conclusion: In cases of locally advanced rectal cancer, PD-1/PD-L1 inhibitors combined with neoadjuvant chemoradiotherapy have shown promising response rates and acceptable toxicity profiles. PD-1/PD-L1 inhibitors combined with neoadjuvant chemoradiotherapy hence has a positive outcome even in MSS LARC patients. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/#myprospero, identifier CRD42023465380.


Subject(s)
Immune Checkpoint Inhibitors , Neoadjuvant Therapy , Rectal Neoplasms , Humans , Rectal Neoplasms/therapy , Rectal Neoplasms/immunology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/adverse effects , Treatment Outcome , Chemoradiotherapy/methods , Immunotherapy/methods , Immunotherapy/adverse effects
2.
BMC Cancer ; 24(1): 679, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831450

ABSTRACT

OBJECTIVE: To evaluate the feasibility, safety and efficacy of concurrent simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) combined with nimotuzumab in the treatment of locally advanced esophageal squamous cell cancer (ESCC). METHODS: Eligible patients were histologically proven to have locally advanced ESCC, and were unable to tolerate or refuse concurrent chemoradiotherapy (CCRT). Enrolled patients underwent concurrent SIB-IMRT in combination with nimotuzumab. SIB-IMRT: For the planning target volume of clinical target volume (PTV-C), the prescription dose was 50.4 Gy/28fractions, 1.8 Gy/fraction, 5fractions/week, concurrently, the planning target volume of gross tumor (PTV-G) undergone an integrated boost therapy, with a prescription dose of 63 Gy/28fractions, 2.25 Gy/fraction, 5 fractions/week. Nimotuzumab was administered concurrently with radiotherapy, 200 mg/time, on D1, 8, 15, 22, 29, and 36, with a total accumulation of 1200 mg through intravenous infusion. The primary endpoint of the study was the safety and efficacy of the combined treatment regimen, and the secondary endpoints were 1-year, 2-year, and 3-year local control and survival outcomes. RESULTS: (1) From December 2018 to August 2021, 35 patients with stage II-IVA ESCC were enrolled and 34 patients completed the full course of radiotherapy and the intravenous infusion of full-dose nimotuzumab. The overall completion rate of the protocol was 97.1%. (2) No grade 4-5 adverse events occurred in the entire group. The most common treatment-related toxicity was acute radiation esophagitis, with a total incidence of 68.6% (24/35). The incidence of grade 2 and 3 acute esophagitis was 25.7% (9/35) and 17.1% (6/35), respectively. The incidence of acute radiation pneumonitis was 8.6% (3/35), including one case each of Grades 1, 2, and 3 pneumonitis. Adverse events in other systems included decreased blood cells, hypoalbuminemia, electrolyte disturbances, and skin rash. Among these patients, five experienced grade 3 electrolyte disturbances during the treatment period (three with grade 3 hyponatremia and two with grade 3 hypokalemia). (3) Efficacy: The overall CR rate was 22.8%, PR rate was 71.4%, ORR rate was 94.2%, and DCR rate was 97.1%.(4) Local control and survival: The 1-, 2-, and 3-year local control (LC) rate, progression-free survival(PFS) rate, and overall survival(OS) rate for the entire group were 85.5%, 75.4%, and 64.9%; 65.7%, 54.1%, and 49.6%; and 77.1%, 62.9%, and 54.5%, respectively. CONCLUSIONS: The combination of SIB-IMRT and nimotuzumab for locally advanced esophageal cancer demonstrated good feasibility, safety and efficacy. It offered potential benefits in local control and survival. Acute radiation esophagitis was the primary treatment-related toxicity, which is clinically manageable. This comprehensive treatment approach is worthy of further clinical exploration (ChiCTR1900027936).


Subject(s)
Antibodies, Monoclonal, Humanized , Chemoradiotherapy , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Radiotherapy, Intensity-Modulated , Humans , Male , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Female , Middle Aged , Esophageal Squamous Cell Carcinoma/therapy , Esophageal Squamous Cell Carcinoma/radiotherapy , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/mortality , Radiotherapy, Intensity-Modulated/methods , Radiotherapy, Intensity-Modulated/adverse effects , Esophageal Neoplasms/radiotherapy , Esophageal Neoplasms/pathology , Esophageal Neoplasms/therapy , Esophageal Neoplasms/mortality , Esophageal Neoplasms/drug therapy , Aged , Chemoradiotherapy/methods , Adult , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Agents, Immunological/administration & dosage , Treatment Outcome
3.
Angew Chem Int Ed Engl ; : e202402184, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750660

