Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 406
Filter
1.
Microbiol Res ; 286: 127785, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38851011

ABSTRACT

Carbohydrates play a pivotal role in nutrient recycling and regulation of algal-bacterial interactions. Despite their ecological significance, the intricate molecular mechanisms governing regulation of phycosphere carbohydrates by bacterial taxa linked with natural algal bloom have yet to be fully elucidated. Here, a comprehensive temporal metagenomic analysis was conducted to explore the carbohydrate-active enzyme (CAZyme) genes in two discrete algal bloom microorganisms (Gymnodinium catenatum and Phaeocystis globosa) across three distinct bloom stages: pre-bloom, peak bloom, and post-bloom. Elevated levels of extracellular carbohydrates, primarily rhamnose, galactose, glucose, and arabinose, were observed during the initial and post-peak stages. The prominent CAZyme families identified-glycoside hydrolases (GH) and carbohydrate-binding modules (CBMs)-were present in both algal bloom occurrences. In the G. catenatum bloom, GH23/24 and CBM13/14 were prevalent during the pre-bloom and peak bloom stages, whereas GH2/3/30 and CBM12/24 exhibited increased prevalence during the post-bloom phase. In contrast, the P. globosa bloom had a dominance of GH13/23 and CBM19 in the initial phase, and this was succeeded by GH3/19/24/30 and CBM54 in the later stages. This gene pool variation-observed distinctly in specific genera-highlighted the dynamic structural shifts in functional resources driven by temporal alterations in available substrates. Additionally, ecological linkage analysis underscored a correlation between carbohydrates (or their related genes) and phycospheric bacteria, hinting at a pattern of bottom-up control. These findings contribute to understanding of the dynamic nature of CAZymes, emphasizing the substantial influence of substrate availability on the metabolic capabilities of algal symbiotic bacteria, especially in terms of carbohydrates.

2.
Transl Oncol ; 46: 102006, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823259

ABSTRACT

BACKGROUND: The aggressive and refractory extranodal natural killer/T-cell lymphoma, nasal type (ENKTL-NT) is a subtype of non-Hodgkin's lymphoma. Succinylation promotes progression in a variety of tumors, but its mechanism in ENKTL-NT is unclear. METHODS: Bioinformatic analysis was performed to screen differentially expressed genes in the ENKTL dataset. Cell transfection techniques were used for knockdown and overexpression of genes. The mRNA and protein expression were detected using RT-qPCR and western blot, respectively. Immunohistochemical staining was used to assess protein expression in situ. For the detection of cell proliferation activity, CCK-8, clonal formation, and EDU staining assays were used. Flow cytometry was employed to detect apoptosis. Co-immunoprecipitation was utilized for the identification of protein interactions and succinylation modifications. RESULTS: Succinyltransferase CPT1A was highly elevated in ENKTL-NT and was associated with a dismal prognosis. CPT1A knockdown suppressed SNK-6 cells' proliferation and induced apoptosis, while these effects were reversed by the overexpression of 14-3-3theta. Co-immunoprecipitation results showed that CPT1A caused succinylation of 14-3-3theta at site of K85, thereby enhancing the protein stability. Suppression of CPT1A-induced succinylation of 14-3-3theta by ST1326 resulted in the inhibition of SNK-6 cell proliferation and increased apoptosis. Paclitaxel combined with knockdown of CPT1A significantly inhibited the proliferation of ENKTL-NT compared to paclitaxel alone. CONCLUSION: CPT1A induces succinylation of 14-3-3theta at the K85 site, promoting ENKTL-NT proliferation. The anti-ENKTL activity of paclitaxel was improved when combined with CPT1A knockdown.

