Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.209
Filter
1.
FASEB Bioadv ; 6(5): 131-142, 2024 May.
Article in English | MEDLINE | ID: mdl-38706754

ABSTRACT

The leading cause of death among patients with metabolic dysfunction-associated steatotic liver disease (MASLD) is cardiovascular disease. A significant percentage of MASLD patients develop heart failure driven by functional and structural alterations in the heart. Previously, we observed cardiac dysfunction in hepatocyte-specific peroxisome proliferator-activated receptor alpha knockout (Ppara HepKO), a mouse model that exhibits hepatic steatosis independent of obesity and insulin resistance. The goal of the present study was to determine mechanisms that underlie hepatic steatosis-induced cardiac dysfunction in Ppara HepKO mice. Experiments were performed in 30-week-old Ppara HepKO and littermate control mice fed regular chow. We observed decreased cardiomyocyte contractility (0.17 ± 0.02 vs. 0.24 ± 0.02 µm, p < 0.05), increased cardiac triglyceride content (0.96 ± 0.13 vs. 0.68 ± 0.06 mM, p < 0.05), collagen type 1 (4.65 ± 0.25 vs. 0.31 ± 0.01 AU, p < 0.001), and collagen type 3 deposition (1.32 ± 0.46 vs. 0.05 ± 0.03 AU, p < 0.05). These changes were associated with increased apoptosis as indicated by terminal deoxynucleotidyl transferase dUTP nick end labeling staining (30.9 ± 4.7 vs. 13.1 ± 0.8%, p < 0.006) and western blots showing increased cleaved caspase-3 (0.27 ± 0.006 vs. 0.08 ± 0.01 AU, p < 0.003) and pro-caspase-3 (5.4 ± 1.5 vs. 0.5 ± 0.3 AU, p < 0.02), B-cell lymphoma protein 2-associated X (0.68 ± 0.07 vs. 0.04 ± 0.04 AU, p < 0.001), and reduced B-cell lymphoma protein 2 (0.29 ± 0.01 vs. 1.47 ± 0.54 AU, p < 0.05). We further observed elevated circulating natriuretic peptides and exercise intolerance in Ppara HepKO mice when compared to controls. Our data demonstrated that lipotoxicity, and fibrosis underlie cardiac dysfunction in MASLD.

2.
ACS Omega ; 9(17): 19009-19019, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38708213

ABSTRACT

OBJECTIVE: our aim is to explore the mechanism of action of Yiwei decoction (YWD) in addressing premature ovarian insufficiency (POI) through a combination of transcriptomics and network pharmacology. By doing so, we hope to identify important pathways of action, key targets, and active components that contribute to the efficacy of YWD. MATERIALS AND METHODS: group A comprised of the model + traditional Chinese medicine group, while group B was the model control group and group C was the normal control group. After gavage, serum AMH and E2 levels were measured by using ELISA. HE staining was used to study the impact of YWD on ovarian follicle recovery in POI rats. Additionally, RNA-seq sequencing technology was employed to analyze the transcription levels of mRNAs and miRNAs in the ovarian tissues of each group, and the resulting data were examined using R. YWD used UPLC-Q-TOF-HRMS to analyze its active ingredients. Upon obtaining the sequencing results, the miRWalk database was utilized to forecast the targets of DEmiRNAs. Network pharmacology was then applied to predict the targets of active ingredients present in YWD, ultimately constructing a regulatory network consisting of active ingredients-mRNA-miRNA. The coexpression relationship between mRNAs and miRNAs was calculated using the Pearson correlation coefficient, and high correlation coefficients between miRNA-mRNA were confirmed through miRanda sequence combination. RESULTS: the application of YWD resulted in improved serum levels of AMH and E2, as well as an increased number of ovarian follicles in rats with POI. However, there was a minimal impact on the infiltration of ovarian lymphocytes. Through GSEA pathway enrichment analysis, we found that YWD may have a regulatory effect on PI3K-Akt, ovarian steroidogenesis, and protein digestion and absorption, which could aid in the treatment of POI. Additionally, our research discovered a total of 6 DEmiRNAs between groups A and B, including 2 new DEmiRNAs. YWD contains 111 active compounds, and our analysis of the active component-mRNA regulatory network revealed 27 active components and 73 mRNAs. Furthermore, the coexpression network included 5 miRNAs and 18 mRNAs. Our verification of MiRanda binding demonstrated that 12 of the sequence binding sites were stable. CONCLUSIONS: our research has uncovered the regulatory network mechanism of active ingredients, mRNA, and miRNA in YWD POI treatment. However, further research is needed to determine the effect of the active ingredients on key miRNAs and mRNAs.

