Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(21): 14754-14764, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38754363

ABSTRACT

Lithium-sulfur (Li-S) batteries are highly considered as next-generation energy storage techniques. Weakly solvating electrolyte with low lithium polysulfide (LiPS) solvating power promises Li anode protection and improved cycling stability. However, the cathodic LiPS kinetics is inevitably deteriorated, resulting in severe cathodic polarization and limited energy density. Herein, the LiPS kinetic degradation mechanism in weakly solvating electrolytes is disclosed to construct high-energy-density Li-S batteries. Activation polarization instead of concentration or ohmic polarization is identified as the dominant kinetic limitation, which originates from higher charge-transfer activation energy and a changed rate-determining step. To solve the kinetic issue, a titanium nitride (TiN) electrocatalyst is introduced and corresponding Li-S batteries exhibit reduced polarization, prolonged cycling lifespan, and high actual energy density of 381 Wh kg-1 in 2.5 Ah-level pouch cells. This work clarifies the LiPS reaction mechanism in protective weakly solvating electrolytes and highlights the electrocatalytic regulation strategy toward high-energy-density and long-cycling Li-S batteries.

2.
Bioresour Technol ; 399: 130616, 2024 May.
Article in English | MEDLINE | ID: mdl-38513924

ABSTRACT

Removing nitrogen and phosphorus from low ratio of chemical oxygen demand to total nitrogen and temperature municipal wastewater stays a challenge. In this study, a pilot-scale anaerobic/aerobic/anoxic sequencing batch reactor (A/O/A-SBR) system first treated 15 m3/d actual municipal wastewater at 8.1-26.4 °C for 224 days. At the temperature of 15.7 °C, total nitrogen in influent and effluent were 45.5 and 10.9 mg/L, and phosphorus in influent and effluent were 3.9 and 0.1 mg/L. 16 s RNA sequencing results showed the relative abundance of Competibacter and Tetrasphaera raised to 1.25 % and 1.52 %. The strategy of excessive, no and normal sludge discharge enriched and balanced the functional bacteria, achieving an endogenous denitrification ratio more than 43.3 %. Sludge reduction and short aerobic time were beneficial to energy saving contrast with a Beijing municipal wastewater treatment. This study has significant implications for the practical application of the AOA-SBR process.


Subject(s)
Sewage , Wastewater , Sewage/microbiology , Waste Disposal, Fluid/methods , Anaerobiosis , Nitrogen , Phosphorus , Bioreactors/microbiology , Carbon , China , Denitrification , Nitrification
3.
Mol Carcinog ; 63(6): 1079-1091, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38426809

ABSTRACT

This study was to explore the role of ELOVL6 in the development of head and neck squamous cell carcinoma (HNSCC). Considering its previously identified oncogenic role in hepatocellular carcinoma. ELOVL6 gene expression, clinicopathological analysis, enrichment analysis, and immune infiltration analysis were based on the data from Gene Expression Omnibus and The Cancer Genome Atlas, with additional bioinformatics analyses performed. Human HNSCC tissue microarray and cell lines were used. The expression of ELOVL6 in HNSCC was detected by quantitative polymerase chain reaction, immunohistochemistry assay, and western blot analysis. The proliferation ability of HNSCC cells, invasion, and apoptosis were evaluated using cell counting kit-8 method, Transwell assay, and flow cytometry, respectively. Based on the data derived from the cancer databases and our HNSCC cell and tissue studies, we found that ELOVL6 was overexpressed in HNSCC. Moreover, ELOVL6 expression level had a positive correlation with clinicopathology of HNSCC. Gene set enrichment analysis showed that ELOVL6 affected the occurrence of HNSCC through WNT signaling pathway. Functional experiments demonstrated that ELOVL6 knockdown inhibited the proliferation and invasion of HNSCC cells while promoting apoptosis. Additionally, compound 3f, an agonist of WNT/ß-catenin signaling pathway, enhances the effect of ELOVL6 on the progression of HNSCC cells. ELOVL6 is upregulated in HNSCC and promotes the development of HNSCC cells by inducing WNT/ß-catenin signaling pathway. ELOVL6 stands a potential target for the treatment of HNSCC and a prognosis indicator of human HNSCC.


