Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Huan Jing Ke Xue ; 45(2): 668-677, 2024 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-38471907

ABSTRACT

To explore the formation mechanism of the ozone (O3) and emission reduction strategy in a northwestern city, an extensive field campaign was conducted in summertime in 2021 in Yining City, in which the 0-D box model incorporating the latest explicit chemical mechanism (MCMv3.3.1) was applied for the first time to quantify the O3-NOx-VOCs sensitivity and formulate a precise O3 control strategy in this city. The results showed that: ① the three indicators ï¼»i.e., O3 formation potential (OFP), ·OH reaction rate (k·OH), and relative incremental reactivity (RIR)] jointly indicated that alkenes, oxygenated volatile organic compounds (OVOCs), and aromatics were the highest contributors among anthropogenic volatile organic compounds (AVOC) to O3 formation, and the contribution of biogenic volatile organic compounds (BVOC) also could not be ignored. Additionally, the results based on RIR calculation implied that that the acetaldehyde, ethylene, and propylene were the most sensitive individual VOCs species in Yining City. ② The in-situ photochemical O3 variations were primarily influenced by the local photochemical production and export process horizontally to downwind areas or vertically to the upper layer, and the reaction pathways of HO2·+ NO and ·OH + NO2 contributed the most to the gross Ox photochemical production (60%) and photochemical destruction production (53%), respectively. Hence, the reduction in local emissions for O3 precursors was more essential to alleviate O3 pollution in this city. ③ The outcome based on RIR(NOx) / RIR(AVOC) and EKMA jointly suggested that the photochemical regime in this city can be considered a transitional regime that was also nearly a VOCs-limited regime. Detailed mechanism modeling based on multiple scenarios further suggested that the NOx and VOCs synergic emission reduction strategies was helpful to alleviate O3 pollution. These results are useful to provide policy-related guidance for other cities facing similar O3 pollution in northwest China.

2.
Talanta ; 271: 125654, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38224659

ABSTRACT

Generally, thin-layer chromatography always undertakes the indispensable role in rapid screening and identification of specific compounds. Stationary phase is the core part of thin-layer chromatography with fixed property, which leading to the limitations of separation mode of only regulating the composition of mobile phase. This work was an attempt to fabricate the unique photosensitive thin-layer chromatography to make up the above major drawback. 4-[3-(Triethoxysilyl)propoxy]azobenzene (azo-PTES) was synthesized as photosensitive modifier to fabricate the photosensitive stationary phase, and the transformation of cis-trans structure of azo-PTES proceeds along with polarity difference under 365 nm and 473 nm irradiation. Based on this, the proposed photosensitive thin-layer chromatography shows the reversible switch of polarity of stationary phase by photoinduction, followed by the deserved reversible separation behavior. Furthermore, multi-regulation in spatial dimension was achieved based on the high freedom of spatial regulation of photoinduction, which brings about the integration of stationary phase with different polarity, just by photoinduction. The concept of photosensitive thin-layer chromatography provides new idea for improving separation efficiency and developing multi-dimensional thin-layer chromatography on the one plate.

3.
Sci Total Environ ; 894: 165056, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37348729

ABSTRACT

Soil microbial communities have resistance to environmental stresses and thus can maintain ecosystem functions such as decomposition, nutrient provisioning, and plant pathogen control. However, predominant factors driving community resistance of soil microbiome to heavy metal pollution stresses and ecosystem functional stability are still unclear, limiting our ability to forecast how soil pollution might affect ecosystem sustainability. Here, we conducted microcosm experiments to estimate the importance of soil microbiome in predicting community resistance to heavy metal mercury (Hg) stress in paired paddy and upland fields. We found that community resistance of soil microbiome was strongly correlated with ecosystem functional stability, so were the individual groups of organisms such as bacteria, saprotrophic fungi, and phototrophic protists. The core phylotypes within soil microbiome had a major contribution to community resistance, which was essential for the maintenance of functional stability. Co-occurrence network further confirmed that community resistances of main ecological clusters were positively correlated with ecosystem functional stability. Together, our results provide new insights into the link between community resistance and functional stability, and highlight the importance of core microbiota in driving community resistance to environmental stresses and maintain functional stability.