3.
Front Plant Sci ; 15: 1386109, 2024.
Article in English | MEDLINE | ID: mdl-38708391

ABSTRACT

Compared to conventional irrigation and fertilization, the Water-fertilizer coupling can significantly enhance the efficiency of water and fertilizer utilization, thereby promoting crop growth and increasing yield. Targeting the challenges of poor crop growth, low yield, and inefficient water and fertilizer utilization in the arid region of northwest China under conventional irrigation and fertilization practices. Therefore, a two-year on-farm experiment in 2022 and 2023 was conducted to study the effects of water-fertilizer coupling regulation on pumpkin growth, yield, water consumption (ET), and water and fertilizer use efficiency. Simultaneously the comprehensive evaluation of multiple objectives was carried out using principal component analysis (PCA) methods, so as to propose an suitable water-fertilizer coupling regulation scheme for the region. The experiment was set up as a two-factor trial using water-fertilizer integration technology under three irrigation volume (W1 = 37.5 mm, W2 = 45.5 mm, W3 = 52.5mm) and three organic fertilizer application amounts (F1 = 3900-300 kg ha-1, F2 = 4800-450 kg·ha-1, F3 = 5700-600 kg·ha-1), with the traditional irrigation and fertilization scheme from local farmers as control treatments (CK). The results indicated that irrigation volume and organic fertilizer application significantly affected pumpkin growth, yield, and water and fertilizer use efficiency (P<0.05). Pumpkin yield increased with increasing irrigation volume. Increasing organic fertilizer levels within a certain range benefited pumpkin plant growth, dry matter accumulation, and yield, however, excessive application beyond a certain level had inhibited effects on those. The increased fertilizer application under the same irrigation volume enhanced the efficiency of water and fertilizer utilization. However excessive irrigation only resulted in inefficient water consumption, reducing the water and fertilizer use efficiency. The Comprehensive evaluation by PCA revealed that the F2W3 treatment outperformed all the others, effectively addressing the triple objectives of increasing production, improving efficiency, and promoting green production. Therefore, F2W3 (Irrigation volume: 52.5 mm; Fertilizer application amounts: 4800-450 kg/ha-1) as a water and fertilizer management scheme for efficient pumpkin production in the arid region of northwest China.

4.
iScience ; 27(4): 109508, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38715942

ABSTRACT

The global burden of diseases and injuries poses complex and pressing challenges. This study analyzed 369 diseases and injuries attributed to 84 risk factors globally from 1990 to 2019, projecting trends to 2040. In 2019, global risks caused 35 million deaths. Non-communicable diseases were responsible for 8.2 million deaths, primarily from air pollution (5.5 million). Cardiovascular disease from air pollution had a high age-standardized disability-adjusted life year rate (1,073.40). Communicable, maternal, neonatal, and nutritional diseases caused 1.4 million deaths, mainly due to unsafe water and sanitation. Occupational risks resulted in 184,269 transport-related deaths. Behavioral risks caused 21.6 million deaths, with dietary factors causing 6.9 million cardiovascular deaths. Diabetes linked to sugar-sweetened beverages showed significant growth (1990-2019). Metabolic risks led to 18.6 million deaths. Projections to 2040 indicated persistent challenges, emphasizing the urgent need for targeted interventions and policies to alleviate the global burden of diseases and injuries.

