Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Aging Neurosci ; 14: 1060734, 2022.
Article in English | MEDLINE | ID: mdl-36583188

ABSTRACT

Background: Robot-assisted therapy (RAT) has received considerable attention in stroke motor rehabilitation. Characteristics of brain functional response associated with RAT would provide a theoretical basis for choosing the appropriate protocol for a patient. However, the cortical response induced by RAT remains to be fully elucidated due to the lack of dynamic brain functional assessment tools. Objective: To guide the implementation of clinical therapy, this study focused on the brain functional responses induced by RAT in patients with different degrees of motor impairment. Methods: A total of 32 stroke patients were classified into a low score group (severe impairment, n = 16) and a high score group (moderate impairment, n = 16) according to the motor function of the upper limb and then underwent RAT training in assistive mode with simultaneous cerebral haemodynamic measurement by functional near-infrared spectroscopy (fNIRS). Functional connectivity (FC) and the hemisphere autonomy index (HAI) were calculated based on the wavelet phase coherence among fNIRS signals covering bilateral prefrontal, motor and occipital areas. Results: Specific cortical network response related to RAT was observed in patients with unilateral moderate-to-severe motor deficits in the subacute stage. Compared with patients with moderate dysfunction, patients with severe impairment showed a wide range of significant FC responses in the bilateral hemispheres induced by RAT with the assistive mode, especially task-related involvement of ipsilesional supplementary motor areas. Conclusion: Under assisted mode, RAT-related extensive cortical response in patients with severe dysfunction might contribute to brain functional organization during motor performance, which is considered the basic neural substrate of motor-related processes. In contrast, the limited cortical response related to RAT in patients with moderate dysfunction may indicate that the training intensity needs to be adjusted in time according to the brain functional state. fNIRS-based assessment of brain functional response assumes great importance for the customization of an appropriate protocol training in the clinical practice.

2.
Front Aging Neurosci ; 14: 965486, 2022.
Article in English | MEDLINE | ID: mdl-36158562

ABSTRACT

Introduction: The m-NMES had been demonstrated to redistribute brain resources and induce plastic changes in the stroke patients. However, the physiological mechanism and clinical efficacy of m-NMES combination with existing clinical rehabilitation programs remains unclear in patients with aphasia after stroke. This study aimed to investigate the effects of simultaneous use of m-NMES and language training (m-NMES-LT) with on cerebral oscillations and brain connection, as well as the effect on clinical efficacy. Materials and methods: Total 21 right-handed adult patients with aphasia were randomly assigned to language training (LT) group and m-NMES-LT group, and tissue concentration of oxyhemoglobin and deoxyhemoglobin oscillations were measured by functional near-infrared spectroscopy in resting and treatment state during three consecutive weeks. Five characteristic frequency signals (I, 0.6-2 Hz; II, 0.145-0.6 Hz; III, 0.052-0.145 Hz; IV, 0.021-0.052 Hz; and V, 0.0095-0.021 Hz) were identified using the wavelet method. The wavelet amplitude (WA) and wavelet phase coherence (WPCO) were calculated to describe the frequency-specific cortical activities. Results: The m-NMES-LT induced significantly higher WA values in contralesional PFC in intervals I, II, and V, and ipsilesional MC in intervals I-V than the resting state. The WPCO values between ipsilesional PFC-MC in interval III-IV, and between bilateral MC in interval III-IV were significantly higher than resting state. In addition, there was a significant positive correlation between WPCO and Western Aphasia Battery in m-NMES-LT group. Conclusion: The language training combined with neuromuscular electrical stimulation on median nerve could improve and achieve higher clinical efficacy for aphasia. This is attributed to the m-NMES-LT could enhance cortical activation and brain functional connectivity in patients with aphasia, which was derived from myogenic, neurogenic, and endothelial cell metabolic activities.

