Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 526
Filter
1.
Front Oncol ; 14: 1361527, 2024.
Article in English | MEDLINE | ID: mdl-38699645

ABSTRACT

Aim: To investigate whether age at first sexual intercourse could lead to any changes in the risk of oral cavity cancer. Methods: A two-sample mendelian randomization was conducted using genetic variants associated with age at first sexual intercourse in UK biobank as instrumental variables. Summary data of Northern American from a previous genome-wide association study aimed at oral cavity cancer was served as outcome. Three analytical methods: inverse variance-weighted, mendelian randomization Egger, and weighted median were used to perform the analysis, among which inverse variance-weighted was set as the primary method. Robustness of the results was assessed through Cochran Q test, mendelian randomization Egger intercept tests, MR PRESSO, leave one out analysis and funnel plot. Results: The primary analysis provided substantial evidence of a positive causal relationship age at first sexual intercourse and the risk of oral cavity cancer (p = 0.0002), while a delayed age at first sexual intercourse would lead to a decreased risk of suffering oral cavity cancer (ß = -1.013). The secondary outcomes confirmed the results (all ß < 0) and all assessments supported the robustness, too (all p > 0.05). Conclusion: The study demonstrates that a delayed sexual debut would provide protection against OCC, thus education on delaying sexual intercourse should be recommended.

2.
Materials (Basel) ; 17(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38793316

ABSTRACT

The application potential of additive manufacturing nickel-based superalloys in aeroengines and gas turbines is extensive, and evaluating their mechanical properties is crucial for promoting the engineering application in load-bearing components. In this study, Hastelloy X alloy was prepared using the laser powder bed fusion process combined with solution heat treatment. The tensile and high cycle fatigue properties were experimentally investigated at room temperature as well as two typical elevated temperatures, 650 °C and 815 °C. It was found that, during elevated-temperature tensile deformation, the alloy exhibits significant serrated flow behavior, primarily observed during the initial stage of plastic deformation at 650 °C but occurring throughout the entire plastic deformation process at 815 °C. Notably, when deformation is small, sawtooth fluctuations are significantly higher at 815 °C compared to 650 °C. Irregular subsurface lack of fusion defects serve as primary sources for fatigue crack initiation in this alloy including both single-source and multi-source initiation mechanisms; moreover, oxidation on fracture surfaces is more prone to occur at elevated temperatures, particularly at 815 °C.

3.
Gels ; 10(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38786254

ABSTRACT

In order to improve the plugging performance of high-temperature and high-salt oil reservoir plugging agents, this paper utilizes a copolymer composed of acrylamide and 2-acrylamide-2-methylpropanesulfonic acid (AM/AMPS) as the polymer, polyethyleneimine as the cross-linking agent, and nylon fiber as the stabilizer to develop a high-temperature- and high-salt-resistant gel system. This study analyzed and evaluated the temperature resistance, salt resistance and blocking performance of the gel system. The evaluation results show that the gel-forming strength of this gel system can reach an H level, and it has good thermal stability at the high temperature of 130 °C. At the high salinity of 240,720 mg/L, the syneresis rate remains below 2.5%, and the gel-forming time is greater than 15 h; the higher the temperature, the shorter the gelling time. The results of our sand-filled pipe-plugging experiment show that the gel system can adapt to sand-filled pipes with different levels of permeability, and reaching a plugging rate of 94%.

4.
Article in English | MEDLINE | ID: mdl-38781051

ABSTRACT

The structural and interfacial instability of Ni-rich layered cathodes LiNi0.9Co0.05Mn0.05O2 (NCM9055) severely hinders their commercial application. In this work, straightforward high-temperature solid-state methods are utilized to successfully synthesize Nb-doped and Li3PO4-coated LiNi0.9Co0.05Mn0.05O2 by combining two niobium sources, NbOPO4·3H2O and Nb2O5, for the first time. Studies indicate that Nb doping enhanced the integrity of the layered structure, and the Li3PO4 coating reduced water absorption on the surface and considerably boosted the durability of the interface. The dual-modified cathode Li(Ni0.9Co0.05Mn0.05)0.985Nb0.015O2@Li3PO4 (NCM-2) exhibits remarkable cycling and rate performance. The initial discharge specific capacity of NCM-2 is 203.33 mAh g-1 at 0.1 C and 196.04 mAh g-1 at 1 C, while the capacity retention after 200 cycles is 91.38% at 1 C, which is much higher than that of pristine NCM9055 (49.96%). In addition, it also provides a superior discharge specific capacity of about 175.63 mAh g-1 even at 5 C. This study emphasizes a feasible approach to enhancing the stability of Ni-rich cathodes at the interfaces and bulk structures.