ABSTRACT

Water electrolysis is one promising and eco-friendly technique for energy storage, yet its overall efficiency is hindered by the sluggish kinetics of oxygen evolution reaction (OER). In response, developing strategies to boost OER catalyst performance is crucial. With the advances in characterization techniques, an extensive phenomenon of surface structure evolution into an active amorphous layer was uncovered. Surface reconstruction in a controlled fashion was then proposed as an emerging strategy to elevate water oxidation efficiency. In this work, Cr substitution induces the reconstruction of NiFexCr2-xO4 during cyclic voltammetry (CV) conditioning by Cr leaching, which leads to a superior OER performance. The best-performed NiFe0.25Cr1.75O4 shows a ~1500% current density promotion at overpotential η = 300 mV, which outperforms many advanced NiFe-based OER catalysts. It is also found that their OER activities are mainly determined by Ni:Fe ratio rather than Fe content in all metal elements. Meanwhile, the turnover frequency (TOF) values based on redox peak and total mass were obtained and analysed, and their possible limitations in the case of NiFexCr2-xO4 are discussed. Additionally, the high activity and durability were further verified in a membrane electrode assembly (MEA) cell, highlighting its potential for practical large-scale and sustainable hydrogen gas generation.

4.
Environ Monit Assess ; 196(6): 576, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789652

ABSTRACT

Phosphorus pollution poses a significant challenge in addressing water contamination. The coagulant is one of the effective methods to remove phosphorus from wastewater. Abundant Al and Fe oxides in sludge residue make it have great potential to synthesize water treatment coagulants. However, the utilization of sludge residue for preparation of coagulant was seldom investigated. In this study, we fabricated a novel coagulant, polyaluminum ferric chloride (SM-PAC), using sludge residue as a raw material through acid leaching and polymerization processes. Characterization results confirm that the parameters of SM-PAC meet the specifications outlined in the national standard (GB/T 22627-2022). We investigated the effects of pH, dosage, initial phosphorus concentration, and contact time on the removal efficiency of SM-PAC. As anticipated, the prepared SM-PAC exhibited a significant efficacy in removing phosphorus, meeting the discharge standards set for municipal sewage. Furthermore, the adsorption kinetics analysis suggests that the predominant mode of phosphorus adsorption on SM-PAC is chemical adsorption. Furthermore, the SM-PAC was employed in the actual wastewater treatment plant and exhibited excellent efficiency in phosphorus removal. The utilization of SM-PAC can not only effectively address the issue of sludge disposal but also achieve the goal of "treating waste with waste." It is expected that the proposed method of reusing sludge residue as a resource can provide a sustainable way to synthesize a coagulant for phosphorus removal.


Subject(s)
Phosphorus , Recycling , Sewage , Waste Disposal, Fluid , Water Pollutants, Chemical , Phosphorus/analysis , Phosphorus/chemistry , Sewage/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Recycling/methods , Adsorption , Ferric Compounds/chemistry , Wastewater/chemistry
5.
Eur J Nutr ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814365

ABSTRACT

IMPORTANCE: Epidemiological evidences regarding the association between whole grain intake and the risk of new-onset hypertension are still controversial. OBJECTIVE: We aimed to investigate the relationship between whole grain intake and new-onset hypertension and examine possible effect modifiers in the general population. METHODS: A total of 10,973 participants without hypertension from the China Health and Nutrition Survey were enrolled, with follow-up beginning in 1997 and ending in 2015. Whole grain intake was assessed by 3 consecutive 24-h dietary recalls combined with a household food inventory. Multivariable hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazards regression model after adjusting for potential risk factors. RESULTS: During a median follow-up of 7.0 years, 3,733 participants developed new-onset hypertension. The adjusted HRs (95% CIs) were as follows: for quartile 2 (HR: 0.52; 95% CI: 0.47-0.57), quartile 3 (HR: 0.46; 95% CI: 0.42-0.51), and quartile 4 (HR: 0.35; 95% CI: 0.31-0.38), compared with quartile 1. Different types of whole grain types, including wheat (adjusted HR, 0.35; 95% CI, 0.32-0.39), maize (adjusted HR, 0.50; 95% CI, 0.42-0.59), and millet (adjusted HR, 0.38; 95% CI, 0.30-0.48), showed significant associations with a reduced risk of hypertension. The association between whole grain intake and new-onset hypertension was stronger in individuals with older age (P for interaction < 0.001) and higher BMI (P for interaction < 0.001). CONCLUSION: Higher consumption of whole grains was significantly associated with a lower risk of new-onset hypertension. This study provides further evidence supporting the importance of increasing whole grain intake for hypertension prevention among Chinese adults.

6.
Int J Biol Macromol ; 269(Pt 2): 132214, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729489

ABSTRACT

Dietary fibers come from a wide range of sources and have a variety of preparation methods (including extraction and modification). The different structural characteristics of dietary fibers caused by source, extraction and modification methods directly affect their physicochemical properties and functional activities. The relationship between structure and physicochemical properties and functional activities is an indispensable basic theory for realizing the directional transformation of dietary fibers' structure and accurately regulating their specific properties and activities. In this paper, since a brief overview about the structural characteristics of dietary fiber, the effect of structural characteristics on a variety of physicochemical properties (hydration, electrical, thermal, rheological, emulsifying property, and oil holding capacity, cation exchange capacity) and functional activities (hypoglycemic, hypolipidemic, antioxidant, prebiotic and harmful substances-adsorption activity) of dietary fiber explored by researchers in last five years are emphatically reviewed. Moreover, the future perspectives of structure-activity relationship are discussed. This review aims to provide theoretical foundation for the targeted regulation of properties and activities of dietary fiber, so as to improve the quality of their applied products and physiological efficiency, and then to realize high value utilization of dietary fiber resources.