Subject(s)
Apoptosis , Cell Proliferation , Disease Progression , Fatty Acid Elongases , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms , Squamous Cell Carcinoma of Head and Neck , Wnt Signaling Pathway , Humans , Wnt Signaling Pathway/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Cell Proliferation/genetics , Fatty Acid Elongases/genetics , Fatty Acid Elongases/metabolism , Cell Line, Tumor , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism , Male , Female , Middle Aged , Prognosis , Cell Movement/genetics
4.
Bioresour Technol ; 396: 130426, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38341042

ABSTRACT

Realizing the quick enrichment and development of denitrifying phosphorus accumulating organisms (DPAOs) in actual household wastewater and industrial nitrate wastewater has significant research significance. In this study, a novel operation mode of anaerobic-oxic-anoxic (AOA) was adopted to successfully realize the enrichment and cultivation of DPAOs in urban domestic wastewater. Adjusting influent COD to PO43--P ratio, shortening the aerobic time and decreasing the aeration volume were conducive to select DPAOs in microbial populations. The system was operated for 180 days and the DPAOs were well enriched during the stable operation with the percentage of Dechloromonas increased to 5.1 %. Accordingly, the effluent PO43--P was < 0.3 mg P/L, the removal efficiency of phosphorus was 96.9 % and the removal efficiency of nitrate was 92.5 %. Above all, DPR can be successfully applied to AOA systems with good phosphorus removal performance.


Subject(s)
Phosphorus , Wastewater , Waste Disposal, Fluid , Sewage , Denitrification , Nitrogen , Nitrates , Anaerobiosis , Bioreactors
5.
Water Res ; 253: 121321, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38367384

ABSTRACT

Applying anaerobic ammonium oxidation (anammox) in municipal wastewater treatment plants (MWWTPs) can unlock significant energy and resource savings. However, its practical implementation encounters significant challenges, particularly due to its limited compatibility with carbon and phosphorus removal processes. This study established a pilot-scale plant featuring a modified anaerobic-anoxic-oxic (A2O) process and operated continuously for 385 days, treating municipal wastewater of 50 m3/d. For the first time, we propose a novel concept of partial denitrifying phosphorus removal coupling with anammox (PDPRA), leveraging denitrifying phosphorus-accumulating organisms (DPAOs) as NO2- suppliers for anammox. 15N stable isotope tracing revealed that the PDPRA enabled an anammox reaction rate of 6.14 ± 0.18 µmol-N/(L·h), contributing 57.4 % to total inorganic nitrogen (TIN) removal. Metagenomic sequencing and 16S rRNA amplicon sequencing unveiled the co-existence and co-prosperity of anammox bacteria and DPAOs, with Candidatus Brocadia being highly enriched in the anoxic biofilms at a relative abundance of 2.46 ± 0.52 %. Finally, the PDPRA facilitated the synergistic conversion and removal of carbon, nitrogen, and phosphorus nutrients, achieving remarkable removal efficiencies of chemical oxygen demand (COD, 83.5 ± 5.3 %), NH4+ (99.8 ± 0.7 %), TIN (77.1 ± 3.6 %), and PO43- (99.3 ± 1.6 %), even under challenging operational conditions such as low temperature of 11.7 °C. The PDPRA offers a promising solution for reconciling the mainstream anammox and the carbon and phosphorus removal, shedding fresh light on the paradigm shift of MWWTPs in the near future.