5.
Int J Biol Macromol ; 270(Pt 2): 132458, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772458

ABSTRACT

The salient gelling feature of alginate via forming the egg-box structure with calcium ions has received extensive interests for different applications. Owing to the interfacial incompatibility of rigid inorganic solids with soft polymers, the requirement of overall stereocomplexation with calcium released from uniformly distributed solids in alginate remains a challenge. In this study, a novel alginate-incorporated calcium source was proposed to tackle the intractable dispersion for the preparation of injectable alginate hydrogels. Calcium phosphate synthesis in alginate solution yielded CaP-alginate hybrids as a calcium source. The physicochemical characterization confirmed the CaP-alginate hybrid was a nano-scale alginate-hydroxyapatite complex. The colloidally stable CaP-alginate hybrids were uniformly dispersed in alginate solutions even under centrifugation. The calcium-induced gelling of the CaP-alginate hybrids-loaded alginate solutions formed soft yet tough hydrogels including transparent sheets and knittable threads, confirming the homogeneous gelation of the hydrogel. The gelation time, injectability and mechanical properties of the hydrogels could be adjusted by changing preparation parameters. The prepared hydrogels showed uniform porous structure, excellent swelling, wetting properties and cytocompatibility, showing a great potential for applications in different fields. The present strategy with organic/inorganic hybridization could be exemplarily followed in the future development of functional hydrogels especially associated with the interface integration.


Subject(s)
Alginates , Durapatite , Hydrogels , Hydrogels/chemistry , Alginates/chemistry , Durapatite/chemistry , Biocompatible Materials/chemistry , Injections , Animals , Mechanical Phenomena , Mice
6.
J Nutr Biochem ; 130: 109648, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38631512

ABSTRACT

Insulin resistance (IR) is a global health challenge, often initiated by dysfunctional adipose tissue. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may have different effects on IR, but the mechanisms are unknown. This study aims to evaluate the protective effect of EPA and DHA against IR in a high-fat diet (HFD) mice model and investigate whether EPA and DHA alter IR modulate the G-protein-poupled receptor 120/peroxisome proliferator-activated receptor γ (GPR120/PPARγ) pathway in macrophages and adipocytes, which may affect IR in adipocytes. The findings of this study show that 4% DHA had a better effect in improving IR and reducing inflammatory cytokines in adipose tissue of mice. Additionally, in the cell experiment, the use of AH7614 (a GPR120 antagonist) inhibited the glucose consumption increase and the increasable expression of PPARγ and insulin signaling molecules mediated by DHA in adipocytes. Furthermore, GW9662 (a PPARγ antagonist) hindered the upregulation of glucose consumption and insulin signaling molecule expression induced by EPA and DHA in adipocytes. DHA exhibited significant effects in reducing the number of migrated cells and inflammation. The compounds AH7614 and GW9662 hindered the suppressive effects of EPA and DHA on macrophage-induced IR in adipocytes. These findings suggest that DHA has a stronger potential in improving IR in adipocytes through the GPR120/PPARγ pathway in macrophages, when compared to EPA.

7.
Clin Exp Med ; 24(1): 64, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38554186

ABSTRACT

Advanced diffuse large B cell lymphoma (DLBCL) is a common malignant tumor with aggressive clinical features and poor prognosis. At present, there is lack of effective prognostic tool for patients with advanced (stage III/IV) DLBCL. The aim of this study is to identify prognostic indicators that affect survival and response and establish the first survival prediction nomogram for advanced DLBCL. A total of 402 patients with advanced DLBCL were enrolled in this study. COX multivariate analysis was used to obtain independent prognostic factors. The independent prognostic factors were included in the nomogram, and the nomogram to predict the performance of the model was established by R rms package, C-index (consistency index), AUC curve and calibration curve. The training and validation cohorts included 281 and 121 patients. In the training cohort, multivariate analysis showed that Ki-67 (70% (high expression) vs ≤ 70% (low expression), p < 0.001), LDH (lactate dehydrogenase) (elevated vs normal, p = 0.05), FER (ferritin) (elevated vs normal, p < 0.001), and ß2-microglobulin (elevated vs normal, p < 0.001) were independent predictors and the nomogram was constructed. The nomogram showed that there was a significant difference in OS among the low-risk, intermediate-risk and high-risk groups, with 5-year survival rates of 81.6%, 44% and 6%, respectively. The C-index of the nomogram in the training group was 0.76. The internal validation of the training group showed good consistency. In the internal validation cohort of the training group, the AUC was 0.828, and similar results were obtained in the validation group, with a C-index of 0.74 and an AUC of 0.803. The proposed nomogram provided a valuable individualized risk assessment of OS in advanced DLBCL patients.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Nomograms , Humans , Prognosis , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/pathology , Multivariate Analysis
8.
Nat Commun ; 15(1): 2601, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38521765