Subject(s)
Dietary Fiber , Structure-Activity Relationship , Chemical Phenomena , Antioxidants/chemistry , Antioxidants/pharmacology , Humans
7.
Sci Total Environ ; 934: 173118, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38750757

ABSTRACT

The brominated flame retardant 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47) is a ubiquitous environmental pollutant that causes neurotoxicity. However, incomplete understanding of the underlying mechanisms has hampered the development of effective intervention strategies. Oxidative stress and related cell death are the modes of action for PBDE-47 neurotoxicity, which are also the characteristics of ferroptosis. Nonetheless, the role of ferroptosis in PBDE-47-induced neurotoxicity remains unclear. In the present study, we found that PBDE-47 triggered ferroptosis in neuron-like PC12 cells, as evidenced by intracellular iron overload, lipid peroxidation, and mitochondrial damage. This was confirmed by ferroptosis inhibitors including the lipid reactive oxygen species scavenger ferrostatin-1 and iron chelator deferoxamine mesylate. Mechanistically, PBDE-47 impaired ferritinophagy by disrupting nuclear receptor coactivator 4-mediated lysosomal degradation of the iron storage protein ferritin. Moreover, PBDE-47 disturbed iron metabolism by increasing cellular iron import via upregulation of transferrin receptor 1 and decreasing cellular iron export via downregulation of ferroportin 1 (FPN1). Intriguingly, rescuing lysosomal function by overexpressing cathepsin B (CatB) mitigated PBDE-47-induced ferroptosis by partially restoring dysfunctional ferritinophagy and enhancing iron excretion via the upregulation of FPN1. However, FPN1 knockdown reversed the beneficial effects of CatB overexpression on the PBDE-47-induced iron overload. Finally, network pharmacology integrated with experimental validation revealed that Canolol, the main phenolic compound in canola oil, protected against PBDE-47-evoked iron overload, resulting in ferroptosis by restoring defective ferritinophagy and improving abnormal iron metabolism via lowering iron uptake and facilitating iron excretion. Overall, these data suggest that ferroptosis is a novel mechanism of PBDE-47-induced neuronal death and that manipulation of ferritinophagy and iron metabolism via Canolol represents a promising therapeutic strategy.


Subject(s)
Ferroptosis , Halogenated Diphenyl Ethers , Iron , Neurons , Ferroptosis/drug effects , Halogenated Diphenyl Ethers/toxicity , Iron/metabolism , Animals , PC12 Cells , Neurons/drug effects , Neurons/metabolism , Rats , Ferritins/metabolism , Flame Retardants/toxicity , Oxidative Stress/drug effects , Environmental Pollutants/toxicity
8.
Article in English | MEDLINE | ID: mdl-38783542

ABSTRACT

Puerarin (Pue) has significant antioxidant and anti-inflammatory properties. This work was designed to clarify and investigate the potential mechanisms of Pue in atherosclerosis (AS) progression. In vivo, acrolein (Acr) was inhaled through drinking water to construct AS model. In vitro, CCK-8 assay and lactate dehydrogenase (LDH) assay kit were used to detect cell viability. Apoptosis was detected by flow cytometry. The content of malondialdehyde (MDA) was determined by commercial kit, the level of inflammatory factors was detected by ELISA, and proteins were determined by western blot. Pue administration could effectively reduce blood lipid level in Acr-fed mice. Pue suppressed oxidative stress, the formation of atherosclerotic plaques, and the process of aortic histological changes. Pue pretreatment decreased MDA in HUVECs and maintained the activity of antioxidant enzymes. Pue upregulated SIRT1/Nrf2 cascade in HUVECs. Pue increased MYH9 and inhibited NLRP3 inflammasome-related proteins, and the inhibition of MYH9 significantly impaired Pue-induced Nrf2 activation. Moreover, HUVEC cytotoxicity and apoptosis are alleviated by Pue, in addition to NLRP3-mediated pyroptosis in HUVECs induced by Acr. MYH9 inhibitors effectively suppressed the pyroptosis induced by Acr and prevented injury to HUVECs. In addition, Pue promoted SIRT1/Nrf2 cascade activation in HUVECs. Pue may alleviate Acr-induced AS by activating the MYH9-mediated SIRT1/Nrf2 cascade to inhibit inflammasome activation.