3.
Heart Rhythm ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825299

ABSTRACT

BACKGROUND: Obesity confers higher risks of cardiac arrhythmias. The extent to which weight loss reverses subclinical proarrhythmic adaptations in arrhythmia-free obese individuals is unknown. OBJECTIVE: To study structural, electrophysiological and autonomic remodelling in arrhythmia-free obese patients, and their reversibility with bariatric surgery using electrocardiographic imaging (ECGi). METHODS: Sixteen arrhythmia-free obese patients (43+12years, 13 female, BMI 46.7+5.5kg/m2) had ECGi pre-bariatric surgery (PreSurg), of which twelve had ECGi post-surgery (PostSurg, 36.8+6.5kg/m2). Sixteen age- and sex-matched lean healthy individuals (42+11 years, BMI 22.8+2.6kg/m2) acted as controls and had ECGi once. RESULTS: Obesity was associated with structural (increased epicardial fat volumes and left ventricular mass), autonomic (blunted heart rate variability) and electrophysiological (slower atrial conduction and steeper ventricular repolarisation gradients) remodelling. Following bariatric surgery, there was partial structural reverse remodelling, with a reduction in epicardial fat volumes (68.7cm3 vs 64.5cm3, p=0.0010) and left ventricular mass (33g/m2.7 vs 25g/m2.7, p<0.0005). There was also partial electrophysiological reverse remodelling with a reduction in mean spatial ventricular repolarisation gradients (26mm/ms vs 19mm/ms, p=0.0009), although atrial activation remained prolonged. Heart rate variability, quantified by standard deviation of successive differences of RR intervals, was also partially improved following bariatric surgery (18.7ms vs 25.9ms, p=0.017). Computational modelling showed PreSurg obese hearts had a greater window of vulnerability to unidirectional block and had earlier spiral-wave break-up with more complex re-entry patterns than PostSurg counterparts. CONCLUSION: Obesity is associated with adverse electrophysiological, structural and autonomic remodelling that is partially reversed after bariatric surgery. These data have important implications for bariatric surgery weight thresholds and weight loss strategies.

4.
Foods ; 13(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38790862

ABSTRACT

Every year, a significant amount of pepper stalks are wasted due to low utilization. The ash produced from pepper stalks contains a significant amount of alkaline salts, which are food additives that can enhance the quality of noodles. Therefore, utilizing natural pepper straw ash to improve the quality of noodles shows promising development prospects. In this study, pepper straw ash leachate (PSAL) was extracted and added to noodles. The quality of the noodles gradually improved with the addition of PSAL, with the best effect observed at a concentration of 18% (PSAL mass/flour mass). This addition resulted in a 57.8% increase in noodle hardness, a 55.43% increase in chewiness, a 19.41% rise in water absorption rate, and a 13.28% increase in disulfide bond content. These alterations rendered the noodles more resilient during cooking, reducing their tendency to soften and thus enhancing chewiness and palatability. Incorporating PSAL also reduced cooking loss by 57.79%. Free sulfhydryl groups decreased by 5.1%, and scanning electron microscopy revealed a denser gluten network structure in the noodles, with more complete starch wrapping. This study significantly enhanced noodle quality and provided a new pathway for the application of pepper straw resources in the food industry.

5.
Angew Chem Int Ed Engl ; : e202407194, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38818621

ABSTRACT

Parasitic side reactions and dendrite growth on zinc anodes are formidable issues causing limited lifetime of aqueous zinc ion batteries (ZIBs). Herein, a spontaneous cascade optimization strategy is first proposed to regulate Zn2+ migration-diffusion behavior. Specifically, PAPE@Zn layer with separation-reconstruction properties is constructed in-situ on Zn anode. In this layer, well-soluble poly(ethylene oxide) (PEO) can spontaneously separation to bulk electrolyte and weaken the preferential coordination between H2O and Zn2+ to achieve primary optimization. Meanwhile, poor-soluble polymerized-4-acryloylmorpholine (PACMO) is reconstructed on Zn anode as hydrophobic flower-like arrays with abundant zincophilic sites, further guiding the de-solvation and homogeneous diffusion of Zn2+ to achieve the secondary optimization. Cascade optimization effectively regulates Zn2+ migration-diffusion behavior, dendrite growth and side reactions of Zn anode are negligible, and the stability is significantly improved. Consequently, symmetrical cells exhibit stability over 4000 h (1 mA cm-2). PAPE@Zn//NH4+-V2O5 full cells with a high current density of 15 A g-1 maintains 72.2% capacity retention for 12000 cycles. Even better, the full cell demonstrates excellent performance of cumulative capacity of 2.33 Ah cm-2 at ultra-low negative/positive (N/P) ratio of 0.6 and a high mass-loading (~17 mg cm-2). The spontaneous cascade optimization strategy provides novel path to achieve high-performance and practical ZIBs.