5.
Cureus ; 16(4): e59039, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38803713

ABSTRACT

Introduction Chronic obstructive pulmonary disease (COPD) affects millions in China and imposes a considerable economic burden on hospitalized patients who experience exacerbations. Nebulized short-acting beta-2 agonists (SABA) are recommended as initial therapy for exacerbation patients, but the optimal SABA remains uncertain. This study aimed to evaluate the impact of different SABAs, such as albuterol and levalbuterol, on the length of stay (LOS) and direct medical costs among hospitalized patients diagnosed with COPD. Methods This retrospective cohort study uses linked hospital administrative data from three hospitals in Chongqing. Patients with COPD, aged 40 years and older, who had been continuously treated with nebulized albuterol or levalbuterol during hospitalization, were eligible for the study. Patients were matched 1:1 by sex, age, and severity according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) grades 1-4. Patients were grouped according to the different SABA treatments they received. Demographic, economic, and clinical data were retrieved. LOS and direct healthcare costs were assessed. Results A total of 158 COPD patients were included, with 79 in each treatment group. Patients treated with levalbuterol had a significantly shorter median LOS (7.0 days vs. 8.0 days, P=0.003) and fewer direct healthcare median costs (total cost: ¥8,868.3 vs. ¥10,290.7, P=0.014; COPD-related western medicine fees: ¥383.8 vs. ¥505.3). Patients aged 60 or older were more likely to experience longer LOS and higher direct costs. Conclusion This retrospective cohort analysis supports that albuterol was associated with longer LOS and higher costs than levalbuterol.

9.
J Hum Lact ; : 8903344241252645, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38798078

ABSTRACT

BACKGROUND: SARS-CoV-2 specific antibodies exist in human milk expressed by lactating parents after vaccination. In the existing research, the effects of vaccine types on human milk are inconsistent. RESEARCH AIM: This study aims to perform a systematic review and meta-analysis of the existing observational studies to compare the positive rates of SARS-CoV-2 specific antibodies in human milk according to mRNA and adenovector-based vaccination. METHODS: PubMed, Web of Science, Elsevier Science Direct and Cochrane Library databases were systematically searched for relevant articles published from December 30, 2019 to February 15, 2023. Observational studies were considered eligible provided they reported data on SARS-CoV-2 specific antibodies in human milk. The risk of bias in non-randomized studies of interventions (ROBINS-I) tool, the Newcastle-Ottawa Scale (NOS), and the Agency for Healthcare Research and Quality (AHRQ) were used to assess risk of bias. Seven studies, including 511 lactating participants, were included in this review and meta-analysis. RESULTS: The positive rate of SARS-CoV-2 IgA is higher in mRNA vaccine groups than in adenovector-based vaccine groups (OR = 4.80, 95% CI [3.04, 7.58], p < 0.001). The positive rate of SARS-CoV-2 IgG was higher in mRNA vaccines than in adenovector-based vaccines. CONCLUSIONS: Compared to adenovector-based vaccines, mRNA vaccines present a higher positivity rate of IgA and IgG in human milk after vaccination. In other words, mRNA vaccinations may offer breastfed children a higher level of protection than adenovector-based vaccinations. Further high-quality data is still required to substantiate these findings.

10.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798405

ABSTRACT

Naturalistic paradigms, such as watching movies during functional magnetic resonance imaging (fMRI), are thought to prompt the emotional and cognitive processes typically elicited in real life situations. Therefore, naturalistic viewing (NV) holds great potential for studying individual differences. However, in how far NV elicits similarity within and between subjects on a network level, particularly depending on emotions portrayed in movies, is currently unknown. We used the studyforrest dataset to investigate the inter- and intra-subject similarity in network functional connectivity (NFC) of 14 meta-analytically defined networks across a full narrative, audio-visual movie split into 8 consecutive movie segments. We characterized the movie segments by valence and arousal portrayed within the sequences, before utilizing a linear mixed model to analyze which factors explain inter- and intra-subject similarity. Our results showed that the model best explaining inter-subject similarity comprised network, movie segment, valence and a movie segment by valence interaction. Intra-subject similarity was influenced significantly by the same factors and an additional three-way interaction between movie segment, valence and arousal. Overall, inter- and intra-subject similarity in NFC were sensitive to the ongoing narrative and emotions in the movie. Lowest similarity both within and between subjects was seen in the emotional regulation network and networks associated with long-term memory processing, which might be explained by specific features and content of the movie. We conclude that detailed characterization of movie features is crucial for NV research.

