Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.012
Filter
1.
Sci Rep ; 14(1): 12763, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834661

ABSTRACT

With the continuous progress of technology, the subject of life science plays an increasingly important role, among which the application of artificial intelligence in the medical field has attracted more and more attention. Bell facial palsy, a neurological ailment characterized by facial muscle weakness or paralysis, exerts a profound impact on patients' facial expressions and masticatory abilities, thereby inflicting considerable distress upon their overall quality of life and mental well-being. In this study, we designed a facial attribute recognition model specifically for individuals with Bell's facial palsy. The model utilizes an enhanced SSD network and scientific computing to perform a graded assessment of the patients' condition. By replacing the VGG network with a more efficient backbone, we improved the model's accuracy and significantly reduced its computational burden. The results show that the improved SSD network has an average precision of 87.9% in the classification of light, middle and severe facial palsy, and effectively performs the classification of patients with facial palsy, where scientific calculations also increase the precision of the classification. This is also one of the most significant contributions of this article, which provides intelligent means and objective data for future research on intelligent diagnosis and treatment as well as progressive rehabilitation.


Subject(s)
Bell Palsy , Humans , Bell Palsy/diagnosis , Bell Palsy/physiopathology , Neural Networks, Computer , Female , Male , Facial Expression , Adult , Artificial Intelligence , Middle Aged , Facial Paralysis/diagnosis , Facial Paralysis/physiopathology , Facial Paralysis/psychology , Facial Recognition , Automated Facial Recognition/methods
2.
Clin Nephrol ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836366

ABSTRACT

We report a 67-year-old man who presented with poor dietary intake and fatigue. Laboratory tests showed leukopenia, antinuclear antibody (ANA) positivity, anti-dsDNA antibody (A-dsDNA) and anti-Smith antibody (anti-Sm) negativity, decreased C3 and C4, elevated serum immunoglobulin G (IgG), IgG4, and creatinine, and 1.25 g urinary protein at 24 hours. As his condition worsened, re-examination showed thrombocytopenia and A-dsDNA positivity, and renal biopsy pathology showed IgG4-related tubulointerstitial nephritis. The final diagnosis was IgG4-related disease (IgG4-RD) with systemic lupus erythematosus (SLE). His condition improved with glucocorticoid (GC) combined with hydroxychloroquine (HCQ) and mycophenolate mofetil (MMF) treatment. This case highlights that IgG4-RD and SLE may occur successively or co-exist and may convert into each other.

3.
ACS Sens ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38840550

ABSTRACT

Wearable gas sensors have drawn great attention for potential applications in health monitoring, minienvironment detection, and advanced soft electronic noses. However, it still remains a great challenge to simultaneously achieve excellent flexibility, high sensitivity, robustness, and gas permeability, because of the inherent limitation of widely used traditional organic flexible substrates. Herein, an electrospinning polyacrylonitrile (PAN) nanofiber network was designed as a flexible substrate, on which an ultraflexible wearable gas sensor was prepared with in situ assembled polyaniline (PANI) and multiwalled carbon nanotubes (MWCNTs) as a sensitive layer. The unique nanofiber network and strong binding force between substrate and sensing materials endow the wearable gas sensor with excellent robustness, flexibility, and gas permeability. The wearable sensor can maintain stable NH3 sensing performance while sustaining extreme bending and stretching (50% of strain). The Young's modulus of wearable PAN/MWCNTs/PANI sensor is as low as 18.9 MPa, which is several orders of magnitude smaller than those of reported flexible sensors. The water vapor transmission rate of the sensor is 0.38 g/(cm2 24 h), which enables the wearing comfort of the sensor. Most importantly, due to the effective exposure of sensing sites as well as the heterostructure effect between MWCNTs and PANI, the sensor shows high sensitivity to NH3 at room temperature, and the theoretical limit of detection is as low as 300 ppb. This work provides a new avenue for the realization of reliable and high-performance wearable gas sensors.