9.
Eye Contact Lens ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695745

ABSTRACT

OBJECTIVES: To explore the potential of artificial intelligence (AI) to assist prescription determination for orthokeratology (OK) lenses. METHODS: Artificial intelligence algorithm development followed by a real-world trial. A total of 11,502 OK lenses fitting records collected from seven clinical environments covering major brands. Records were randomly divided in a three-way data split. Cross-validation was used to identify the most accurate algorithm, followed by an evaluation using an independent test data set. An online AI-assisted system was implemented and assessed in a real-world trial involving four junior and three senior clinicians. RESULTS: The primary outcome measure was the algorithm's accuracy (ACC). The ACC of the best performance of algorithms to predict the targeted reduction amplitude, lens diameter, and alignment curve of the prescription was 0.80, 0.82, and 0.83, respectively. With the assistance of the AI system, the number of trials required to determine the final prescription significantly decreased for six of the seven participating clinicians (all P <0.01). This reduction was more significant among junior clinicians compared with consultants (0.76±0.60 vs. 0.32±0.60, P <0.001). Junior clinicians achieved clinical outcomes comparable to their seniors, as 93.96% (140/149) and 94.44% (119/126), respectively, of the eyes fitted achieved unaided visual acuity no worse than 0.8 ( P =0.864). CONCLUSIONS: AI can improve prescription efficiency and reduce discrepancies in clinical outcomes among clinicians with differing levels of experience. Embedment of AI in practice should ultimately help lessen the medical burden and improve service quality for myopia boom emerging worldwide.

10.
Comput Biol Med ; 173: 108370, 2024 May.
Article in English | MEDLINE | ID: mdl-38564854

ABSTRACT

The transformer architecture has achieved remarkable success in medical image analysis owing to its powerful capability for capturing long-range dependencies. However, due to the lack of intrinsic inductive bias in modeling visual structural information, the transformer generally requires a large-scale pre-training schedule, limiting the clinical applications over expensive small-scale medical data. To this end, we propose a slimmable transformer to explore intrinsic inductive bias via position information for medical image segmentation. Specifically, we empirically investigate how different position encoding strategies affect the prediction quality of the region of interest (ROI) and observe that ROIs are sensitive to different position encoding strategies. Motivated by this, we present a novel Hybrid Axial-Attention (HAA) that can be equipped with pixel-level spatial structure and relative position information as inductive bias. Moreover, we introduce a gating mechanism to achieve efficient feature selection and further improve the representation quality over small-scale datasets. Experiments on LGG and COVID-19 datasets prove the superiority of our method over the baseline and previous works. Internal workflow visualization with interpretability is conducted to validate our success better; the proposed slimmable transformer has the potential to be further developed into a visual software tool for improving computer-aided lesion diagnosis and treatment planning.


Subject(s)
COVID-19 , Humans , COVID-19/diagnostic imaging , Diagnosis, Computer-Assisted , Software , Workflow , Image Processing, Computer-Assisted
11.
BMC Public Health ; 24(1): 1193, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38679720

ABSTRACT

BACKGROUND: Residents' adoption of preventive behaviours proved beneficial in preventing the large-scale transmission of the virus during the early stages of the COVID-19 outbreak. It is critical to investigate how social media triggers residents' preventive behaviour decisions during the COVID-19 outbreak. METHODS: This paper selected online shopping as a specific preventive behaviour for empirical investigation. An online cross-sectional survey was conducted through the Sojump website from 1 to 15 March 2020, and a total of 1,289 valid questionnaires were collected from China. This paper uses multiple regression analysis to investigate the heterogeneous impacts of different information sources on residents' online shopping willingness and online shopping behaviour and the heterogeneous impacts of different information content in social media on the transformation of residents' online shopping willingness and online shopping behaviour. RESULTS: The findings indicate that both official-media and self-media positively promote residents' online shopping willingness and behaviour, with official-media having a stronger promotional effect than self-media. Furthermore, official-media and self-media can collaboratively promote residents' online shopping willingness and online shopping behaviour. The ease-of-use and usefulness of information significantly promoted the transformation of residents' online shopping willingness. CONCLUSIONS: This study analyses the heterogeneous impacts of social media on residents' preventive behaviours from the perspectives of information source differentiation and information content differentiation, which enriches related studies and provides feasible paths for promoting residents' preventive behaviours.