11.
Curr Med Sci ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809379

ABSTRACT

OBJECTIVE: To uncover the mechanisms underlying the development of colorectal cancer (CRC), we applied bioinformatic analyses to identify key genes and experimentally validated their possible roles in CRC onset and progression. METHODS: We performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis on differentially expressed genes (DEGs), constructed a protein-protein interaction (PPI) network to find the top 10 hub genes, and analyzed their expression in colon adenocarcinoma (COAD) and rectum adenocarcinoma (READ). We also studied the correlation between these genes and immune cell infiltration and prognosis and validated the expression of SLC9A2 in CRC tissues and cell lines using qRT-PCR and Western blotting. Functional experiments were conducted in vitro to investigate the effects of SLC9A2 on tumor growth and metastasis. RESULTS: We found 130 DEGs, with 45 up-regulated and 85 down-regulated in CRC. GO analysis indicated that these DEGs were primarily enriched in functions related to the regulation of cellular pH, zymogen granules, and transmembrane transporter activity. KEGG pathway analysis revealed that the DEGs played pivotal roles in pancreatic secretion, rheumatoid arthritis, and the IL-17 signaling pathway. We identified 10 hub genes: CXCL1, SLC26A3, CXCL2, MMP7, MMP1, SLC9A2, SLC4A4, CLCA1, CLCA4, and ZG16. GO enrichment analysis showed that these hub genes were predominantly involved in the positive regulation of transcription. Gene expression analysis revealed that CXCL1, CXCL2, MMP1, and MMP7 were highly expressed in CRC, whereas CLCA1, CLCA4, SLC4A4, SLC9A2, SLC26A3, and ZG16 were expressed at lower levels. Survival analysis revealed that 5 key genes were significantly associated with the prognosis of CRC. Both mRNA and protein expression levels of SLC9A2 were markedly reduced in CRC tissues and cell lines. Importantly, SLC9A2 overexpression in SW480 cells led to a notable inhibition of cell proliferation, migration, and invasion. Western blotting analysis revealed that the expression levels of phosphorylated ERK (p-ERK) and phosphorylated JNK (p-JNK) proteins were significantly increased, whereas there were no significant changes in the expression levels of ERK and JNK following SLC9A2 overexpression. Correlation analysis indicated a potential link between SLC9A2 expression and the MAPK signaling pathway. CONCLUSION: Our study suggests that SLC9A2 acts as a tumor suppressor through the MAPK pathway and could be a potential target for CRC diagnosis and therapy.

12.
Mater Horiz ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764435

ABSTRACT

Wearable electronics are some of the most promising technologies with the potential to transform many aspects of human life such as smart healthcare and intelligent communication. The design of self-powered fabrics with the ability to efficiently harvest energy from the ambient environment would not only be beneficial for their integration with textiles, but would also reduce the environmental impact of wearable technologies by eliminating their need for disposable batteries. Herein, inspired by classical Archimedean spirals, we report a metastructured fiber fabricated by scrolling followed by cold drawing of a bilayer thin film of an MXene and a solid polymer electrolyte. The obtained composite fibers with a typical spiral metastructure (SMFs) exhibit high efficiency for dispersing external stress, resulting in simultaneously high specific mechanical strength and toughness. Furthermore, the alternating layers of the MXene and polymer electrolyte form a unique, tandem ionic-electronic coupling device, enabling SMFs to generate electricity from diverse environmental parameters, such as mechanical vibrations, moisture gradients, and temperature differences. This work presents a design rule for assembling planar architectures into robust fibrous metastructures, and introduces the concept of ionic-electronic coupling fibers for efficient multimodal energy harvesting, which have great potential in the field of self-powered wearable electronics.

13.
Environ Res ; : 119187, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38777295

ABSTRACT

The issue of combined pollution in oligotrophic water has garnered increasing attention in recent years. To enhance the pollutant removal efficiency in oligotrophic water, the system containing Zoogloea sp. FY6 was constructed using polyester fiber wrapped sugarcane biochar and construction waste iron (PWSI), and the denitrification test of simulated water and actual oligotrophic water was carried out for 35 days. The experimental findings from the systems indicated that the removal efficiencies of nitrate (NO3--N), total nitrogen (TN), chemical oxygen demand (COD), and total phosphorus (TP) in simulated water were 88.61%, 85.23%, 94.28%, and 98.90%, respectively. The removal efficiencies of actual oligotrophic water were 83.06%, 81.39%, 81.66%, and 97.82%, respectively. Furthermore, the high-throughput sequencing data demonstrated that strain FY6 was successfully loaded onto the biological carrier. According to functional gene predictions derived from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, the introduction of PWSI enhanced intracellular iron cycling and nitrogen metabolism.