4.
J Am Heart Assoc ; 13(9): e033700, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38700005

ABSTRACT

BACKGROUND: The only clinically approved drug that reduces doxorubicin cardiotoxicity is dexrazoxane, but its application is limited due to the risk of secondary malignancies. So, exploring alternative effective molecules to attenuate its cardiotoxicity is crucial. Colchicine is a safe and well-tolerated drug that helps reduce the production of reactive oxygen species. High doses of colchicine have been reported to block the fusion of autophagosomes and lysosomes in cancer cells. However, the impact of colchicine on the autophagy activity within cardiomyocytes remains inadequately elucidated. Recent studies have highlighted the beneficial effects of colchicine on patients with pericarditis, postprocedural atrial fibrillation, and coronary artery disease. It remains ambiguous how colchicine regulates autophagic flux in doxorubicin-induced heart failure. METHODS AND RESULTS: Doxorubicin was administered to establish models of heart failure both in vivo and in vitro. Prior studies have reported that doxorubicin impeded the breakdown of autophagic vacuoles, resulting in damaged mitochondria and the accumulation of reactive oxygen species. Following the administration of a low dose of colchicine (0.1 mg/kg, daily), significant improvements were observed in heart function (left ventricular ejection fraction: doxorubicin group versus treatment group=43.75%±3.614% versus 57.07%±2.968%, P=0.0373). In terms of mechanism, a low dose of colchicine facilitated the degradation of autolysosomes, thereby mitigating doxorubicin-induced cardiotoxicity. CONCLUSIONS: Our research has shown that a low dose of colchicine is pivotal in restoring the autophagy activity, thereby attenuating the cardiotoxicity induced by doxorubicin. Consequently, colchicine emerges as a promising therapeutic candidate to improve doxorubicin cardiotoxicity.


Subject(s)
Autophagy , Cardiotoxicity , Colchicine , Doxorubicin , Lysosomes , Myocytes, Cardiac , Colchicine/toxicity , Colchicine/pharmacology , Doxorubicin/toxicity , Cardiotoxicity/prevention & control , Autophagy/drug effects , Lysosomes/drug effects , Lysosomes/metabolism , Animals , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Disease Models, Animal , Male , Heart Failure/chemically induced , Heart Failure/drug therapy , Heart Failure/metabolism , Antibiotics, Antineoplastic/toxicity , Reactive Oxygen Species/metabolism , Mice , Mice, Inbred C57BL , Ventricular Function, Left/drug effects
5.
Opt Lett ; 49(10): 2797-2800, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748164

ABSTRACT

The existing methods fail to effectively utilize the viewpoint information of light field 3D images for watermark embedding which results in a serious decrease in both invisibility and robustness of the watermark. Therefore, we propose a novel, to the best of our knowledge, light field 3D dual-key-based watermarking network (3D-DKWN). Our method employs a pixel mapping algorithm to obtain the disparity sub-image of the light field 3D image and generates an encoding key (EK). Adaptive watermark embedding is then performed on the disparity sub-image and a steganographic key (SK) is generated. Finally, the light field 3D image with the embedded watermark is reconstructed. Compared with previous approaches, our method reasonably utilizes the viewpoint information of light field 3D images, resulting in the significant improvement of invisibility and robustness of the watermark.

7.
ACS Biomater Sci Eng ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775700

ABSTRACT

Visualizing the whole vascular network system is crucial for understanding the pathogenesis of specific diseases and devising targeted therapeutic interventions. Although the combination of light sheet microscopy and tissue-clearing methods has emerged as a promising approach for investigating the blood vascular network, leveraging the spatial resolution down to the capillary level and the ability to image centimeter-scale samples remains difficult. Especially, as the resolution improves, the issue of photobleaching outside the field of view poses a challenge to image the whole vascular network of adult mice at capillary resolution. Here, we devise a fluorescent microsphere vascular perfusion method to enable labeling of the whole vascular network in adult mice, which overcomes the photobleaching limit during the imaging of large samples. Moreover, by combining the utilization of a large-scale light-sheet microscope and tissue clearing protocols for whole-mouse samples, we achieve the capillary-level imaging resolution (3.2 × 3.2 × 6.5 µm) of the whole vascular network with dimensions of 45 × 15 × 82 mm in adult mice. This method thus holds great potential to deliver mesoscopic resolution images of various tissue organs for whole-animal imaging.