Subject(s)
Mercury , Metals, Heavy , Microbiota , Ecosystem , Mercury/toxicity , Mercury/analysis , Soil , Soil Microbiology , Fungi
4.
Huan Jing Ke Xue ; 44(4): 1899-1910, 2023 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-37040941

ABSTRACT

To explore the characteristics and sources of PM2.5 in the core area of Ili River Valley in spring, a total of 140 PM2.5 samples were collected at six sampling sites during April 20-29, 2021, and 51 chemical components including inorganic elements, water-soluble ions, and carbon components were analyzed. The results showed that ρ(PM2.5) was at a low level during sampling, ranging from 9 µg·m-3 to 35 µg·m-3. Si, Ca, Al, Na, Mg, Fe, and K were the most abundant elements, accounting for 12% of PM2.5, indicating that PM2.5 was affected by the dust sources in spring. The spatial distribution characteristics of elements depended on the surrounding environments of the sampling sites. The new government area was affected by coal-fired sources, so the value of As concentration was high. Yining Municipal Bureau and the Second Water Plant were greatly affected by motor vehicle sources, so the values of Sb and Sn concentration were higher. The enrichment factor results showed that Zn, Ni, Cr, Pb, Cu, and As were mainly emitted from fossil fuel combustion and motor vehicles. The concentration of water-soluble ions accounted for 33.2% of PM2.5. Among them, ρ(SO42-), ρ(NO3-), ρ(Ca2+), and ρ(NH4+) were (2.48±0.57), (1.22±0.75), (1.18±0.49), and (0.98±0.45) µg·m-3, respectively. The higher Ca2+ concentration also reflected the contribution of dust sources. The ratio of n(NO3-)/n(SO42-) was between 0.63 and 0.85, which indicated that the influence of stationary sources was more important than that of mobile sources. Both Yining Municipal Bureau and the Second Water Plant were affected by motor vehicle exhaust; therefore, their n(NO3-)/n(SO42-) ratios were high. Yining County was in a residential area, and therefore its n(NO3-)/n(SO42-) ratio was lower. The average ρ(OC) and ρ(EC) in PM2.5 were 5.12 µg·m-3(4.67-6.25 µg·m-3) and 0.75 µg·m-3(0.51-0.97 µg·m-3), respectively. Yining Municipal Bureau was significantly affected by motor vehicle exhaust from both sides, so the values of OC and EC concentration were slightly higher than those in other sampling sites. The SOC concentration was calculated by the minimum ratio method, and the results showed that the values of SOC concentration in the New Government Area, the Second Water Plant, and Yining Ecological Environment Bureau were higher than those in other sampling sites. The results of the CMB model showed that PM2.5 in this area mainly came from the contribution of secondary particulate matter and dust sources, which accounted for 33.3% and 17.5%, respectively. Secondary organic carbon (16.2%) was the main contribution source of secondary particulate matter.

5.
Sci Rep ; 13(1): 4688, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36949235

ABSTRACT

The novel weak-value-amplification (WVA) scheme of precision metrology is deeply rooted in the quantum nature of destructive interference between the pre- and post-selection states. And, an alternative version, termed as joint WVA (JWVA), which employs the difference-signal from the post-selection accepted and rejected results, has been found possible to achieve even better sensitivity (two orders of magnitude higher) under some technical limitations (e.g. misalignment errors). In this work, after erasing the quantum coherence, we analyze the difference-signal amplification (DSA) technique, which serves as a classical counterpart of the JWVA, and show that similar amplification effect can be achieved. We obtain a simple expression for the amplified signal, carry out characterization of precision, and point out the optimal working regime. We also discuss how to implement the post-selection of a classical mixed state. The proposed classical DSA technique holds similar technical advantages of the JWVA and may find interesting applications in practice.

