Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Nat Commun ; 15(1): 5139, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886388

ABSTRACT

Although it is well documented that mountains tend to exhibit high biodiversity, how geological processes affect the assemblage of montane floras is a matter of ongoing research. Here, we explore landform-specific differences among montane floras based on a dataset comprising 17,576 angiosperm species representing 140 Chinese mountain floras, which we define as the collection of all angiosperm species growing on a specific mountain. Our results show that igneous bedrock (granitic and karst-granitic landforms) is correlated with higher species richness and phylogenetic overdispersion, while the opposite is true for sedimentary bedrock (karst, Danxia, and desert landforms), which is correlated with phylogenetic clustering. Furthermore, we show that landform type was the primary determinant of the assembly of evolutionarily older species within floras, while climate was a greater determinant for younger species. Our study indicates that landform type not only affects montane species richness, but also contributes to the composition of montane floras. To explain the assembly and differentiation of mountain floras, we propose the 'floristic geo-lithology hypothesis', which highlights the role of bedrock and landform processes in montane floristic assembly and provides insights for future research on speciation, migration, and biodiversity in montane regions.


Subject(s)
Biodiversity , Magnoliopsida , Phylogeny , China , Magnoliopsida/growth & development , Altitude , Geological Phenomena , Ecosystem
2.
J Org Chem ; 86(5): 4245-4253, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33606932

ABSTRACT

A visible-light-driven, photocatalyst-free route starting from easily accessed ortho-hydroxycinnamic esters and O-perfluoropyridin-4-yl oximes has been successfully developed to rapidly assemble a wide range of 3-cyanoalkyl coumarins. This process does not require addition of external photocatalysts, exhibiting beneficial features including mild reaction conditions, synthetic simplicity, and excellent substrate compatibility. Extensive mechanistic investigations revealed that the in situ generated phenolate anions served as photosensitizers to drive this photoinduced transformation.

3.
Huan Jing Ke Xue ; 41(2): 537-553, 2020 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-32608713

ABSTRACT

PM2.5 samples were collected from December 2017 to November 2018 at a northern suburb site of Nanjing. The concentrations of five amines, major water-soluble ions, organic carbon, and elemental carbon were determined. The five amines measured were methylamine, ethylamine, dimethylamine, trimethylamine, and aniline. The annual average of the total amine concentration was (54.2±29.2) ng·m-3. Among these, dimethylamine was the most abundant[annual average:(20.2±13.7) ng·m-3], followed by methylamine[annual average:(13.1±6.3) ng·m-3], trimethylamine[annual average:(8.6±4.1) ng·m-3], ethylamine[annual average:(6.3±4.1) ng·m-3], and aniline[annual average:(5.9±3.9) ng·m-3]. The total amine concentration showed explicit seasonal variations:summer > autumn > spring > winter. The amine concentration on polluted days was higher than that on clean days. This may be influenced by aerosol acidity, promoting the partitioning of gaseous amine into the particulate phase. Aerosol acidity was also the major reason for the higher concentration of amine observed in summer than in other seasons. During new particle formation events, the concentrations of amines increased substantially. Positive matrix factorization (PMF) was utilized to identify the potential sources of amines, identifying six sources:industrial emission, agriculture emission, biomass burning, automobile emission, secondary formation, and dust. Methylamine and ethylamine mainly originated from secondary formation and automobile emissions. Dimethylamine and trimethylamine mainly originated from biomass burning, secondary formation, and automobile emissions; Aniline mainly originated from industrial emissions and biomass burning. A significant seasonal difference is observed with respect to the sources of amines. In spring and autumn, road dust sources account for a relatively high proportion. In summer, secondary sources are the main sources of amines. However, the diurnal variations of amine are not evident, and the secondary source, motor vehicle emission, and biomass combustion are the three main influencing factors.

4.
J Org Chem ; 85(5): 3538-3547, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-31971800

ABSTRACT

O-Perfluoropyridin-4-yl group was first installed onto cycloketone oximes as a new electrophore, which was proven to be efficient iminyl radical precursors under photocatalytic and thermal conditions. A range of O-perfluoropyridin-4-yl oximes were successfully utilized in C(sp2)-C(sp3) bond formations of quinoxalin-2(1H)-ones and alkenes, providing facile accesses to a range of functionalized alkylnitriles.

SELECTION OF CITATIONS
SEARCH DETAIL
...