Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Publication year range
1.
J Appl Microbiol ; 135(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38211970

ABSTRACT

AIMS: To reveal the inhibition mechanism of rose, mustard, and blended essential oils against Cladosporium allicinum isolated from Xinjiang naan, and investigate the effect of the three essential oils on oxidative damage and energy metabolism. METHODS AND RESULTS: Rose and mustard essential oils significantly inhibited mycelial growth and spore viability in a dose-dependent relationship. After essential oil treatment, the cell membrane permeability was altered, and significant leakage of intracellular proteins and nucleic acids occurred. SEM observations further confirmed the disruption of cell structure. ROS, MDA, and SOD measurements indicated that essential oil treatment induced a redox imbalance in C. allicinum, leading to cell death. As for energy metabolism, essential oil treatment significantly reduced Na+K+-ATPase, Ca2+Mg2+-ATPase, MDH activity, and CA content, impairing metabolic functions. Finally, storage experiments showed that all three essential oils ensured better preservation of naan, with mustard essential oil having the best antifungal effect. CONCLUSIONS: Rose and mustard essential oils and their blends can inhibit C. allicinum at multiple targets and pathways, destroying cell morphological structure and disrupting metabolic processes.


Subject(s)
Cladosporium , Oils, Volatile , Rosa , Oils, Volatile/pharmacology , Antifungal Agents/pharmacology , Mustard Plant , Plant Oils/pharmacology
2.
Food Chem ; 395: 133562, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-35763923

ABSTRACT

In this study, glycated soy ß-conglycinin (ß-CG) stabilized curcumin (Cur) composites were fabricated by a unique reversible self-assembly character of ß-conglycinin-dextran conjugates (ß-CG-DEX). Intrinsic fluorescence and far-UV CD spectra revealed that glycation did not affect the self-assembly property of ß-CG in the pH-shifting treatment. The structure of ß-CG-DEX could be unfolded at pH 12.0 and reassembled during acidification (from pH 12.0 to 7.0). Meanwhile, ß-CG-DEX-3d, which was incubated at 60 °C for 3 days, exhibited a high loading capacity (123.4 mg/g) for curcumin, which far exceeds that (74.90 mg/g) of ß-CG-Cur. Moreover, the reassembled ß-CG-DEX-3d-Cur showed eminent antioxidant activity of approximately 1.5 times higher than that of free curcumin. During the simulated gastrointestinal condition, compared with ß-CG-Cur, ß-CG-DEX-3d-Cur nanoparticles showed a more stable and sustained release of curcumin. Thus, ß-CG-DEX has immense potential to become a new delivery carrier for hydrophobic food components by means of a self-assembly strategy.


Subject(s)
Curcumin , Nanoparticles , Antigens, Plant , Antioxidants/chemistry , Curcumin/chemistry , Delayed-Action Preparations , Dextrans/chemistry , Drug Carriers/chemistry , Globulins , Nanoparticles/chemistry , Particle Size , Polyphenols , Seed Storage Proteins , Soybean Proteins
3.
Journal of Experimental Hematology ; (6): 1612-1616, 2019.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-775676

ABSTRACT

OBJECTIVE@#To investigate the effects of quercetin on the apoptosis of platelets and to analyze the intrinsic mechanism.@*METHODS@#Firstly, the effects of quecetin on the apoptosis of platelets was detected by flow cytometry. Secondly, Western blot was used to detect the expression of apoptosis-related proteins in the platelets treated with quercetin for 2 and 4 day.@*RESULTS@#By flow cytometry, it was found that the apoptosis of platelets in the quercetin-treated group (2, 4 and 8 μmol/L) was inhibited, the apoptosis rate of platelets in 2, 4 and 8 μmol/L quercetin group was 3.12%±0.32%, 2.89%±0.15% and 2.31%±0.28%, respectively, which were signigicantly lover than that in control group (P<0.01). With the increase of quecetin concentration, the proportion ratio of platelets significantly decreased in a concentration-dependent manner(r=-0.9985). Similar results were observed on the 4th day. Western blot showed that the treatment with quercetin (2, 4 and 8 μmol/L) promoted the expression of anti-apoptotic protein BCL-2, inhibited the expression of pro-apoptotic protein BAX, resulting in a significant increase in the ratio of BCL-2/BAX (P<0.01), thereby inhibiting the apoptosis of platelets. Similar results were observed on the 4th day.@*CONCLUSION@#Quercetin can inhibit platelet apoptosis by increasing the ratio of apoptosis-related protein BCL-2/BAX in a concentration-dependent manner.


Subject(s)
Apoptosis , Apoptosis Regulatory Proteins , Blood Platelets , Quercetin
4.
J Basic Microbiol ; 55(7): 907-21, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25709086

ABSTRACT

Rhizopus oryzae is valuable as a producer of organic acids via lignocellulose catalysis. R. oryzae metabolizes xylose, which is one component of lignocellulose hydrolysate. In this study, a novel NADPH-dependent xylose reductase gene from R. oryzae AS 3.819 (Roxr) was cloned and expressed in Pichia pastoris GS115. Homology alignment suggested that the 320-residue protein contained domains and active sites belonging to the aldo/keto reductase family. SDS-PAGE demonstrated that the recombinant xylose reductase has a molecular weight of approximately 37 kDa. The optimal catalytic pH and temperature of the purified recombinant protein were 5.8 and 50 °C, respectively. The recombinant protein was stable from pH 4.4 to 6.5 and at temperatures below 42 °C. The recombinant enzyme has bias for D-xylose and L-arabinose as substrates and NADPH as its coenzyme. Real-time quantitative reverse transcription PCR tests suggested that native Roxr expression is regulated by a carbon catabolite repression mechanism. Site-directed mutagenesis at two possible key sites involved in coenzyme binding, Thr(226) → Glu(226) and Val(274) → Asn(274), were performed, respectively. The coenzyme specificity constants of the resulted RoXR(T226E) and RoXR(V274N) for NADH increased 18.2-fold and 2.4-fold, which suggested possibility to improve the NADH preference of this enzyme through genetic modification.


Subject(s)
Aldehyde Reductase/genetics , Aldehyde Reductase/metabolism , Rhizopus/enzymology , Rhizopus/genetics , Aldehyde Reductase/chemistry , Aldehyde Reductase/isolation & purification , Arabinose/metabolism , Cloning, Molecular , Coenzymes/metabolism , Electrophoresis, Polyacrylamide Gel , Kinetics , Mutagenesis, Site-Directed , Pichia/genetics , Recombinant Proteins/metabolism , Rhizopus/metabolism , Substrate Specificity , Xylose/metabolism
5.
J Zhejiang Univ Sci B ; 7(1): 20-7, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16365921

ABSTRACT

Twenty-three temperate China species of Lachnum, Lachnum abnorme, L. angustum, L. brevipilosum, L. calosporum, L. calyculiforme, L. carneolum, L. ciliare, L. controversum, L. flavidulum, L. cf. fushanese, L. indicum, L. kumaonicum, L. lushanese, L. minutum, L. montanum, L. cf. pteridophyllum, L. pygmaeum, L. sclerotii var. sclerotii, L. sclerotii var. sichuanense, L. subpygmeaum, L. tenuissimum, L. virgineum and L. willisii are reported, whose main characteristics are given in a formula of the described species, some of which are discussed below.


Subject(s)
Ascomycota/classification , Ascomycota/isolation & purification , Ascomycota/cytology , Biodiversity , China , Climate , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...