14.
BMC Public Health ; 24(1): 1363, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773497

ABSTRACT

BACKGROUND: Although the association between ambient temperature and mortality of respiratory diseases was numerously documented, the association between various ambient temperature levels and respiratory emergency department (ED) visits has not been well studied. A recent investigation of the association between respiratory ED visits and various levels of ambient temperature was conducted in Beijing, China. METHODS: Daily meteorological data, air pollution data, and respiratory ED visits data from 2017 to 2018 were collected in Beijing. The relationship between ambient temperature and respiratory ED visits was explored using a distributed lagged nonlinear model (DLNM). Then we performed subgroup analysis based on age and gender. Finally, meta-analysis was utilized to aggregate the total influence of ambient temperature on respiratory ED visits across China. RESULTS: The single-day lag risk for extreme cold peaked at a relative risk (RR) of 1.048 [95% confidence interval (CI): 1.009, 1.088] at a lag of 21 days, with a long lag effect. As for the single-day lag risk for extreme hot, a short lag effect was shown at a lag of 7 days with an RR of 1.076 (95% CI: 1.038, 1.114). The cumulative lagged effects of both hot and cold effects peaked at lag 0-21 days, with a cumulative risk of the onset of 3.690 (95% CI: 2.133, 6.382) and 1.641 (95% CI: 1.284, 2.098), respectively, with stronger impact on the hot. Additionally, the elderly were more sensitive to ambient temperature. The males were more susceptible to hot weather than the females. A longer cold temperature lag effect was found in females. Compared with the meta-analysis, a pooled effect of ambient temperature was consistent in general. In the subgroup analysis, a significant difference was found by gender. CONCLUSIONS: Temperature level, age-specific, and gender-specific effects between ambient temperature and the number of ED visits provide information on early warning measures for the prevention and control of respiratory diseases.


Subject(s)
Emergency Service, Hospital , Respiratory Tract Diseases , Humans , Emergency Service, Hospital/statistics & numerical data , Female , Male , Middle Aged , Aged , Adult , Beijing/epidemiology , Child, Preschool , Adolescent , Infant , Child , Young Adult , Respiratory Tract Diseases/epidemiology , Temperature , Time Factors , Infant, Newborn , Aged, 80 and over , Air Pollution/adverse effects , Emergency Room Visits
15.
World J Stem Cells ; 16(4): 444-458, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38690512

ABSTRACT

BACKGROUND: Leukemia stem cells (LSCs) are found to be one of the main factors contributing to poor therapeutic effects in acute myeloid leukemia (AML), as they are protected by the bone marrow microenvironment (BMM) against conventional therapies. Gossypol acetic acid (GAA), which is extracted from the seeds of cotton plants, exerts anti-tumor roles in several types of cancer and has been reported to induce apoptosis of LSCs by inhibiting Bcl2. AIM: To investigate the exact roles of GAA in regulating LSCs under different microenvironments and the exact mechanism. METHODS: In this study, LSCs were magnetically sorted from AML cell lines and the CD34+CD38- population was obtained. The expression of leucine-rich pentatricopeptide repeat-containing protein (LRPPRC) and forkhead box M1 (FOXM1) was evaluated in LSCs, and the effects of GAA on malignancies and mitochondrial function were measured. RESULTS: LRPPRC was found to be upregulated, and GAA inhibited cell proliferation by degrading LRPPRC. GAA induced LRPPRC degradation and inhibited the activation of interleukin 6 (IL-6)/janus kinase (JAK) 1/signal transducer and activator of transcription (STAT) 3 signaling, enhancing chemosensitivity in LSCs against conventional chemotherapies, including L-Asparaginase, Dexamethasone, and cytarabine. GAA was also found to downregulate FOXM1 indirectly by regulating LRPPRC. Furthermore, GAA induced reactive oxygen species accumulation, disturbed mitochondrial homeostasis, and caused mitochondrial dysfunction. By inhibiting IL-6/JAK1/STAT3 signaling via degrading LRPPRC, GAA resulted in the elimination of LSCs. Meanwhile, GAA induced oxidative stress and subsequent cell damage by causing mitochondrial damage. CONCLUSION: Taken together, the results indicate that GAA might overcome the BMM protective effect and be considered as a novel and effective combination therapy for AML.