8.
BMC Genomics ; 25(1): 510, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783193

ABSTRACT

Domesticated safflower (Carthamus tinctorius L.) is a widely cultivated edible oil crop. However, despite its economic importance, the genetic basis underlying key traits such as oil content, resistance to biotic and abiotic stresses, and flowering time remains poorly understood. Here, we present the genome assembly for C. tinctorius variety Jihong01, which was obtained by integrating Oxford Nanopore Technologies (ONT) and BGI-SEQ500 sequencing results. The assembled genome was 1,061.1 Mb, and consisted of 32,379 protein-coding genes, 97.71% of which were functionally annotated. Safflower had a recent whole genome duplication (WGD) event in evolution history and diverged from sunflower approximately 37.3 million years ago. Through comparative genomic analysis at five seed development stages, we unveiled the pivotal roles of fatty acid desaturase 2 (FAD2) and fatty acid desaturase 6 (FAD6) in linoleic acid (LA) biosynthesis. Similarly, the differential gene expression analysis further reinforced the significance of these genes in regulating LA accumulation. Moreover, our investigation of seed fatty acid composition at different seed developmental stages unveiled the crucial roles of FAD2 and FAD6 in LA biosynthesis. These findings offer important insights into enhancing breeding programs for the improvement of quality traits and provide reference resource for further research on the natural properties of safflower.


Subject(s)
Carthamus tinctorius , Fatty Acid Desaturases , Fatty Acids, Unsaturated , Genome, Plant , Carthamus tinctorius/genetics , Carthamus tinctorius/metabolism , Fatty Acids, Unsaturated/biosynthesis , Fatty Acids, Unsaturated/metabolism , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Seeds/genetics , Seeds/metabolism , Seeds/growth & development , Genomics/methods , Gene Expression Regulation, Plant , Molecular Sequence Annotation
9.
Aging (Albany NY) ; 162024 May 30.
Article in English | MEDLINE | ID: mdl-38819224

ABSTRACT

BACKGROUND: Amyotrophic Lateral Sclerosis (ALS), a fatal neurodegenerative disease, continues to elude complete comprehension of its pathological underpinnings. Recent focus on inflammation in ALS pathogenesis prompts this investigation into the genetic correlation and potential causal relationships between circulating inflammatory proteins and ALS. METHODS: Genome-wide association study (GWAS) data encompassing 91 circulating inflammatory protein measures from 14,824 individuals of European ancestry, alongside records from 27,205 ALS cases and 110,881 controls, were employed. Assessment of genetic correlation and overlap utilized LD score regression (LDSC), high-definition likelihood (HDL), and genetic analysis integrating pleiotropy and annotation (GPA) methodologies. Identification of shared genetic loci involved pleiotropy analysis, functional mapping and annotation (FUMA), and co-localization analysis. Finally, Mendelian randomization was applied to probe causal relationships between inflammatory proteins and ALS. RESULTS: Our investigation revealed significant genetic correlation and overlap between ALS and various inflammatory proteins, including C-C motif chemokine 28, Interleukin-18, C-X-C motif chemokine 1, and Leukemia inhibitory factor receptor (LIFR). Pleiotropy analysis uncovered shared variations at specific genetic loci, some of which bore potential harm. Mendelian randomization analysis suggested that alterations in specific inflammatory protein levels, notably LIFR, could impact ALS risk. CONCLUSIONS: Our findings uncover a genetic correlation between certain circulating inflammatory proteins and ALS, suggesting their possible causal involvement in ALS pathogenesis. Moreover, the identification of LIFR as a crucial protein may yield new insights into ALS pathomechanisms and offer a promising avenue for therapeutic interventions. These discoveries provide novel perspectives for advancing the comprehension of ALS pathophysiology and exploring potential therapeutic avenues.