Subject(s)
Denitrification , Wastewater , Phosphorus , RNA, Ribosomal, 16S/genetics , Anaerobic Ammonia Oxidation , Bioreactors/microbiology , Nitrogen , Carbon , Sewage/microbiology , Oxidation-Reduction
6.
Water Res ; 252: 121209, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38309058

ABSTRACT

Low water temperatures and ammonium concentrations pose challenges for anammox applications in the treatment of low C/N municipal wastewater. In this study, a 10 L-water bath sequencing batch reactor combing biofilm and suspended sludge was designed for low C/N municipal wastewater treatment. The nitrogen removal performance via partial nitrification anammox-(endogenous) denitrification anammox process was investigated with anaerobic-aerobic-anoxic mode at low temperatures and dissolved oxygen (DO). The results showed that with the decrease of temperature from 30 to 15℃, the influent and effluent nitrogen concentrations and nitrogen removal efficiencies were 73.7 ± 6.5 mg/L, 7.8 ± 2.8 mg/L, and 89.4 %, respectively, with aerobic hydraulic retention time of only 6 h and DO concentration of 0.2-0.5 mg/L. Among that, the stable anammox process compensated for the inhibitory effects of the low temperatures on the nitrification and denitrification processes. Notably, from 30 to 15℃, the anammox activity and relative abundance of the dominant Brocadia genus were increased from 39.7 to 45.5 mgN/gVSS/d and 7.3 to 12.0 %, respectively; the single gene expression level of the biofilm increased 9.0 times. The anammox bacteria showed a good adaptation to temperatures reduction. However, nitrogen removal by anammox was not improved by increasing DO (≥ 4 mg/L) at 8-4℃. Overall, the results of this study demonstrate the feasibility of the mainstream anammox process at low temperatures.


Subject(s)
Oxygen , Water Purification , Temperature , Anaerobic Ammonia Oxidation , Bioreactors/microbiology , Oxidation-Reduction , Sewage/microbiology , Nitrification , Water Purification/methods , Nitrogen/metabolism , Water , Denitrification
7.
Water Res ; 251: 121088, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38198976

ABSTRACT

Anaerobic ammonia oxidation (anammox) of municipal wastewater is a research focus, especially the combined treatment with mature landfill leachate is a current research hotspot. In this study, municipal wastewater was treated by partial nitrification via sequencing batch reactor (SBR), and its effluent and mature landfill leachate were then mixed into an up-flow anaerobic sludge blanket (UASB) for simultaneous anammox and partial denitrification reaction. Through partial nitrification, a high nitrite accumulation rate (93.0 ± 3.8 %) was achieved by low dissolved oxygen (0.5-1.6 mg/L) and controlled aerobic time (3.5 h) in SBR. The UASB system was responsible for 78.8 ± 2.1 % nitrogen removal of the entire system with a hydraulic reaction time (HRT) of 3.8 h, accompanied by the anammox contribution up to 89.4 ± 6.0 %. The overall partial nitrification-simultaneous anammox and partial denitrification (PN-SAPD) system was controlled at a total COD/TIN of 2.8 ± 0.3 and a total HRT of only 10.2 h, achieving the nitrogen removal efficiency and effluent TIN were 95.2 ± 2.2 % and 3.4 ± 1.5 mg/L, respectively. The qPCR results showed functional genes (hzsA(B), hdh) associated with anaerobic ammonia-oxidizing bacteria (AnAOB), whose high gene copy abundance and transcription expression ensured the removal of major nitrogen from municipal wastewater and mature landfill leachate. 16S amplicon sequencing showed that the Ca. Brocadia (9.72-12.6 %) was further enrichment after sodium acetate was added, and the transcription expression of Thauera (0.5-7.0 %) caused nitrate to nitrite. The high abundance of related enzymes (hao, hzs, hdh, narGHI) involved in anammox and partial denitrification processes were found in the macrogenomic sequencing, and only Ca. Brocadia was involved in multi-pathway nitrogen metabolism in AnAOB. Based on the efficient nitrogen removal by AnAOB and denitrifying bacteria, this modified PN-SAPD process provides a new option for the co-treatment of mature landfill leachate in municipal wastewater treatment plants.