6.
Huan Jing Ke Xue ; 43(11): 5009-5017, 2022 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-36437073

ABSTRACT

The simultaneous observation and analysis of atmospheric particles on a regional scale is an important approach to developing control strategies for air pollution. To study the spatial distribution characteristics of particulate matter and water-soluble inorganic ions in the Ili Valley Urban agglomeration, PM2.5 and PM10 samples were synchronously collected from July 19 to July 29, 2021 in Yining City and the surrounding three counties, and then nine types of water-soluble inorganic ions (WSIIs) were analyzed. The spatial distribution characteristics, existence form of WSIIs, and influencing factors were discussed in depth. The results showed that the average ρ(PM2.5) and ρ(PM10) in the Ili River Valley urban agglomeration in summer were 23 µg·m-3 and 59 µg·m-3, respectively. The emission of local industrial and mobile sources in Yining City was higher than that of the surrounding three counties, resulting in the highest ρ(PM2.5) in the region (25 µg·m-3). Due to the influence of dust sources and topography, the ρ(PM10) in Yining county was the highest in the region (63 µg·m-3). Huocheng county is located upwind of the region, and these favorable diffusion conditions resulted in the lowest ρ(PM2.5) and ρ(PM10) (20 µg·m-3 and 49 µg·m-3, respectively). The concentrations of WSIIs in PM2.5 and PM10 ranged from 28.2%-29.9% and 16.0%-20.2%, respectively. The four main ions (SO42-, NO3-, NH4+, and Ca2+) accounted for approximately 90% of WSIIs mass concentrations. The concentration order of the four main ions in PM2.5 was SO42->Ca2+>NH4+>NO3- and SO42->Ca2+>NO3->NH4+ in PM10. The results of correlation analysis showed that the similar SO42- concentrations in the four cities were mainly caused by regional transport. Ca2+ was the highest-concentration ion in PM10 of Yining City and Qapqal Xibe Autonomous county, and the proportion of Ca2+ was significantly higher than that in most cities in China, which reflected that the cities in the core area of the Ili Valley were greatly affected by the dust sources. The ratios of n(NO3-)/n(SO42-) in PM2.5 and PM10 were 0.78 and 0.76, respectively, indicating that the influence of stationary sources was greater than that of mobile sources. The ratio of n(NO3-)/n(SO42-) in Yining City>Huocheng county>Yining county>Qapqal Xibe Autonomous county, which was consistent with the motor vehicle populations of the four cities, reflecting that Yining City was affected by motor vehicle sources more than the surrounding three counties. The secondary components mainly existed in the form of (NH4)2SO4, NH4HSO4, and NH4NO3. There was excess ammonia after the reaction between NH4+ and SO42- in each city. NH4NO3 mainly existed in Yining City, which was mainly related to high NO2 in Yining City. The NOR of the four cities were 0.03-0.10 and 0.03-0.16 in PM2.5 and PM10, respectively, and the secondary transformation of NO3- was weak due to the influence of high temperatures in summer. The SOR were 0.21-0.41 and 0.23-0.44, respectively. The SOR of Qapqal Xibe Autonomous county was the highest due to the relatively high humidity, whereas the SOR of Huocheng county was higher than that of the three sites in Yining City due to the influence of regional transportation. The formation mechanisms showed that SO42- in Qapqal Xibe Autonomous county and Yining City were mainly produced by the heterogeneous reaction, and in Yining county it was mainly formed via the homogeneous reaction. However, the formation mechanism in Huocheng county was complex and was affected by both homogeneous and heterogeneous reactions.


Subject(s)
Air Pollutants , Rivers , Air Pollutants/analysis , Water/analysis , Environmental Monitoring/methods , Particulate Matter/analysis , Ions/analysis , Dust/analysis
7.
ISME Commun ; 2(1): 69, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-37938257

ABSTRACT

Soil pollution is an important stressor affecting biodiversity and ecosystem functioning. However, we lack a holistic understanding of how soil microbial communities respond to heavy metal pollution in agricultural ecosystems. Here, we explored the distribution patterns and inter-kingdom interactions of entire soil microbiome (including bacteria, fungi, and protists) in 47 paired paddy and upland fields along a gradient of legacy mercury (Hg) pollution. We found that the richness and composition of protistan community had stronger responses to Hg pollution than those of bacterial and fungal communities in both paddy and upland soils. Mercury polluted soils harbored less protistan phototrophs but more protistan consumers. We further revealed that long-term Hg pollution greatly increased network complexity of protistan community than that of bacterial and fungal communities, as well as intensified the interactions between protists and the other microorganisms. Moreover, our results consistently indicated that protistan communities had stronger responses to long-term Hg pollution than bacterial and fungal communities in agricultural soils based on structural equation models and random forest analyses. Our study highlights that soil protists can be used as bioindicators of Hg pollution, with important implications for the assessment of contaminated farmlands and the sustainable management of agricultural ecosystems.