3.
Neural Plast ; 2022: 4416672, 2022.
Article in English | MEDLINE | ID: mdl-35992300

ABSTRACT

Myofascial trigger point (MTrP), an iconic characteristic of myofascial pain syndrome (MPS), can induce cerebral cortex changes including altered cortical excitability and connectivity. The corresponding characteristically reactive cortex is still ambiguous. Seventeen participants with latent MTrPs underwent functional near-infrared spectroscopy (fNIRS) to collect cerebral oxygenation hemoglobin (Δ[oxy-Hb]) signals. The Δ[oxy-Hb] signals of the left/right prefrontal cortex (L/R PFC), left/right motor cortex (L/R MC), and left/right occipital lobe (L/R OL) of the subjects were measured using functional near-infrared spectroscopy (fNIRS) in the resting state, nonmyofascial trigger point (NMTrP), state and MTrP state. The data investigated the latent MTrP-induced changes in brain activity and effective connectivity (EC) within the nonsensory cortex. The parameter wavelet amplitude (WA) was used to describe cortical activation, EC to show brain network connectivity, and main coupling direction (mCD) to exhibit the dominant connectivity direction in different frequency bands. An increasing trend of WA and a decreasing trend of EC values were observed in the PFC. The interregional mCD was primarily shifted from a unidirectional to bidirectional connection, especially from PFC to MC or OL, when responding to manual stimulation during the MTrP state compared with resting state and NMTrP state in the intervals III, IV, and V. This study demonstrates that the nonsensory cortex PFC, MC, and OL can participate in the cortical reactions induced by stimulation of a latent MTrP. Additionally, the PFC shows nonnegligible higher activation and weakened regulation than other brain regions. Thus, the PFC may be responsible for the central cortical regulation of a latent MTrP. This trial is registered with ChiCTR2100048433.


Subject(s)
Cortical Excitability , Motor Cortex , Brain , Humans , Occipital Lobe , Trigger Points
4.
Neurorehabil Neural Repair ; 33(12): 1008-1017, 2019 12.
Article in English | MEDLINE | ID: mdl-31550986

ABSTRACT

Background. The cortical plastic changes in response to median nerve electrical stimulation (MNES) in stroke patients have not been entirely illustrated. Objective. This study aimed to investigate MNES-related changes in effective connectivity (EC) within a cortical network after stroke by using functional near-infrared spectroscopy (fNIRS). Methods. The cerebral oxygenation signals in the bilateral prefrontal cortex (LPFC/RPFC), motor cortex (LMC/RMC), and occipital lobe (LOL/ROL) of 20 stroke patients with right hemiplegia were measured by fNIRS in 2 conditions: (1) resting state and (2) MNES applied to the right wrist. Coupling function together with dynamical Bayesian inference was used to assess MNES-related changes in EC among the cerebral low-frequency fluctuations. Results. Compared with the resting state, EC from LPFC and RPFC to LOL was significantly increased during the MNES state in stroke patients. Additionally, MNES triggered significantly higher coupling strengths from LMC and LOL to RPFC. The interregional main coupling direction was observed from LPFC to bilateral motor and occipital areas in responding to MNES, suggesting that MNES could promote the regulation function of ipsilesional prefrontal areas in the functional network. MNES can induce muscle twitch of the stroke-affected hand involving a decreased neural coupling of the contralesional motor area on the ipsilesional MC. Conclusions. MNES can trigger sensorimotor stimulations of the affected hand that sequentially involved functional reorganization of distant cortical areas after stroke. Investigating MNES-related changes in EC after stroke may help further our understanding of the neural mechanisms underlying MNES.


Subject(s)
Brain Ischemia/physiopathology , Brain/physiopathology , Median Nerve/physiopathology , Stroke/physiopathology , Aged , Humans , Male , Middle Aged , Motor Cortex/physiopathology , Neural Pathways/physiopathology , Occipital Lobe/physiopathology , Prefrontal Cortex/physiopathology , Spectroscopy, Near-Infrared , Transcutaneous Electric Nerve Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL
...