10.
Cell Immunol ; 401-402: 104837, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38810592

ABSTRACT

The activation of macrophages, essential for the innate defense against invading pathogens, revolves around Toll-like receptors (TLRs). Nevertheless, a comprehensive understanding of the molecular mechanisms governing TLR signaling in the course of macrophage activation remains to be fully clarified. Although Zc3h12c was originally identified as being enriched in organs associated with macrophages, its precise function remains elusive. In this study, we observed a significant induction of Zc3h12c in macrophages following stimulation with TLR agonists and pathogens. Overexpression of Zc3h12c significantly mitigated the release of TNF-α and IL-6 triggered by lipopolysaccharide (LPS), whereas depletion of Zc3h12c increased the production of the cytokines mentioned above. Notably, the expression of IFN-ß was not influenced by Zc3h12c. Luciferase reporter assays revealed that Zc3h12c could suppress the TNF-α promoter activity. Moreover, Zc3h12c exerted a notable inhibitory effect on JNK, ERK, p38, and NF-κB signaling induced by LPS. In summary, the findings of our study suggest that Zc3h12c functions as a robust suppressor of innate immunity, potentially playing a role in the pathogenesis of infectious diseases.

11.
Clin Chim Acta ; 560: 119748, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38796051

ABSTRACT

BACKGROUND: Due to the lack of early symptoms, breast cancer is frequently overlooked, leading to distant metastases and multi-organ lesions that directly threaten patients' lives. We have identified a novel tumor marker, antibodies to endophilin A2 (EA2), to improve early diagnosis of breast cancer. METHODS: Antibody levels of EA2 were analyzed in sera of patients with cancers of different origins and stages by indirect enzyme-linked immunosorbent assay (ELISA). Diagnostic accuracy and reference range were determined by the area under the receiver operating curve and distribution curve. The levels of EA2 antigen in sera were determined by sandwich ELISA. RESULTS: The levels of antibodies against EA2 were higher in sera of patients with breast cancer (P < 0.0001), liver cancer (P = 0.0005), gastric cancer (P = 0.0026), and colon cancer (P = 0.0349) than those in healthy controls, but not in patients with rectal cancer (P = 0.1151), leukemia (P = 0.7508), or lung cancer (P = 0.2247). The highest diagnostic value was for breast cancer, particularly in early cases (AUC = 0.8014) and those with distant metastases (AUC = 0.7885). The titers of EA2 antibodies in sera were correlated with levels of EA2 antigen in breast cancer patients. CONCLUSION: Antibodies to EA2 are novel blood biomarkers for early diagnosis of breast cancer that warrants further study in larger-scale cohort studies.

12.
Anal Methods ; 16(20): 3179-3191, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38738644

ABSTRACT

Extracellular vesicles (EVs) are nanoparticles secreted by cells with a closed phospholipid bilayer structure, which can participate in various physiological and pathological processes and have significant clinical value in disease diagnosis, targeted therapy and prognosis assessment. EV isolation methods currently include differential ultracentrifugation, ultrafiltration, size exclusion chromatography, immunoaffinity, polymer co-precipitation and microfluidics. In addition, material-based biochemical or biophysical approaches relying on intrinsic properties of the material or its surface-modified functionalized monomers, demonstrated unique advantages in the efficient isolation of EVs. In order to provide new ideas for the subsequent development of material-based EV isolation methods, this review will focus on the principle, research status and application prospects of material-based EV isolation methods based on different material carriers and functional monomers.


Subject(s)
Extracellular Vesicles , Ultracentrifugation , Extracellular Vesicles/chemistry , Humans , Ultracentrifugation/methods , Chromatography, Gel/methods , Animals , Ultrafiltration/methods
13.
J Agric Food Chem ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820047