Subject(s)
COVID-19 , Social Media , Humans , Social Media/statistics & numerical data , COVID-19/prevention & control , COVID-19/epidemiology , COVID-19/psychology , Cross-Sectional Studies , China/epidemiology , Male , Female , Adult , Surveys and Questionnaires , Middle Aged , Young Adult , Health Behavior , Consumer Behavior/statistics & numerical data
12.
J Glob Antimicrob Resist ; 37: 179-184, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38561142

ABSTRACT

OBJECTIVES: This study aimed to isolate a phage capable of lysing carbapenem-resistant Klebsiella pneumoniae (CRKP) and to analyse its biological characteristics and whole-genome sequence. METHODS: The phage was isolated and purified from the sewage. Transmission electron microscopy (TEM) was employed to observe the bacteriophage's morphology. Phenotypic characterization of the bacteriophages was determined. The genomic information was analysed. Evolutionary relationships were established through comparative genomics, proteomics, and phylogenetic analysis. RESULTS: The isolation of a virulent phage, named Klebsiella phage vB_KpnM_KpVB3, was notable for forming 6-7 mm transparent circular zones, each surrounded by a distinct halo. The phage had a head diameter of ca. 30 nm and a tail length of ca. 20 nm, being identified as a member of the Myoviridae family and the Caudovirales order. The optimal multiplicity of infection (MOI) was 0.00001, with an incubation period of 20 minutes and a lysis period of 60 minutes, and the number of released phages after lysis was 133±35 PFU/cell. The phage was relatively stable at temperatures ranging from 10°C to 40°C and at pH values ranging from 3 to 11. Its lytic efficiency against CRKP was 30.30%. It has been shown to be able to destroy the biofilm of host bacteria. The bacteriophage genome consists of double-stranded DNA (dsDNA) with a total length of 48,394 base pairs, a GC content of 48.99%, and 78 open reading frames (ORFs). CONCLUSION: The study resulted in the isolation vB_KpnM_KpVB3, a phage demonstrating potential therapeutic efficacy against infections caused by CRKP.

13.
New Phytol ; 242(3): 1238-1256, 2024 May.
Article in English | MEDLINE | ID: mdl-38426393

ABSTRACT

Biosynthesis of flavonoid aglycones and glycosides is well established. However, key genes involved in their catabolism are poorly understood, even though the products of hydrolysis and oxidation play important roles in plant resistance to biotic stress. Here, we report on catabolism of dihydrochalcones (DHCs), the most abundant flavonoids in domesticated apple and wild Malus. Two key genes, BGLU13.1 and PPO05, were identified by activity-directed protein purification. BGLU13.1-A hydrolyzed phlorizin, (the most abundant DHC in domesticated apple) to produce phloretin which was then oxidized by PPO05. The process differed in some wild Malus, where trilobatin (a positional isomer of phlorizin) was mainly oxidized by PPO05. The effects of DHC catabolism on apple resistance to biotic stresses was investigated using transgenic plants. Either directly or indirectly, phlorizin hydrolysis affected resistance to the phytophagous pest two-spotted spider mite, while oxidation of trilobatin was involved in resistance to the biotrophic fungus Podosphaera leucotricha. DHC catabolism did not affect apple resistance to necrotrophic pathogens Valsa mali and Erwinia amylovara. These results suggest that different DHC catabolism pathways play different roles in apple resistance to biotic stresses. The role of DHC catabolism on apple resistance appeared closely related to the mode of invasion/damage used by pathogen/pest.


Subject(s)
Malus , Polyphenols , Malus/metabolism , Phlorhizin/metabolism , Flavonoids/metabolism , Stress, Physiological/genetics , Plant Diseases/genetics , Plant Diseases/microbiology
14.
Plant J ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531629

ABSTRACT

Bermudagrass (Cynodon dactylon) is a globally distributed, extensively used warm-season turf and forage grass with high tolerance to salinity and drought stress in alkaline environments. However, the origin of the species and genetic mechanisms for salinity tolerance in the species are basically unknown. Accordingly, we set out to study evolution divergence events in the Cynodon genome and to identify genes for salinity tolerance. We developed a 604.0 Mb chromosome-level polyploid genome sequence for bermudagrass 'A12359' (n = 18). The C. dactylon genome comprises 2 complete sets of homoeologous chromosomes, each with approximately 30 000 genes, and most genes are conserved as syntenic pairs. Phylogenetic study showed that the initial Cynodon species diverged from Oropetium thomaeum approximately 19.7-25.4 million years ago (Mya), the A and B subgenomes of C. dactylon diverged approximately 6.3-9.1 Mya, and the bermudagrass polyploidization event occurred 1.5 Mya on the African continent. Moreover, we identified 82 candidate genes associated with seven agronomic traits using a genome-wide association study, and three single-nucleotide polymorphisms were strongly associated with three salt resistance genes: RAP2-2, CNG channels, and F14D7.1. These genes may be associated with enhanced bermudagrass salt tolerance. These bermudagrass genomic resources, when integrated, may provide fundamental insights into evolution of diploid and tetraploid genomes and enhance the efficacy of comparative genomics in studying salt tolerance in Cynodon.