16.
Org Lett ; 26(19): 4152-4157, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38722029

ABSTRACT

An efficient approach was developed for the synthesis of the well-known BlueCage by pre-bridging two 2,4,6-tris(4-pyridyl)-1,3,5-triazine (TPT) panels with one linker followed by cage formation in a much improved yield and shortened reaction time. Such a stepwise methodology was further applied to synthesize three new pyridinium organic cages, C2, C3, and C4, where the low-symmetry cages C3 and C4 with angled panels demonstrated better recognition properties toward 1,1'-bi-2-naphthol (BINOL) than the high-symmetry analogue C2 featuring parallel platforms.

17.
J Inflamm Res ; 17: 2839-2850, 2024.
Article in English | MEDLINE | ID: mdl-38751687

ABSTRACT

Purpose: Acupoint autohemotherapy (A-AHT) has been proposed as an alternative and complementary treatment for atopic dermatitis (AD), yet the exact role of its blood component in terms of therapeutic efficacy and mechanism of action is still largely unknown. Methods: This study aimed to evaluate the therapeutic efficacies and action mechanisms of intramuscular injections of autologous whole blood (AWB) and mouse immunoglobulin G (IgG) (autologous or heterologous) at acupoints on 2,4-dinitrochlorobenzene (DNCB)-induced AD mouse models. Serum levels of total immunoglobulin E (IgE), IgG, interleukin-10 (IL-10), and interferon-gamma (IFN-γ) were measured, as well as mRNA expression levels of Forkhead box P3 (FoxP3), IL-10 and IFN-γ in dorsal skin lesions, and IL-10+, IFN-γ+ and FoxP3+CD4+T cells in murine spleen. Results: It showed that repeated acupoint injection of AWB, autologous total IgG (purified from autologous blood in AD mice) or heterologous total IgG (purified from healthy blood in normal mice) effectively reduced the severity of AD symptoms and decreased epidermal and dermal thickness as well as mast cells in skin lesions. Additionally, AWB acupoint injection was found to upregulate FoxP3+, IL-10+ and IFN-γ+ CD4+T cells in murine spleen, suppressing the production of IgE antibodies and increasing that of IgG antibodies in the serum. Furthermore, both AWB and autologous total IgG administrations significantly elevated FoxP3 expression, mRNA levels of IL-10 and IFN-γ in dorsal skin lesions. However, acupoint injection of heterologous total IgG had no effect on regulatory T (Treg) and Th1 cells modulation. Conclusion: These findings suggest that the therapeutic effects of A-AHT on AD are mediated by IgG-induced activation of Treg cells.