8.
Anal Chem ; 93(51): 17051-17059, 2021 12 28.
Article in English | MEDLINE | ID: mdl-34894658

ABSTRACT

Regrettably, conventional chromatographic columns have immutable polarity, resulting in requirements of at least two columns with polarity difference and sophisticated mechanical switching valves, which hinders the development of "micro-smart" multidimensional tandem chromatography. In this work, light-driven polarity switching was realized in a single capillary column based on the reversible trans-cis isomerization of 4-[3-(triethoxysilyl)propoxy]azobenzene as the stationary phase under light irradiation, with the change in dipole moment. As a result, the stationary phase offers precise and dynamic control of polarity based on the cis-trans azobenzene ratio, which depends on irradiation wavelength and time. Thus, the continuous adjustment of polarity enables diversified chromatographic separation modes, for example, step-polarity gradient and polarity-conversion separation modes, taking advantage of the superior freedom of polarity switching in time and spatial dimensions. The photosensitive column also shows good reproducibility of polarity photoreversibility and high separation efficiency. The present study might offer brand new insight into developing miniaturization and intellectualization of multidimensional chromatography via designing smart responsive switching valves or stationary phases, besides mechanical means.


Subject(s)
Chromatography , Reproducibility of Results
9.
Zhongguo Zhong Yao Za Zhi ; 46(16): 4230-4237, 2021 Aug.
Article in Chinese | MEDLINE | ID: mdl-34467737

ABSTRACT

This study aimed to explore the mechanism of Xiaoyao San(XYS) in the treatment of three diseases of liver depression and spleen deficiency, ie, depression, breast hyperplasia, and functional dyspepsia, and to provide a theoretical basis for the interpretation of the scientific connotation of "treating different diseases with the same method" of traditional Chinese medicines. Traditional Chinese medicine systems pharmacology database and analysis platform(TCMSP) was used to screen the active components of XYS which underwent principal component analysis(PCA) with the available drugs for these three diseases to determine the corresponding biological activities. The targets of XYS on depression, breast hyperplasia, and functional dyspepsia were obtained from GeneCards, TTD, CTD, and DrugBank databases. Cytoscape was used to plot the "individual herbal medicine-active components-potential targets" network. The resulting key targets were subjected to Kyoto encyclopedia of genes and genomes(KEGG) pathway analysis and gene ontology(GO) enrichment analysis. A total of 121 active components of XYS and 38 common targets in the treatment of depression, breast hyperplasia, and functional dyspepsia were collected. The key biological pathways were identified, including advanced glycation and products(AGEs)-receptor for advanced glycation and products(RAGE) signaling pathway in diabetic complications, HIF-1 signaling pathway, and cancer-related pathways. The key targets of XYS in the treatment of depression, breast hyperplasia, and functional dyspepsia included IL6, IL4, and TNF, and the key components were kaempferol, quercetin, aloe-emodin, etc. As revealed by the molecular docking, a strong affinity was observed between the key components and the key targets, which confirmed the results. The therapeutic efficacy of XYS in the treatment of diseases of liver depression and spleen deficiency was presumedly achieved by reducing the inflammatory reactions. The current findings are expected to provide novel research ideas and approaches to classify the scientific connotation of "treating different diseases with the same method" of Chinese medicines, as well as a theoretical basis for understanding the mechanism of XYS and exploring its clinical applications.


Subject(s)
Drugs, Chinese Herbal , Dyspepsia , Depression/drug therapy , Drugs, Chinese Herbal/pharmacology , Dyspepsia/drug therapy , Humans , Hyperplasia/drug therapy , Medicine, Chinese Traditional , Molecular Docking Simulation
10.
Front Endocrinol (Lausanne) ; 12: 788535, 2021.
Article in English | MEDLINE | ID: mdl-35069441

ABSTRACT

Graves' Ophthalmopathy (GO) is an organ-specific autoimmune disease that is often characterized by infiltration of orbital tissues and is considered as the most common extra-thyroid manifestation of Graves' disease (GD). Although genetic susceptibility has been found to be critical for the phenotype of GO, the associated risk alleles in a single gene are generally insufficient to cause the disease. Accruing evidence has shown that epigenetic disorders can act as the potentially missing link between genetic risk and clinically significant disease development. Abnormal epigenetic modifications can lead to pro-inflammatory cascades and activation of orbital fibroblasts (OFs) by promoting the various inflammatory response pathways and regulating the diverse signaling molecules that are involved in the fibrogenesis and adipogenesis, thereby leading to the significant expansion of orbital tissues, fibrosis and inflammation infiltration. Additionally, emerging evidence has shown that the gut microbiome can possibly drive the pathogenesis of GO by influencing the secretion of Thyrotropin receptor antibody (TRAb) and T-helper 17 (Th17)/regulatory T cells (Treg) imbalance. This paper describes the latest epigenetic research evidence and progress made in comprehending the mechanisms of GO development, such as DNA methylation, histone modification, non-coding RNAs, and the gut microbiome.