15.
Environ Toxicol ; 39(6): 3548-3562, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38477013

ABSTRACT

Tumor cell metastasis is the key cause of death in patients with nasopharyngeal carcinoma (NPC). MiR-2110 was cloned and identified in Epstein-Barr virus (EBV)-positive NPC, but its role is unclear in NPC. In this study, we investigated the effect of miR-2110 on NPC metastasis and its related molecular basis. In addition, we also explored whether miR-2110 can be regulated by cinobufotalin (CB) and participate in the inhibition of CB on NPC metastasis. Bioinformatics, RT-PCR, and in situ hybridization were used to observe the expression of miR-2110 in NPC tissues and cells. Scratch, Boyden, and tail vein metastasis model of nude mouse were used to detect the effect of miR-2110 on NPC metastasis. Western blot, Co-IP, luciferase activity, colocalization of micro confocal and ubiquitination assays were used to identify the molecular mechanism of miR-2110 affecting NPC metastasis. Finally, miR-2110 induced by CB participates in CB-stimulated inhibition of NPC metastasis was explored. The data showed that increased miR-2110 significantly suppresses NPC cell migration, invasion, and metastasis. Suppressing miR-2110 markedly restored NPC cell migration and invasion. Mechanistically, miR-2110 directly targeted FGFR1 and reduced its protein expression. Decreased FGFR1 attenuated its recruitment of NEDD4, which downregulated NEDD4-induced phosphatase and tensin homolog (PTEN) ubiquitination and degradation and further increased PTEN protein stability, thereby inactivating PI3K/AKT-stimulated epithelial-mesenchymal transition signaling and ultimately suppressing NPC metastasis. Interestingly, CB, a potential new inhibitory drug for NPC metastasis, significantly induced miR-2110 expression by suppressing PI3K/AKT/c-Jun-mediated transcription inhibition. Suppression of miR-2110 significantly restored cell migration and invasion in CB-treated NPC cells. Finally, a clinical sample assay indicated that reduced miR-2110 was negatively correlated with NPC lymph node metastasis and positively related to NPC patient survival prognosis. In summary, miR-2110 is a metastatic suppressor involving in CB-induced suppression of NPC metastasis.


Subject(s)
Bufanolides , Cell Movement , Mice, Nude , MicroRNAs , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , PTEN Phosphohydrolase , Receptor, Fibroblast Growth Factor, Type 1 , Ubiquitination , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Animals , Cell Line, Tumor , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/metabolism , Ubiquitination/drug effects , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 1/genetics , Bufanolides/pharmacology , Cell Movement/drug effects , Mice , Mice, Inbred BALB C , Male , Neoplasm Metastasis , Female , Gene Expression Regulation, Neoplastic/drug effects
16.
Article in English | MEDLINE | ID: mdl-38435123

ABSTRACT

Background: Some patients with chronic obstructive pulmonary disease (COPD) benefit from glucocorticoid (GC) treatment, but its mechanism is unclear. Objective: With the help of the Gene Expression Omnibus (GEO) database, the key genes and miRNA-mRNA related to the treatment of COPD by GCs were discussed, and the potential mechanism was explained. Methods: The miRNA microarray dataset (GSE76774) and mRNA microarray dataset (GSE36221) were downloaded, and differential expression analysis were performed. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on the differentially expressed genes (DEGs). The protein interaction network of the DEGs in the regulatory network was constructed with the STRING database, and the key genes were screened through Cytoscape. Potential downstream target genes regulated by differentially expressed miRNAs (DEMs) were predicted by the miRWalk3.0 database, and miRNA-mRNA regulatory networks were constructed. Finally, some research results were validated. Results: ① Four DEMs and 83 DEGs were screened; ② GO and KEGG enrichment analysis mainly focused on the PI3K/Akt signalling pathway, ECM receptor interaction, etc.; ③ CD2, SLAMF7, etc. may be the key targets of GC in the treatment of COPD; ④ 18 intersection genes were predicted by the mirwalk 3.0 database, and 9 pairs of miRNA-mRNA regulatory networks were identified; ⑤ The expression of miR-320d-2 and TFCP2L1 were upregulated by dexamethasone in the COPD cell model, while the expression of miR-181a-2-3p and SLAMF7 were downregulated. Conclusion: In COPD, GC may mediate the expression of the PI3K/Akt signalling pathway through miR-181a-2-3p, miR-320d-2, miR-650, and miR-155-5p, targeting its downstream signal factors. The research results provide new ideas for RNA therapy strategies of COPD, and also lay a foundation for further research.


Subject(s)
MicroRNAs , Pulmonary Disease, Chronic Obstructive , Humans , Glucocorticoids/pharmacology , Glucocorticoids/therapeutic use , RNA, Messenger/genetics , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/genetics , MicroRNAs/genetics
17.
Chem Sci ; 15(6): 2236-2242, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38332812

ABSTRACT

Unprecedented regioselective trans-hydroboration and carboboration of unbiased electronically internal alkynes were realized via a nickel catalysis system with the aid of the directing group strategy. Furthermore, the excellent α- and ß-regioselectivity could be accurately switched by the nitrogen ligand (terpy) and phosphine ligand (Xantphos). Mechanistic studies provided an insight into the rational reaction process, that underwent the cis-to-trans isomerization of alkenyl nickel species. This transformation not only expands the scope of transition-metal-catalyzed boration of internal alkynes but also, more particularly, portrays the vast prospects of the directing group strategy in the selective functionalization of unactivated alkynes.