Subject(s)
Betaproteobacteria , Water Pollutants, Chemical , Nitrification , Wastewater , Denitrification , Anaerobic Ammonia Oxidation , Nitrogen , Nitrites , Bioreactors/microbiology , Oxidation-Reduction , Sewage
8.
Bioresour Technol ; 393: 130031, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37993071

ABSTRACT

In anaerobic/aerobic/anoxic (A/O/A) process, endogenous denitrification (ED) is critically important, and achieving steady endogenous partial denitrification (EdPD) is crucial to carbon saving and anammox application. In this study, EdPD was rapidly realized from conventional activated sludge by expelling phosphorus accumulating organisms (PAOs) in anaerobic/anoxic (A/A) mode during 40 days, with nitrite transformation rate (NTR) surging to 82.8 % from 29.4 %. Competibacter was the prime EdPD-fulfilling bacterium, soaring to 28.9 % from 0.5 % in phase II. Afterwards, balance of high NTR and phosphorus removal efficiency (PRE) were attained by well regulating competition and cooperation between PAOs and glycogen accumulating organisms (GAOs) in A/O/A mode, when the Competibacter (21.7 %) and Accumulibacter (7.3 %, mainly Acc_IIC and Acc_IIF) were in dominant position with balance. The PRE recovered to 88.6 % and NTR remained 67.7 %. Great balance of GAOs and PAOs contributed to advanced nitrogen removal by anammox.


Subject(s)
Phosphorus , Sewage , Sewage/microbiology , Denitrification , Glycogen , Bioreactors/microbiology , Nitrites , Nitrogen
9.
Sci Total Environ ; 912: 168965, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38030009

ABSTRACT

At present, the step-feed process is a very active branch in practical application of mainstream wastewater treatment, and the anammox technology empowers the sustainable development and in-depth research of step-feed process. This review provides a systematically inspection of the realization and application of partial anammox process through step-feed mode, with a particular focus on controlling nitrite supply for anammox. The characteristics and advantages of step-feed mode in traditional management are reviewed. The unique organics utilization strategy by step-feed and indispensable intermittent aeration mode creates advantages for achieving nitritation (NH4+ â†’ NO2-) and denitratation (NO3- â†’ NO2-), providing flexible combination possibility with anammox. Additionally, the lab- or pilot-scale control strategies with different forms of anammox, including nitritation/anammox, denitratation/anammox, and double-anammox (combined nitritation/anammox and denitratation/anammox), are summarized. Finally, future directions and application perspectives on leveraging the relationship between flocs and biofilm, nitritation and denitratation, and different strains to maximize the anammox proportion in N-removal are proposed.


Subject(s)
Ammonium Compounds , Water Purification , Nitrites , Wastewater , Denitrification , Anaerobic Ammonia Oxidation , Nitrogen Dioxide , Bioreactors , Nitrogen , Oxidation-Reduction , Sewage
10.
Water Res ; 250: 121046, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38159538

ABSTRACT

Achieving economic and efficient removal of nutrients in mainstream wastewater treatment plants (WWTPs) continues to be a challenging research topic. In this study, a continuous-flow anaerobic/aerobic/anoxic system with sludge double recirculation (AOA-SDR), which integrated partial nitrification (PN), endogenous denitrification (ED) and nitrite-type denitrifying phosphorus removal (nDNPR), was constructed to treat real carbon-limited municipal wastewater. The average effluent concentrations of total inorganic nitrogen (TIN) and PO43--P during the stable operation period were 1.8 and 0.3 mg/L, respectively. PN was achieved with an average nitrite accumulation ratio of 90.4 % by combined strategies. Adequate storage of polyhydroxyalkanoates and glycogen in the anaerobic zone promoted the subsequent nitrogen removal capacity. In the anoxic zone, nitrite served as the main electron acceptor for the denitrifying phosphorus removal process. Mass balance analysis revealed that nDNPR contributed to 23.6 % of TIN removal and 44.7 % of PO43--P removal. The enrichment of Nitrosomonas (0.45 %) and Ellin 6067 (1.31 %), along with the washout of Nitrospira (0.15 %) provided the bacterial basis for the successful implementation of PN. Other dominant endogenous heterotrophic bacteria, such as Dechlormonas (10.81 %) and Candidatus Accumulibacter (2.96 %), ensured simultaneous nitrogen and phosphorus removal performance. The successful validation of integrating PN, ED and nDNPR for advanced nutrient removal in the AOA-SDR process provides a transformative technology for WWTPs.