7.
Endocrine ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801598

ABSTRACT

PURPOSE: To evaluate the safety and efficacy of radiofrequency ablation (RFA) in treating locoregional recurrent thyroid cancer (LRTC) after a 2-year follow-up time. METHODS: PubMed, Embase and Cochrane Library were searched from inception until 20 September 2022 to find studies reporting the safety and efficacy of RFA in LRTC patients after a 2-year follow-up. Two radiologists performed the data extraction and methodological quality assessment according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. RESULTS: We analyzed 6 studies, 229 LRTC patients with 319 locally recurrent tumors were treated with RFA. The mean follow-up time of each study was ≥24 months. The pooled changes in the largest diameter and volume were 7.22 mm (95% confidence interval (CI), 6.35-8.09 mm) and 164.28 mm3 (95% CI, 87.78-240.77 mm3), respectively; the pooled volume reduction rate was 95.03% (95% CI, 87.56-102.49%). The total complete disappearance rate after treatment was 92% (95% CI, 83-100%). The pooled decrease of serum thyroglobulin levels was 0.02 ng/ml (95% CI, -0.00-0.04 ng/ml). The pooled proportion of recurrence rate was 6% (95% CI, 0-13%). The pooled complication rate was 5% (95% CI, 0-10%). The major complications were voice change and hoarseness, only one patient developed permanent vocal cord paralysis; minor complications were cough and pain. CONCLUSIONS: Ultrasound-guided RFA is an effective and safe treatment for LRTC based on 2-year follow-up results.

8.
Environ Int ; 188: 108768, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38788416

ABSTRACT

Symbiotic microorganisms play critical ecophysiological roles that facilitate the maintenance of coral health. Currently, information on the gene and protein pathways contributing to bleaching responses is lacking, including the role of autoinducers. Although the autoinducer AI-1 is well understood, information on AI-2 is insufficient. Here, we observed a 3.7-4.0 times higher abundance of the AI-2 synthesis gene luxS in bleached individuals relative to their healthy counterparts among reef-building coral samples from the natural environment. Laboratory tests further revealed that AI-2 contributed significantly to an increase in coral bleaching, altered the ratio of potential probiotic and pathogenic bacteria, and suppressed the antiviral activity of specific pathogenic bacteria while enhancing their functional potential, such as energy metabolism, chemotaxis, biofilm formation and virulence release. Structural equation modeling indicated that AI-2 influences the microbial composition, network structure, and pathogenic features, which collectively contribute to the coral bleaching status. Collectively, our results offer novel potential strategies for coral conservation based on a signal manipulation approach.


Subject(s)
Anthozoa , Homeostasis , Quorum Sensing , Symbiosis , Anthozoa/microbiology , Anthozoa/physiology , Animals , Homoserine/analogs & derivatives , Homoserine/metabolism , Coral Reefs , Lactones/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
9.
Mar Pollut Bull ; 203: 116502, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38776642

ABSTRACT

Monitoring the spatiotemporal variation in coastal aquaculture zones is essential to providing a scientific basis for formulating scientifically reasonable land management policies. This study uses the Google Earth Engine (GEE) remote sensing cloud platform to extract aquaculture information based on Landsat series and Sentinel-2 images for the six years of 1984 to 2021 (1984, 1990, 2000, 2010, 2016 and 2021), so as to analyze the changes in the coastal aquaculture pond area, along with its spatiotemporal characteristics, of Jiangsu Province. The overall area of coastal aquaculture ponds in Jiangsu shows an increasing trend in the early period and a decreasing trend in the later period. Over the past 37 years, the area of coastal aquaculture ponds has increased by a total of 54,639.73 ha. This study can provide basic data for the sustainable development of coastal aquaculture in Jiangsu, and a reference for related studies in other regions.