Subject(s)
Epigenesis, Genetic , Fibroblasts/metabolism , Gastrointestinal Microbiome , Graves Ophthalmopathy/genetics , Inflammation/genetics , Adipogenesis , DNA Methylation/genetics , Fibroblasts/immunology , Fibrosis , Graves Ophthalmopathy/immunology , Graves Ophthalmopathy/microbiology , Histone Code/genetics , Humans , Immunoglobulins, Thyroid-Stimulating/immunology , Inflammation/immunology , Inflammation/metabolism , Inflammation/microbiology , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology
11.
Sci Rep ; 10(1): 20426, 2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33235215

ABSTRACT

We solve the quasi-bound state-energy spectra and wavefunctions of an NPN-type graphene quantum dot under a perpendicular magnetic field. The evolution of the quasi-bound state spectra under the magnetic field is investigated using a Wentzel-Kramers-Brillouin approximation. In numerical calculations, we also show that the twofold energy degeneracy of the opposite angular momenta breaks under a weak magnetic field. As the magnetic field strengthens, this phenomenon produces an observable splitting of the energy spectrum. Our results demonstrate the relation between the quasi-bound state-energy spectrum in graphene quantum dots and magnetic field strength, which is relevant to recent measurements in scanning tunneling microscopy.

12.
Opt Express ; 26(6): 7034-7042, 2018 Mar 19.
Article in English | MEDLINE | ID: mdl-29609389

ABSTRACT

We propose a scheme to measure the quantum state of photons in a cavity. The proposal is based on the concept of quantum weak values and applies equally well to both the solid-state circuit and atomic cavity quantum electrodynamics (QED) systems. The proposed scheme allows us to access directly the superposition components in Fock state basis, rather than the Wigner function as usual in phase space. Moreover, the separate access feature held in the direct scheme does not require a global reconstruction for the quantum state, which provides a particular advantage beyond the conventional method of quantum state tomography.

13.
Sci Rep ; 8(1): 531, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29323255

ABSTRACT

In this work we present a large-deviation analysis for the counting statistics of atomic spontaneous emissions continuously detected in finite-bandwidth non-Markovian environment. We show that the statistics of the spontaneous emissions depends on the time interval (τ) of successive detections, which can result in big differences such as dynamical phase transition. This feature excludes the idea of regarding the spontaneous emissions as detection-free objective events. Possible experiment is briefly discussed in connection with the state-of-the-art optical cavity set-up.

14.
Sci Rep ; 7(1): 2576, 2017 05 31.
Article in English | MEDLINE | ID: mdl-28566725

ABSTRACT

Within the framework of Boltzmann equation, we present a k · p theory based study for the low-field mobilities of InSb nanowires (InSb NWs) with relatively large cross sectional sizes (with diameters up to 51.8 nm). For such type of large size nanowires, the intersubband electron-phonon scattering is of crucial importance to affect the scattering rate and then the mobility. In our simulation, the lowest 15 electron subbands and 50 transverse modes of phonons are carefully accounted for. We find that, up to the 51.84 nm diameter, the mobility monotonously increases with the diameter, not yet showing any saturated behavior. We also find that, while the bulk InSb mobility is considerably higher than the bulk Si, the small size (e.g. ~3 nm diameter) nanowires from both materials have similar magnitude of mobilities. This implies, importantly, that the mobility of the InSb NWs would decrease faster than the SiNWs as we reduce the cross sectional size of the nanowires.

15.
J Phys Condens Matter ; 29(19): 195301, 2017 May 17.
Article in English | MEDLINE | ID: mdl-28287397

ABSTRACT

The Josephson supercurrent through a hybrid Majorana-quantum dot-Majorana junction is investigated. We particularly analyze the effect of spin-selective coupling between the Majorana and quantum dot states, which only emerges in the topological phase and will influence the current through bent junctions and/or in the presence of magnetic fields in the quantum dot. We find that the characteristic behavior of the supercurrent through this system is quite counterintuitive, differing remarkably from the resonant tunneling, e.g. through the similar (normal phase) superconductor-quantum dot-superconductor junction. Our analysis is carried out under the influence of the full set-up parameters and for both the [Formula: see text] and [Formula: see text] periodic currents. The present study is expected to be relevant to the future exploration of applications of Majorana-nanowire circuits.