Subject(s)
Nitrification , Wastewater , Denitrification , Nitrites , Anaerobiosis , Phosphorus , Nitrogen , Waste Disposal, Fluid , Bioreactors/microbiology , Sewage , Bacteria
11.
Bioresour Technol ; 394: 130238, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38142908

ABSTRACT

The nitrite (NO2-) accumulation in partial denitrification (PD) offers the possibility of widespread application of anammox process. In this study, the rapid establishment of PD granular system was achieved by increasing nitrogen loading rates (NLR) from 0.9 to 4.8 kg N/(m3·d), with the nitrate-to-nitrite transforming ratio (NTR) increasing rapidly to 87.0 % within 18 days. Growth evidence indicated that the functional genus Thauera was significantly enriched (12.5 %→76.4 %), with nitrate (NO3-) reduction rates (SNO3) improving by 5.4 times from 13.0 to 70.7 mg N/(g VSS·h). Importantly, the rapid aggregation of PD biomass as granules ensured robustness and resistance of PD feeding with the electroplating tail wastewater (NO3--N of 103.0 ± 5.0 mg/L), obtaining stable NTR above 91.5 %. This study demonstrated the achievability of the fast development of PD granules and the adaptability and robustness of treating nitrate-containing industrial wastewater, which provided a promising method for efficient nitrogen transformation in industrial applications.


Subject(s)
Nitrites , Wastewater , Nitrites/analysis , Nitrates , Nitrogen , Sewage , Denitrification , Bioreactors , Oxidation-Reduction
12.
J Am Chem Soc ; 145(50): 27531-27538, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38054906

ABSTRACT

Single-atom catalysts exhibit promising electrocatalytic activity, a trait that can be further enhanced through the introduction of heteroatom doping within the carbon skeleton. Nonetheless, the intricate relationship between the doping positions and activity remains incompletely elucidated. This contribution sheds light on an inductive effect of single-atom sites, showcasing that the activity of the oxygen reduction reaction (ORR) can be augmented by reducing the spatial gap between the doped heteroatom and the single-atom sites. Drawing inspiration from this inductive effect, we propose a synthesis strategy involving ligand modification aimed at precisely adjusting the distance between dopants and single-atom sites. This precise synthesis leads to optimized electrocatalytic activity for the ORR. The resultant electrocatalyst, characterized by Fe-N3P1 single-atom sites, demonstrates remarkable ORR activity, thus exhibiting great potential in zinc-air batteries and fuel cells.

13.
Nat Commun ; 14(1): 8336, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097587

ABSTRACT

Body-centered cubic refractory metallic materials exhibit excellent high-temperature strength, but often suffer from brittle intergranular fracture due to the recrystallization-induced enrichment of trace elements at grain boundaries (GBs). Here, we report a fully-recrystallized pure molybdenum (Mo) material with room temperature (RT) superplasticity, fabricated by a facile method of powder metallurgy, Y-type hot rolling and annealing. By engineering the ultralow concentration of O at GBs, the inherent GB brittleness of Mo can be largely eliminated, which, in conjunction with high fractions of soft texture and low angle GBs, enables a significant development of ordered dislocation networks and the effective dislocation transmission across low angle GBs. Synergy of these factors greatly suppress the brittle intergranular fracture of Mo, contributing to an enhanced deformability of 108.7% at RT. These findings should have general implication for fabricating a broad class of refractory metals and alloys toward harsh applications.