Subject(s)
Aquaculture , Environmental Monitoring , Ponds , China , Environmental Monitoring/methods , Remote Sensing Technology
10.
Local Reg Anesth ; 17: 67-77, 2024.
Article in English | MEDLINE | ID: mdl-38742096

ABSTRACT

Purpose: Rebound pain after regional anesthesia, a common phenomenon when the analgesic effect wears off, has been recognized in the last a few years. The aim of this study is to analyze the status and tendency of this area in a macroscopic perspective. Methods: Bibliometric analysis is the primary methodology of this study. Literature retrieval was conducted in Web of Science (WoS) Core Collection. WoS, Excel, VOSviewer and CiteSpace were employed to do the analyses and visualization. Parameters were analyzed, such as publications, citations, journals, and keywords, etc. Results: In total, 70 articles in the past 10 years were identified eligible. Most articles (14 pieces) were published in 2021, followed by 2022 and 2023 with 13 articles. Researchers come from 134 institutions and 20 countries. Huang Jung-Taek, Hallym College, and USA are the most productive author, institution and country, respectively. The articles were mainly published on the top journals of anesthesiology, orthopedics and surgery. The topic of these articles is primarily about the clinical issues of rebound pain. Peripheral nerve block, brachial plexus block and femoral nerve block are the activist keywords in the area, while perioperative management, fracture surgery and outcome may become hotpots in the next years. Conclusion: Our results show that the study of rebound pain after regional anesthesia starts relatively late and is in upward tendency, future studies can focus on the perioperative management and outcomes of fracture patients, and the definition and mechanism of rebound pain after regional anesthesia.

11.
Int J Surg ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38752497

ABSTRACT

BACKGROUND: Image-guided thermal ablation has been applied in patients with papillary thyroid microcarcinoma(PTMC) who refuse surgery or active surveillance. However, evidence to support ablation is limited by single-center designs and lack of long-term data. The purpose of this study was to compare long-term outcomes between ablation and lobectomy for patients with solitary PTMC. MATERIALS AND METHODS: This multicenter retrospective study included 1021 consecutive patients with solitary PTMC who underwent ablation(n=444) or lobectomy(n=577) at the four university-affiliated hospitals. The primary outcomes were disease progression(lymph node metastasis[LNM], recurrent tumors, persistent tumors and distant metastasis) and disease-free survival(DFS). Secondary outcomes were complications, hospitalization, procedure time, estimated blood loss and cost. The two groups were compared using propensity score matching. RESULTS: After matching, no significant differences were observed in disease progression (4.7% vs. 3.4%, P=.307), LNM (1.6% vs. 1.6%, P=1.000), recurrent tumors (2.9% vs. 1.8%, P=.269), persistent tumors(0.2% vs. 0%, P=.317) and DFS (95.5% vs. 97.1%, P=.246) between the ablation and lobectomy groups during the median follow-up of 96.5 months. The ablation group had significantly lower complication rates (0.7% vs. 5.2%, P<.001), shorter post-treatment hospitalization (median[IQR], 0 d vs. 4.0[3.0] d, P<.001), shorter procedure time (8.5[2.8] min vs. 90.0[43.8] min, P<.001), reduced estimated blood loss (0 mL vs. 20.0[10.0] mL, P<.001), and lower cost ($1873.2[254.0] vs. $2292.9[797.8], P<.001) than the lobectomy group. CONCLUSIONS: This study revealed comparable disease progression and survival outcomes between ablation and lobectomy for solitary PTMC. Imaged-guided thermal ablation could be effective and safe alternatives to lobectomy for properly selected patients with PTMC.