18.
Clin Transl Med ; 14(5): e1681, 2024 May.
Article in English | MEDLINE | ID: mdl-38725048

ABSTRACT

BACKGROUND: We explored the potential novel anticancer mechanisms of 25-hydroxyvitamin D (25(OH)D), a vitamin D metabolite with antitumour effects in breast cancer. It is stable in serum and is used to assess vitamin D levels in clinical practice. Transfer RNA-derived small RNAs are small noncoding RNAs that generate various distinct biological functions, but more research is needed on their role in breast cancer. METHODS: Small RNA microarrays were used to explore the novel regulatory mechanism of 25(OH)D. High-throughput RNA-sequencing technology was used to detect transcriptome changes after 25(OH)D treatment and tRF-1-Ser knockdown. RNA pull-down and high-performance liquid chromatography-mass spectrometry/mass spectrometry were used to explore the proteins bound to tRF-1-Ser. In vitro and in vivo functional experiments were conducted to assess the influence of 25(OH)D and tRF-1-Ser on breast cancer. Semi-quantitative PCR was performed to detect alternative splicing events. Western blot assay and qPCR were used to assess protein and mRNA expression. RESULTS: The expression of tRF-1-Ser is negatively regulated by 25(OH)D. In our breast cancer (BRCA) clinical samples, we found that the expression of tRF-1-Ser was higher in cancer tissues than in paired normal tissues, and was significantly associated with tumour invasion. Moreover, tRF-1-Ser inhibits the function of MBNL1 by hindering its nuclear translocation. Functional experiments and transcriptome data revealed that the downregulation of tRF-1-Ser plays a vital role in the anticancer effect of 25(OH)D. CONCLUSIONS: In brief, our research revealed a novel anticancer mechanism of 25(OH)D, unveiled the vital function of tRF-1-Ser in BRCA progression, and suggested that tRF-1-Ser could emerge as a new therapeutic target for BRCA.


Subject(s)
Breast Neoplasms , Cell Proliferation , RNA-Binding Proteins , Vitamin D , Humans , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Female , Vitamin D/metabolism , Vitamin D/analogs & derivatives , Vitamin D/pharmacology , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Cell Proliferation/genetics , Mice , Animals
19.
Nanomaterials (Basel) ; 14(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38727341

ABSTRACT

The rough morphology at the growth surface results in the non-uniform distribution of indium composition, intentionally or unintentionally doped impurity, and thus impacts the performance of GaN-based optoelectronic and vertical power electronic devices. We observed the morphologies of unintentionally doped GaN homo-epitaxially grown via MOCVD and identified the relations between rough surfaces and the miscut angle and direction of the substrate. The growth kinetics under the effect of the Ehrlich-Schwoebel barrier were studied, and it was found that asymmetric step motions in samples with a large miscut angle or those grown at high temperature were the causes of step-bunching. Meandering steps were believed to be caused by surface free energy minimization for steps with wide terraces or deviating from the [11¯00] m-direction.

20.
Mol Plant Pathol ; 25(5): e13463, 2024 May.
Article in English | MEDLINE | ID: mdl-38695677

ABSTRACT

The barley powdery mildew fungus, Blumeria hordei (Bh), secretes hundreds of candidate secreted effector proteins (CSEPs) to facilitate pathogen infection and colonization. One of these, CSEP0008, is directly recognized by the barley nucleotide-binding leucine-rich-repeat (NLR) receptor MLA1 and therefore is designated AVRA1. Here, we show that AVRA1 and the sequence-unrelated Bh effector BEC1016 (CSEP0491) suppress immunity in barley. We used yeast two-hybrid next-generation interaction screens (Y2H-NGIS), followed by binary Y2H and in planta protein-protein interactions studies, and identified a common barley target of AVRA1 and BEC1016, the endoplasmic reticulum (ER)-localized J-domain protein HvERdj3B. Silencing of this ER quality control (ERQC) protein increased Bh penetration. HvERdj3B is ER luminal, and we showed using split GFP that AVRA1 and BEC1016 translocate into the ER signal peptide-independently. Overexpression of the two effectors impeded trafficking of a vacuolar marker through the ER; silencing of HvERdj3B also exhibited this same cellular phenotype, coinciding with the effectors targeting this ERQC component. Together, these results suggest that the barley innate immunity, preventing Bh entry into epidermal cells, requires ERQC. Here, the J-domain protein HvERdj3B appears to be essential and can be regulated by AVRA1 and BEC1016. Plant disease resistance often occurs upon direct or indirect recognition of pathogen effectors by host NLR receptors. Previous work has shown that AVRA1 is directly recognized in the cytosol by the immune receptor MLA1. We speculate that the AVRA1 J-domain target being inside the ER, where it is inapproachable by NLRs, has forced the plant to evolve this challenging direct recognition.


Subject(s)
Ascomycota , Endoplasmic Reticulum , Hordeum , Plant Diseases , Plant Immunity , Plant Proteins , Hordeum/microbiology , Hordeum/genetics , Hordeum/immunology , Ascomycota/pathogenicity , Plant Proteins/metabolism , Plant Proteins/genetics , Endoplasmic Reticulum/metabolism , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Immunity/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...