18.
Zhen Ci Yan Jiu ; 49(2): 110-118, 2024 Feb 25.
Article in English, Chinese | MEDLINE | ID: mdl-38413031

ABSTRACT

OBJECTIVES: To observe the effect of electroacupuncture (EA) stimulation of "Jiaji"(EX-B2) on motor function, histomorphology, and expression of NOD-like receptor protein 3 (NLRP3) and N-terminal domain of gasdermin D (GSDMD-N) in the spinal cord tissue of rats with spinal cord injury (SCI), so as to explore its mechanism underlying improvement of SCI. METHODS: Forty eight female SD rats were randomly divided into sham surgery (sham), SCI model (model), EA, and NLRP3 agonist (monosodium urate, MSU) combined with Jiaji EA (MSU+EA) groups, with 12 rats in each group which were further divided into 3 d and 7 d subgroups, with 6 rats at each time point. Two EA groups received EA stimulation of EX-B2 with a frequency of 100 Hz, electrical current of 1-2 mA for 30 min, once a day for 3 or 7 days. After 5 min, 6 h, and 24 h of modeling, rats of the MSU+EA group received intraperitoneal injection of MSU (200 µg/kg, 200 µg/mL) . The motor function was evaluated using Basso-Beattie-Bresnahan (BBB) scale, the morphological structure of rat spinal cord tissue was observed by H.E. staining. The expression of pyroptosis related factors NLRP3, cleaved Caspase-1 and GSDMD-N of the spinal cord was observed by using immunohistochemistry and Western blot separately, the expression and localization of Iba-1 and GSDMD-N in the spinal cord tissue were observed using immunofluorescence double staining method. RESULTS: Compared with the sham group, the BBB scores after modeling and on day 3 and 7 were decreased (P<0.05), while the average OD values (immunoactivity) and expression levels of NLRP3, cleaved Caspase-1 and GSDMD-N proteins, and the immunofluorescence intensity of Iba-1/GSDMD-N (co-expression) of the spinal cord tissues on day 3 and 7 were significantly increased in the model group (P<0.05). In comparison with the model group, the BBB scores on day 3 and 7 were obviously increased (P<0.05), while the immunoactivity and expression levels of NLRP3, cleaved Caspase-1 and GSDMD proteins, and the immunofluorescence intensity of Iba-1/GSDMD-N on day 3 and 7 significantly down-regulated in the EA group (P<0.05) but not in the MSU+EA group (P>0.05), suggesting an elimination of the effects of EA after administration of NLRP3 agonist (MSU). H.E. staining showed obvious bleeding area in the spinal cord tissue, loose tissue and inflammatory cell infiltration on day 3 after modeling, and basic absorption of the bleeding, loose tissue, obvious vacuolar changes of the white matter area, loss and contraction of neurons with infiltration of a large number of inflammatory cells, which was milder in the EA group but not in the MSU+EA group. CONCLUSIONS: EA of EX-B2 can improve the motor function of SCI rats, which may be related to its functions in inhibiting pyroptosis of microglia mediated by NLRP3/Caspase-1 signaling pathway.


Subject(s)
Electroacupuncture , Spinal Cord Injuries , Animals , Female , Rats , Caspase 1 , Caspases , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Pyroptosis , Rats, Sprague-Dawley , Spinal Cord , Spinal Cord Injuries/genetics , Spinal Cord Injuries/therapy
19.
Int J Surg ; 110(2): 909-920, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38181195

ABSTRACT

OBJECTIVE: The aim of this paper is to investigate the risk factors associated with intraoperative brain bulge (IOBB), especially the computed tomography (CT) value of the diseased lateral transverse sinus, and to develop a reliable predictive model to alert neurosurgeons to the possibility of IOBB. METHODS: A retrospective analysis was performed on 937 patients undergoing traumatic decompressive craniectomy. A total of 644 patients from Fuzong Clinical Medical College of Fujian Medical University were included in the development cohort, and 293 patients from the First Affiliated Hospital of Shantou University Medical College were included in the external validation cohort. Univariate and multifactorial logistic regression analyses identified independent risk factors associated with IOBB. The logistic regression models consisted of independent risk factors, and receiver operating characteristic curves, calibration, and decision curve analyses were used to assess the performance of the models. Various machine learning models were used to compare with the logistic regression model and analyze the importance of the factors, which were eventually jointly developed into a dynamic nomogram for predicting IOBB and published online in the form of a simple calculator. RESULTS: IOBB occurred in 93/644 (14.4%) patients in the developmental cohort and 47/293 (16.0%) in the validation cohort. Univariate and multifactorial regression analyses showed that age, subdural hematoma, contralateral fracture, brain contusion, and CT value of the diseased lateral transverse sinus were associated with IOBB. A logistic regression model (full model) consisting of the above risk factors had excellent predictive power in both the development cohort [area under the curve (AUC)=0.930] and the validation cohort (AUC=0.913). Among the four machine learning models, the AdaBoost model showed the best predictive value (AUC=0.998). Factors in the AdaBoost model were ranked by importance and combined with the full model to create a dynamic nomogram for clinical application, which was published online as a practical and easy-to-use calculator. CONCLUSIONS: The CT value of the diseased lateral transverse is an independent risk factor and a reliable predictor of IOBB. The online dynamic nomogram formed by combining logistic regression analysis models and machine learning models can more accurately predict the possibility of IOBBs in patients undergoing traumatic decompressive craniectomy.