14.
Angew Chem Int Ed Engl ; 62(48): e202313028, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37851474

ABSTRACT

Coordination engineering for single-atom sites has drawn increasing attention, yet its chemical synthesis remains a tough issue, especially for tailorable coordination structures. Herein, a molecular recognition strategy is proposed to fabricate single-atom sites with regulable local coordination structures. Specifically, a heteroatom-containing ligand serves as the guest molecule to induce coordination interaction with the metal-containing host, precisely settling the heteroatoms into the local structure of single-atom sites. As a proof of concept, thiophene is selected as the guest molecule, and sulfur atoms are successfully introduced into the local coordination structure of iron single-atom sites. Ultrahigh oxygen reduction electrocatalytic activity is achieved with a half-wave potential of 0.93 V versus reversible hydrogen electrode. Furthermore, the strategy possesses excellent universality towards diversified types of single-atom sites. This work makes breakthroughs in the fabrication of single-atom sites and affords new opportunities in structural regulation at the atomic level.

15.
J Environ Manage ; 345: 118688, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37660422

ABSTRACT

Nitrite oxidizing bacteria (NOB) outcompeting anammox bacteria (AnAOB) poses a challenge to the practical implementation of the partial nitrification/anammox (PN/A) process for municipal wastewater. A granules-based PN/A bioreactor was operated for 260 d with hydroxylamine (NH2OH) added halfway through. qPCR results detected the different amounts of NOB among granules and flocs and the dynamic succession during operation. CLSM images revealed a unique layered structure of granules that NOB located inside led to the inhibition effect of NH2OH delayed. Besides, the physical and morphological characteristics revealed that anammox granules experienced destruction. AnAOB took the broken granules as an initial biofilm aggregate to reconstruct new granules. RT-qPCR and high throughput sequencing results suggested that functional gene expression and community structure were regulated for the AnAOB metabolism process. Correspondingly, the rapid proliferation (0.52 â†’ 1.99%) of AnAOB was realized, and the nitrogen removal rate achieved a nearly quadruple improvement (0.21 â†’ 0.83 kg-N/m3·d). This study revealed that anammox granules can self-reconstruct in the PN/A system when granules are disintegrated under NH2OH stress, broadening the feasibility of applying PN/A process.


Subject(s)
Anaerobic Ammonia Oxidation , Nitrification , Hydroxylamine , Hydroxylamines , Biofilms , Nitrites
16.
J Environ Manage ; 345: 118761, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37683380

ABSTRACT

Despite the advantages of the combined anammox and fermentation-driven denitrification process in nitrogen removal and energy consumption, stable performance at decreased temperatures remains a challenge. In this study, a robust and high-efficient nitrogen removal efficiency (95.0-93.1 âˆ¼ 86.8-93.4%) with desirable effluent quality (3.0-4.1 âˆ¼ 7.9-4.9 mg/L) under long-term decreased temperatures (30 °C→25 °C→20 °C) was achieved in a zero-external carbon Partial Nitritation/Anammox combined with in-situ sludge Fermentation-Denitrification process treating sewage. Excellent sludge reduction averaged at 14.9% assuming no microbial growth. Increased hzsB mRNA (2.2-fold) and reduced Ea (80.9 kJ/mol) proved resilient anammox to lower temperature. RT-qPCR tests revealed increased NarG/NirK (5.1) and NarG/NirS (4.9) mRNA at 20 °C, suggesting higher NO3-→NO2- over NO2-→N2 pathway. Metagenomics unraveled dominant anammox bacteria (Candidatus_Brocadia, 2.27%), increased denitritation bacteria containing more NarG (Hyphomicrobium, 0.8%), fatty acid biosynthesis and CAZymes genes. Enhanced denitritation with recovered organics from sludge reserved nitrite for anammox and facilitated higher anammox contribution to N removal at 20 °C (42.4%) than 30 °C (39.5%). This study proposed an innovative low-temperature strategy for in-situ sludge fermentation, and demonstrated stability of advanced municipal wastewater treatment and sludge disposal through energy savings and carbon recovery under decreased temperatures.