ABSTRACT

Atrazine (ATR) is a widely used herbicide worldwide that can cause kidney damage in humans and animals by accumulation in water and soil. Lycopene (LYC), a carotenoid with numerous biological activities, plays an important role in kidney protection due to its potent antioxidant and anti-inflammatory effects. The current study sought to investigate the role of interactions between mtDNA and the cGAS-STING signaling pathway in LYC mitigating PANoptosis and inflammation in kidneys induced by ATR exposure. In our research, 350 mice were orally administered LYC (5 mg/kg BW/day) and ATR (50 or 200 mg/kg BW/day) for 21 days. Our results reveal that ATR exposure induces a decrease in mtDNA stability, resulting in the release of mtDNA into the cytoplasm through the mPTP pore and the BAX pore and the mobilization of the cGAS-STING pathway, thereby inducing renal PANoptosis and inflammation. LYC can inhibit the above changes caused by ATR. In conclusion, LYC inhibited ATR exposure-induced histopathological changes, renal PANoptosis, and inflammation by inhibiting the cGAS-STING pathway. Our results demonstrate the positive role of LYC in ATR-induced renal injury and provide a new therapeutic target for treating renal diseases in the clinic.

14.
Stem Cell Res ; 77: 103439, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761687

ABSTRACT

Hypophosphatemic vitamin D-resistant rickets typically presents in infancy or early childhood with skeletal deformities and growth plate abnormalities. In this report, the SMUSHi005-A human induced pluripotent stem cell (hiPSC) line was successfully established from the PBMCs of a female patient carrying the PHEX mutation with c.1586-1586+1 delAG. The iPSC line has been confirmed to have a normal karyotype. The displayed cells clearly exhibit characteristics similar to embryonic stem cells, expressing pluripotency markers and demonstrating the ability to differentiate into three germ layers.


Subject(s)
Induced Pluripotent Stem Cells , Mutation , PHEX Phosphate Regulating Neutral Endopeptidase , Humans , Induced Pluripotent Stem Cells/metabolism , Female , PHEX Phosphate Regulating Neutral Endopeptidase/genetics , Cell Line , Familial Hypophosphatemic Rickets/genetics , Familial Hypophosphatemic Rickets/pathology , Cell Differentiation , Rickets, Hypophosphatemic/genetics , Vitamin D/analogs & derivatives
15.
Langmuir ; 40(21): 11263-11276, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38743290

ABSTRACT

Synergistic engineering of energy band alignment and interfacial electric field distribution is essential for photocatalyst design but is still challenging because of the limitation on refined regulation in the nanoscale. This study addresses the issue by employing surface modification and thermal-induced phase transformation in Bi2MoO6/BixOyIz hetero-nanofiber frameworks. The energy band alignment switches from a type-II interface to a Z-scheme contact with stronger redox potentials and inhibited electron traps, and the optimized built-in electric field distribution could be reached based on experimental and theoretical investigations. The engineered hetero-nanofibers exhibit outstanding visible-light-driven photocatalytic nitrogen reduction activity (605 µmol/g/h) and tetracycline hydrochloride removal rate (81.5% within 30 min), ranking them among the top-performing bismuth series materials. Furthermore, the photocatalysts show promise in activating advanced oxidants for efficient organic pollutant degradation. Moreover, the Bi2MoO6/Bi5O7I hetero-nanofibers possess good recycling stability owing to their three-dimensional network structure. This research offers valuable insights into heterojunction design for environmental remediation and industrial applications.

16.
J Hazard Mater ; 472: 134510, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38704909

ABSTRACT

Nitrogen removal is essential for restoring eutrophic lakes. Microorganisms and aquatic plants in lakes are both crucial for removing excess nitrogen. However, microplastic (MP) pollution and the invasion of exotic aquatic plants have become increasingly serious in lake ecosystems due to human activity and plant-dominant traits. This field mesocosm study explored how the diversity of invasive submerged macrophytes affects denitrification (DNF), anammox (ANA), and dissimilatory nitrate reduction to ammonium (DNRA) in lake sediments with varying MPs. Results showed that invasive macrophytes suppressed DNF rates, but DNRA and ANA were less sensitive than DNF to the diversity of invasive species. Sediment MPs increased the biomass of invasive species more than native species, but did not affect microbial processes. The effects of MPs on nitrate dissimilatory reduction were process-specific. MPs increased DNF rates and the competitive advantage of DNF over DNRA by changing the sediment environment. The decoupling of DNF and ANA was also observed, with increased DNF rates and decreased ANA rates. The study findings suggested new insights into how the invasion of exotic submerged macrophytes affects the sediment nitrogen cycle complex environments.