12.
Proc Natl Acad Sci U S A ; 121(18): e2400313121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38652745

ABSTRACT

Can liquid-like and gas-like states be distinguished beyond the critical point, where the liquid-gas phase transition no longer exists and conventionally only a single supercritical fluid phase is defined? Recent experiments and simulations report strong evidence of dynamical crossovers above the critical temperature and pressure. Despite using different criteria, many existing theoretical explanations consider a single crossover line separating liquid-like and gas-like states in the supercritical fluid phase. We argue that such a single-line scenario is inconsistent with the supercritical behavior of the Ising model, which has two crossover lines due to its symmetry, violating the universality principle of critical phenomena. To reconcile the inconsistency, we define two thermodynamic crossover lines in supercritical fluids as boundaries of liquid-like, indistinguishable, and gas-like states. Near the critical point, the two crossover lines follow critical scalings with exponents of the Ising universality class, supported by calculations of theoretical models and analyses of experimental data from the standard database. The upper line agrees with crossovers independently estimated from the inelastic X-ray scattering data of supercritical argon, and from the small-angle neutron scattering data of supercritical carbon dioxide. The lower line is verified by the equation of states for the compressibility factor. This work provides a fundamental framework for understanding supercritical physics in general phase transitions.

13.
Ying Yong Sheng Tai Xue Bao ; 35(3): 817-826, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38646770

ABSTRACT

To explore the causes of red tides in Qinhuangdao coastal water, we conducted surveys on both water quality and red tides during April to September of 2022 and analyzed the relationships between main environmental factors and red tide organisms through the factor analysis and canonical correspondence analysis. The results showed that there were eight red tides along the coast of Qinhuangdao in 2022, with a cumulative blooming area of 716.1 km2. The red tides could be divided into three kinds based on the major blooming organisms and occurrence time, Noctiluca scintillans bloom, diatom-euglena (Skeletonema costatum, Eutreptiella gymnastica, Pseudo-nitzschia spp.) bloom, and dinoflagellate (Scrippsiella trochoidea and Ceratium furca) bloom. Seasonal factor played roles mainly during July to September, while inorganic nutrients including nitrogen and phosphorus influenced the blooms mainly in April and July. The canonical correspondence analysis suggested that N. scintillans preferred low temperature, and often bloomed with high concentrations of ammonium nitrogen and dissolved inorganic phosphorus. S. costatum, E. gymnastica, and Pseudo-nitzschia spp. could tolerate broad ranges of various environmental factors, but favored high temperature and nitrogen-rich seawater. C. furca and S. trochoidea had higher survival rate and competitiveness in phosphate-poor waters. Combined the results from both analyses, we concluded that the causes for the three kinds of red tide processes in Qinhuangdao coastal areas in 2022 were different. Adequate diet algae and appropriate water temperature were important factors triggering and maintaining the N. scintillans bloom. Suitable temperature, salinity and eutrophication were the main reasons for the diatom-euglena bloom. The abundant nutrients and seawater disturbance promoted the germination of S. trochoidea cysts, while phosphorus limitation caused the blooming organism switched to C. furca and maintained the bloom hereafter.


Subject(s)
Diatoms , Dinoflagellida , Environmental Monitoring , Harmful Algal Bloom , Seawater , China , Dinoflagellida/growth & development , Seawater/analysis , Seawater/chemistry , Diatoms/growth & development , Oceans and Seas , Phosphorus/analysis , Nitrogen/analysis , Seasons
14.
Poult Sci ; 103(7): 103774, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38669820