Subject(s)
Denitrification , Sewage , Fermentation , Nitrogen Dioxide , Temperature , Carbon , Nitrogen
17.
Angew Chem Int Ed Engl ; 62(43): e202309968, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37664907

ABSTRACT

Lithium-sulfur (Li-S) batteries are promising due to ultrahigh theoretical energy density. However, their cycling lifespan is crucially affected by the electrode kinetics of lithium polysulfides. Herein, the polysulfide solvation structure is correlated with polysulfide electrode kinetics towards long-cycling Li-S batteries. The solvation structure derived from strong solvating power electrolyte induces fast anode kinetics and rapid anode failure, while that derived from weak solvating power electrolyte causes sluggish cathode kinetics and rapid capacity loss. By contrast, the solvation structure derived from medium solvating power electrolyte balances cathode and anode kinetics and improves the cycling performance of Li-S batteries. Li-S coin cells with ultra-thin Li anodes and high-S-loading cathodes deliver 146 cycles and a 338 Wh kg-1 pouch cell undergoes stable 30 cycles. This work clarifies the relationship between polysulfide solvation structure and electrode kinetics and inspires rational electrolyte design for long-cycling Li-S batteries.

18.
Bioresour Technol ; 387: 129693, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37598806

ABSTRACT

In suspended sludge system, efficient enrichment and retention of anammox bacteria are crucial obstacles in mainstream wastewater treatment by anammox process. In this study, anammox bacteria was self-enriched in a pilot-scale suspended sludge system of two-stage nitrification-denitrification process serving municipal wastewater treatment. With the low ammonia (NH4+-N) of 9.3 mg/L, nitrate (NO3--N) of 15.6 mg/L and COD/NO3--N of 2.2 under extremely low nitrogen loading rate of 0.012 kg N/m3/d, anammox activity bloomed after its abundance increasing from 5.9 × 107 to 4.6 × 109 copies/g dry sludge. Significant NH4+-N removal was occurred and maintained stably in the denitrification reactor with anammox bacteria accounting for 1.13%, even under temperature decreasing to 20.0℃. The adequately anoxic environment, efficient retention with the static settlement, and NO2- production via NO3- reduction provided favorable environment for anammox bacteria. This study demonstrated the feasibility and great potential in mainstream anammox application without seeding specific sludge.


Subject(s)
Sewage , Wastewater , Anaerobic Ammonia Oxidation , Denitrification , Nitrification , Bacteria , Nitrogen
19.
Theranostics ; 13(13): 4391, 2023.
Article in English | MEDLINE | ID: mdl-37649610

ABSTRACT

[This corrects the article DOI: 10.7150/thno.35582.].

20.
Plant Methods ; 19(1): 82, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37563698

ABSTRACT

BACKGROUND: Pumpkin seeds are major oil crops with high nutritional value and high oil content. The collection and identification of different pumpkin germplasm resources play a significant role in the realization of precision breeding and variety improvement. In this research, we collected 75 species of pumpkin from the Zhejiang Province of China. 35,927 near-infrared hyperspectral images of 75 types of pumpkin seeds were used as the research object. RESULTS: To realize the rapid classification of pumpkin seed varieties, position attention embedded three-dimensional convolutional neural network (PA-3DCNN) was designed based on hyperspectral image technology. The experimental results showed that PA-3DCNN had the best classification effect than other classical machine learning technology. The classification accuracy of 99.14% and 95.20% were severally reached on the training and test sets. We also demonstrated that the PA-3DCNN model performed well in next year's classification with fine-tuning and met with 94.8% accuracy. CONCLUSIONS: The model performance improved by introducing double convolution and pooling structure and position attention module. Meanwhile, the generalization performance of the model was verified, which can be adopted for the classification of pumpkin seeds in multiple years. This study provided a new strategy and a feasible technical approach for identifying germplasm resources of pumpkin seeds.

SELECTION OF CITATIONS
SEARCH DETAIL
...