Subject(s)
Geologic Sediments , Introduced Species , Lakes , Microplastics , Nitrates , Plants , Geologic Sediments/microbiology , Nitrates/metabolism , Plants/metabolism , Microplastics/metabolism , Lakes/microbiology , Water Pollutants, Chemical/metabolism , Oxidation-Reduction , Biodiversity , Denitrification
17.
Chem Commun (Camb) ; 60(43): 5622-5625, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38715529

ABSTRACT

We report that the use of a hydrogen-bonded pyrimidine-macrocycle complex can efficiently facilitate the threading of two bispyridinium ethylenes into four rings, as evidenced by X-ray crystallography of its precursor, offering a rare example of a doubly threaded [6]rotaxane in 91% yield. The unusual architecture is found to be stable with no dethreading despite the large ring size of the macrocycle with respect to the stopper.

18.
Materials (Basel) ; 17(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38730935

ABSTRACT

Diamond-like carbon (DLC) coatings are effective in protecting the key components of marine equipment and can greatly improve their short-term performance (1.5~4.5 h). However, the lack of investigation into their long-term (more than 200 h) performance cannot meet the service life requirements of marine equipment. Here, three multilayered DLC coatings, namely Ti/DLC, TiCx/DLC, and Ti-TiCx/DLC, were prepared, and their long-term corrosion resistance was investigated. Results showed that the corrosion current density of all DLC coatings was reduced by 1-2 orders of magnitude compared with bare 316L stainless steel (316Lss). Moreover, under long-term (63 days) immersion in a 3.5 wt.% NaCl solution, all DLC coatings could provide excellent long-term corrosion protection for 316Lss, and Ti-TiCx/DLC depicted the best corrosion resistance; the polarization resistances remained at ~3.0 × 107 Ω·cm2 after immersion for 63 days, with more interfaces to hinder the penetration of the corrosive media. Meanwhile, during neutral salt spray (3000 h), the corrosion resistance of Ti/DLC and TiCx/DLC coatings showed a certain degree of improvement because the insoluble corrosion products at the defects blocked the subsequent corrosion. This study can provide a route to designing amorphous carbon protective coatings for long-term marine applications in different environments.

19.
J Org Chem ; 89(10): 6704-6713, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38709904

ABSTRACT

EMM (electromagnetic mill)-promoted Pd-catalyzed solid state intramolecular Heck-type cyclization/boronation and Suzuki couplings are reported. Compared to previous mechanochemistry that constructed one chemical bond through a cross-coupling reaction, this strategy realizes cascade transformation along with multiple chemical bond formation. This conversion does not require organic solvents or additional heating, and it shows a good substrate scope and high functional group tolerance.

20.
Bioact Mater ; 38: 73-94, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38699240

ABSTRACT

Sutureless anastomotic devices present several advantages over traditional suture anastomosis, including expanded global access to microvascular surgery, shorter operation and ischemic times, and reduced costs. However, their adaptation for arterial use remains a challenge. This review aims to provide a comprehensive overview of sutureless anastomotic approaches that are either FDA-approved or under investigation. These approaches include extraluminal couplers, intraluminal devices, and methods assisted by lasers or vacuums, with a particular emphasis on tissue adhesives. We analyze these devices for artery compatibility, material composition, potential for intimal damage, risks of thrombosis and restenosis, and complications arising from their deployment and maintenance. Additionally, we discuss the challenges faced in the development and clinical application of sutureless anastomotic techniques. Ideally, a sutureless anastomotic device or technique should eliminate the need for vessel eversion, mitigate thrombosis through either biodegradation or the release of antithrombotic drugs, and be easily deployable for broad use. The transformative potential of sutureless anastomotic approaches in microvascular surgery highlights the necessity for ongoing innovation to expand their applications and maximize their benefits.

SELECTION OF CITATIONS
SEARCH DETAIL
...