ABSTRACT

Goose astrovirus genotype 2 (GAstV-2) mainly causes gout in goslings; therefore, it is a major pathogen threatening to goose flocks. However, the mechanisms underlying host-GAstV-2 interactions remain unclear because host cells suitable for GAstV-2 replication have been unavailable. We previously noted that GAstV-2 is primarily located in goose renal epithelial cells, where it causes kidney damage. Therefore, here, we derived goose primary renal tubular epithelial (RTE) cells (GRTE cells) from the kidneys of goose embryos after collagenase I digestion. After culture in Dulbecco's modified Eagle medium/Nutrient mixture F-12 with 10% fetal bovine serum (FBS), the isolated cells had polygonal with roadstone-like morphology; they were identified to be epithelial cells based on the presence of cytokeratin 18 expression detected through immunofluorescence assay (IFA). GAstV-2 infection in GRTE cells led to no obvious cytopathic effects; the maximum amounts of infectious virions were observed 48 h post infection through IFA and quantitative PCR. Next, RNA-seq was performed to identify and map post-GAstV-2 infection differentially expressed genes. The downregulated pathways were mainly related to metabolism, including tryptophan metabolism, drug metabolism by cytochrome P450, xenobiotic metabolism by cytochrome P450, retinol metabolism, butanoate metabolism, starch and sucrose metabolism, ascorbate and aldarate metabolism, and drug metabolism by other enzymes and peroxisome. In contrast, the upregulated pathways were mostly related to the host cell defense and proliferation, including extracellular matrix-receptor interaction, complement and coagulation cascades, phagosome, PI3K-Akt signaling pathway, human T-lymphotropic virus 1 infection, lysosome, and tumor necrosis factor signaling pathway. In conclusion, we developed a GRTE cell line for GAstV-2 replication and analyzed the potential host-GAstV-2 interactions through RNA-seq; our results may aid in further investigating the pathogenic mechanisms underlying GAstV-2 infection and provide strategies for its prevention and control.

15.
J Pharm Anal ; 14(4): 100905, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38665224

ABSTRACT

Epigenomic imbalance drives abnormal transcriptional processes, promoting the onset and progression of cancer. Although defective gene regulation generally affects carcinogenesis and tumor suppression networks, tumor immunogenicity and immune cells involved in antitumor responses may also be affected by epigenomic changes, which may have significant implications for the development and application of epigenetic therapy, cancer immunotherapy, and their combinations. Herein, we focus on the impact of epigenetic regulation on tumor immune cell function and the role of key abnormal epigenetic processes, DNA methylation, histone post-translational modification, and chromatin structure in tumor immunogenicity, and introduce these epigenetic research methods. We emphasize the value of small-molecule inhibitors of epigenetic modulators in enhancing antitumor immune responses and discuss the challenges of developing treatment plans that combine epigenetic therapy and immunotherapy through the complex interaction between cancer epigenetics and cancer immunology.

16.
Mikrochim Acta ; 191(5): 263, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38619658

ABSTRACT

A green and sensitive ratio fluorescence strategy was proposed for the detection of formaldehyde (FA) in food based on a kind of metal-organic frameworks (MOFs), MIL-53(Fe)-NO2, and nitrogen-doped Ti3C2 MXene quantum dots (N-Ti3C2 MQDs) with a blue fluorescence at 450 nm. As a type of MOFs with oxidase-like activity, MIL-53(Fe)-NO2 can catalyze o-phenylenediamine (OPD) into yellow fluorescent product 2,3-diaminophenazine (DAP) with a fluorescent emission at 560 nm. DAP has the ability to suppress the blue light of N-Ti3C2 MQDs due to inner filter effect (IFE). Nevertheless, Schiff base reaction can occur between FA and OPD, inhibiting DAP production. This results in a weakening of the IFE which reverses the original fluorescence color and intensity of DAP and N-Ti3C2 MQDs. So, the ratio of fluorescence intensity detected at respective 450 nm and 560 nm was designed as the readout signal to detect FA in food. The linear range of FA detection was 1-200 µM, with a limit of detection of 0.49 µM. The method developed was successfully used to detect FA in food with satisfactory results. It indicates that MIL-53(Fe)-NO2, OPD, and N-Ti3C2 MQDs (MON) system constructed by integrating the mimics enzyme, enzyme substrate, and fluorescent quantum dots has potential application for FA detection in practical samples.