Subject(s)
Brain Injuries, Traumatic , Decompressive Craniectomy , Humans , Retrospective Studies , Decompressive Craniectomy/adverse effects , Decompressive Craniectomy/methods , Nomograms , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/surgery , Brain
20.
Article in English | MEDLINE | ID: mdl-38290442

ABSTRACT

Background: Coronary atherosclerosis is a serious and progressive condition characterized by the accumulation of plaques, consisting of fat, cholesterol, and other substances, within the arteries that supply blood to the heart. These plaques can harden and narrow the arteries, leading to reduced blood flow to the heart muscle. Objective: The primary objective of this study is to investigate the correlation between specific cardiovascular parameters and intracoronary vascular ultrasound indexes in patients diagnosed with coronary heart disease. This investigation aims to explore the relationships between intracoronary vascular ultrasound measurements and three key cardiovascular parameters: epicardial fat pad thickness, mono-platelet polymer levels, and small dense low-density lipoprotein cholesterol (sdLDL-C) levels. Methods: In this investigation, we applied a comprehensive method to evaluate atherosclerotic plaque characteristics in patients with diverse stages of coronary heart disease (CHD), contrasting these profiles with those of healthy individuals. Our study included 80 acute myocardial infarction (AMI) patients, 145 with unstable angina pectoris (UAP), 175 with stable angina pectoris (SAP), and 100 controls. We utilized intravascular ultrasound (IVUS), an advanced imaging technique that surpasses traditional angiography by providing detailed, high-resolution images of both the coronary artery lumen and wall, including plaque composition. This approach is pivotal for assessing plaque stability, a key factor in the risk of rupture and subsequent cardiovascular events, indicated by features like lipid-rich cores and thin fibrous caps. During IVUS, we quantified parameters such as plaque area, load, and the remodeling index, the latter offering insights into vascular adaptation to plaque buildup. Additionally, we conducted a correlation analysis between IVUS indices and three cardiovascular markers: epicardial fat pad thickness, monocyte-platelet aggregates, and sdLDL-C levels. The goal was to ascertain the predictive value of these markers in tandem with IVUS for determining the stability of coronary artery atherosclerotic plaques. This integrative approach enhances understanding of plaque formation and destabilization, potentially informing more effective CHD prevention and management strategies. Results: Our study revealed distinct variations in key parameters across patient groups with different forms of CHD and healthy controls. Notably, we observed significant differences in gender distribution, hypertension, and diabetes mellitus prevalence among these groups. In terms of IVUS indexes and cardiovascular parameters, the SAP group exhibited markedly different results compared to the AMI and UAP groups. Specifically, the SAP patients showed the lowest values for EMMA, plaque area, plaque burden, reconstruction index, and positive remodeling. Additionally, they exhibited the thickest fibrous caps. In contrast, the AMI and UAP groups presented similar outcomes in these aspects. Regarding the epicardial fat pad thickness, the positive rate of monocyte-platelet aggregates, and the levels of sdLDL-C, there were no significant differences between the AMI and UAP groups. However, these parameters were notably higher in the AMI and UAP groups compared to the SAP group. Crucially, we established a significant correlation between the thickness of the epicardial fat pad, the positive rate of monocyte-platelet aggregates, and the sdLDL-C levels with plaque loading rate and remodeling index. These correlations underscore the potential utility of these parameters as indicators of plaque stability and cardiovascular risk in patients with CHD. This highlights the complexity of atherosclerotic disease progression and underscores the importance of a multifaceted approach to assessing and managing CHD. Conclusion: Our research delineates the critical role of the remodeling index, epicardial fat pad thickness, monocyte-platelet aggregates, and sdLDL-C levels as key prognostic tools for assessing coronary plaque stability in coronary artery disease (CAD). These biomarkers collectively provide an enhanced perspective on plaque vulnerability, an essential aspect in the genesis of acute coronary events. Clinically, these findings are pivotal. They offer a refined approach to CAD management and risk evaluation, allowing for the precise identification of patients at increased risk of plaque rupture, a precursor to acute coronary syndromes. This precision facilitates the adoption of more individualized treatment strategies, focusing on aggressive interventions for high-risk patients and more conservative management for those with stable plaques.

SELECTION OF CITATIONS
SEARCH DETAIL
...