16.
Sci Rep ; 6: 20286, 2016 Feb 03.
Article in English | MEDLINE | ID: mdl-26838670

ABSTRACT

In this work we revisit the important and controversial concept of quantum weak values, aiming to provide a simplified understanding to its associated physics and the origin of anomaly. Taking the Stern-Gerlach setup as a working system, we base our analysis on an exact treatment in terms of quantum Bayesian approach. We also make particular connection with a very recent work, where the anomaly of the weak values was claimed from the pure statistics in association with "disturbance" and "post-selection", rather than the unique quantum nature. Our analysis resolves the related controversies through a clear and quantitative way.

17.
Sci Rep ; 6: 20492, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26841968

ABSTRACT

Developing efficient framework for quantum measurements is of essential importance to quantum science and technology. In this work, for the important superconducting circuit-QED setup, we present a rigorous and analytic solution for the effective quantum trajectory equation (QTE) after polaron transformation and converted to the form of Stratonovich calculus. We find that the solution is a generalization of the elegant quantum Bayesian approach developed in arXiv:1111.4016 by Korotokov and currently applied to circuit-QED measurements. The new result improves both the diagonal and off-diagonal elements of the qubit density matrix, via amending the distribution probabilities of the output currents and several important phase factors. Compared to numerical integration of the QTE, the resultant quantum Bayesian rule promises higher efficiency to update the measured state, and allows more efficient and analytical studies for some interesting problems such as quantum weak values, past quantum state, and quantum state smoothing. The method of this work opens also a new way to obtain quantum Bayesian formulas for other systems and in more complicated cases.

18.
J Chem Phys ; 143(19): 194107, 2015 Nov 21.
Article in English | MEDLINE | ID: mdl-26590527

ABSTRACT

In this work, the recently introduced quantum trajectory mean-field (QTMF) approach is implemented and employed to explore photodissociation dynamics of diazirinone (N2CO), which are based on the high-level ab initio calculation. For comparison, the photodissociation process has been simulated as well with the fewest-switches surface hopping (FSSH) and the ab initio multiple spawning (AIMS) methods. Overall, the dynamical behavior predicted by the three methods is consistent. The N2CO photodissociation at λ > 335 nm is an ultrafast process and the two C-N bonds are broken in a stepwise way, giving birth to CO and N2 as the final products in the ground state. Meanwhile, some noticeable differences were found in the QTMF, FSSH, and AIMS simulated time constants for fission of the C-N bonds, excited-state lifetime, and nonadiabatic transition ratios in different intersection regions. These have been discussed in detail. The present study provides a clear evidence that direct ab initio QTMF approach is one of the reliable tools for simulating nonadiabatic dynamics processes.

19.
Sci Rep ; 4: 7527, 2014 Dec 17.
Article in English | MEDLINE | ID: mdl-25516433

ABSTRACT

We revisit the spin-injected field effect transistor (spin-FET) in a framework of the lattice model by applying the recursive lattice Green's function approach. In the one-dimensional case the results of simulations in coherent regime reveal noticeable differences from the celebrated Datta-Das model, which lead us to an improved treatment with generalized result. The simulations also allow us to address inelastic scattering and lateral confinement effects in the control of spins. These issues are very important in the spin-FET device.

20.
J Chem Phys ; 140(24): 244111, 2014 Jun 28.
Article in English | MEDLINE | ID: mdl-24985622

ABSTRACT

Beyond the second-order Born approximation, we propose an improved master equation approach to quantum transport under self-consistent Born approximation. The basic idea is to replace the free Green's function in the tunneling self-energy diagram by an effective reduced propagator under the Born approximation. This simple modification has remarkable consequences. It not only recovers the exact results for quantum transport through noninteracting systems under arbitrary voltages, but also predicts the challenging nonequilibrium Kondo effect. Compared to the nonequilibrium Green's function technique that formulates the calculation of specific correlation functions, the master equation approach contains richer dynamical information to allow more efficient studies for such as the shot noise and full counting statistics.

SELECTION OF CITATIONS
SEARCH DETAIL
...