Subject(s)
Metal-Organic Frameworks , Phenylenediamines , Quantum Dots , Fluorescent Dyes , Nitrogen Dioxide , Formaldehyde
17.
Chemosphere ; 358: 142152, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679178

ABSTRACT

In recent years, filamentous algae blooms and microplastics (MPs) pollution have become two major ecological and environmental problems in urban water systems. In order to solve these two problems at the same time, this study explored the loading capacity of MPs on fresh filamentous algae, and successfully synthesized magnetic filamentous algae biochar loading with Fe3O4 by hydrothermal method, with the purpose of removing MPs from water. The magnetic filamentous algal biochar was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and so on. Experiments on adsorption kinetics, adsorption isotherms and optimum pH were carried out to explore the adsorption mechanism of MPs on magnetic filamentous algal biochar. The adsorption kinetics and adsorption isotherm models were evaluated, and the selection criterion for the appropriate model was determined by using the residual sum of squares (RSS) and Bayesian information criterion (BIC). Microscope images revealed that fresh filamentous algae could interact with MPs in the form of entanglement, adhesion and encapsulation. The average load of MPs in filamentous algae samples was 14.1 ± 5 items/g dry weight. The theoretical maximum adsorption capacities of polystyrene MPs (PS-MPs) by raw biochar (A500) and magnetic biochar with Fe3O4 (M2A500) were 176.99 mg/g and 215.58 mg/g, respectively. The adsorbent materials gave better reusability because they could be reused up to five times. Overall, these findings have provided new insights into the use of filamentous algae for in situ remediation of fluvial MPs pollution, as well as feasible strategies for the recycling of algal waste.


Subject(s)
Charcoal , Microplastics , Water Pollutants, Chemical , Charcoal/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Kinetics
18.
IEEE J Biomed Health Inform ; 28(6): 3709-3720, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38512747

ABSTRACT

In this study, we present a novel approach for predicting interventions for patients in the intensive care unit using a multivariate time series graph convolutional neural network. Our method addresses two critical challenges: the need for timely and accurate decisions based on changing physiological signals, drug administration information, and static characteristics; and the need for interpretability in the decision-making process. Drawing on real-world ICU records from the MIMIC-III dataset, we demonstrate that our approach significantly improves upon existing machine learning and deep learning methods for predicting two targeted interventions, mechanical ventilation and vasopressors. Our model achieved an accuracy improvement from 81.6% to 91.9% and a F1 score improvement from 0.524 to 0.606 for predicting mechanical ventilation interventions. For predicting vasopressor interventions, our model achieved an accuracy improvement from 76.3% to 82.7% and a F1 score improvement from 0.509 to 0.619. We also assessed the interpretability by performing an adjacency matrix importance analysis, which revealed that our model uses clinically meaningful and appropriate features for prediction. This critical aspect can help clinicians gain insights into the underlying mechanisms of interventions, allowing them to make more informed and precise clinical decisions. Overall, our study represents a significant step forward in the development of decision support systems for ICU patient care, providing a powerful tool for improving clinical outcomes and enhancing patient safety.


Subject(s)
Intensive Care Units , Neural Networks, Computer , Humans , Respiration, Artificial/methods , Decision Support Systems, Clinical , Machine Learning , Decision Support Techniques
19.
Materials (Basel) ; 17(6)2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38541530

ABSTRACT

In order to examine the mechanical properties and rotational bending fatigue performance of 40CrNi2MoE steel subsequent to tempering at varying temperatures, the steel specimen was subjected to tempering within the range of 400~460 °C. SEM, EBSD, and TEM were used to analyze the microstructure as well as precipitates. The strain hardening law was studied using the modified Crussard-Jaoult method. Investigations were undertaken to reveal the rotational bending fatigue life with respect to the tempering temperature. The findings indicate that the strength and fatigue life of the examined steels exhibit a decline as the tempering temperature increases, with the primary factor affecting this trend being the alteration in dislocation density. No notable impact on the fatigue fracture morphology exerted by tempering temperature was found within the range of the experiment. The C-J model analysis reveals that the work-hardening behavior of the trial steels is influenced by dislocations and the second phase.

SELECTION OF CITATIONS
SEARCH DETAIL
...