ABSTRACT

Complex entangled states are the key resources for measurement-based quantum computations, which is realised by performing a sequence of measurements on initially entangled qubits. Executable quantum algorithms in the graph-state quantum computing model are determined by the entanglement structure and the connectivity of entangled qubits. By generalisation from graph-type entanglement in which only the nearest qubits interact to a new type of hypergraph entanglement in which any subset of qubits can be arbitrarily entangled via hyperedges, hypergraph states represent more general resource states that allow arbitrary quantum computation with Pauli universality. Here we report experimental preparation, certification and processing of complete categories of four-qubit hypergraph states under the principle of local unitary equivalence, on a fully reprogrammable silicon-photonic quantum chip. Genuine multipartite entanglement for hypergraph states is certificated by the characterisation of entanglement witness, and the observation of violations of Mermin inequalities without any closure of distance or detection loopholes. A basic measurement-based protocol and an efficient resource state verification by color-encoding stabilizers are implemented with local Pauli measurement to benchmark the building blocks for hypergraph-state quantum computation. Our work prototypes hypergraph entanglement as a general resource for quantum information processing.

9.
Clin Transplant ; 38(4): e15300, 2024 04.
Article in English | MEDLINE | ID: mdl-38555576

ABSTRACT

Cytomegalovirus (CMV) reactivation remains one of the major and life-threatening complications after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Yet, there is still a lack of safe and effective ways to prevent CMV reactivation in allo-HSCT patients. Here, we retrospectively analyzed a cohort of patients who underwent HSCT at our transplant center between 2018 and 2022 to evaluate the efficacy of prophylactic CMV-specific intravenous immunoglobulin (CMV-IVIg) against CMV reactivation. After Propensity Score Matching, the CMV reactivation rate was significantly decreased in the CMV-IVIg group (HR, 2.952; 95% CI,1.492-5.841; P = .002) compared with the control group. Additionally, the time duration of CMV reactivation (P = .001) and bacterial infection rate (P = .013) were significantly lower in the CMV-IVIg group. Moreover, prophylactic CMV-IVIg was more effective in CMV seropositive patients who received ATG as part of GVHD prevention (HR, 8.225; 95% CI,1.809-37.39; P = .006). In conclusion, CMV-IVIg is considered an effective and safe way to prevent CMV reactivation in HSCT recipients, which may be related to the acceleration of immune reconstitution in the early stage after transplantation.


Subject(s)
Cytomegalovirus Infections , Hematopoietic Stem Cell Transplantation , Humans , Cytomegalovirus , Immunoglobulins, Intravenous/therapeutic use , Cytomegalovirus Infections/etiology , Cytomegalovirus Infections/prevention & control , Cytomegalovirus Infections/drug therapy , Retrospective Studies , Transplantation, Homologous , Hematopoietic Stem Cell Transplantation/adverse effects , Antibodies, Viral
10.
Clin Epigenetics ; 16(1): 42, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38491513

ABSTRACT

BACKGROUND: Congenital heart disease (CHD) is a prevalent congenital cardiac malformation, which lacks effective early biological diagnosis and intervention. MicroRNAs, as epigenetic regulators of cardiac development, provide potential biomarkers for the diagnosis and treatment of CHD. However, the mechanisms underlying miRNAs-mediated regulation of cardiac development and CHD malformation remain to be further elucidated. This study aimed to explore the function of microRNA-20b-5p (miR-20b-5p) in cardiac development and CHD pathogenesis. METHODS AND RESULTS: miRNA expression profiling identified that miR-20b-5p was significantly downregulated during a 12-day cardiac differentiation of human embryonic stem cells (hESCs), whereas it was markedly upregulated in plasma samples of atrial septal defect (ASD) patients. Our results further revealed that miR-20b-5p suppressed hESCs-derived cardiac differentiation by targeting tet methylcytosine dioxygenase 2 (TET2) and 5-hydroxymethylcytosine, leading to a reduction in key cardiac transcription factors including GATA4, NKX2.5, TBX5, MYH6 and cTnT. Additionally, knockdown of TET2 significantly inhibited cardiac differentiation, which could be partially restored by miR-20b-5p inhibition. CONCLUSIONS: Collectively, this study provides compelling evidence that miR-20b-5p functions as an inhibitory regulator in hESCs-derived cardiac differentiation by targeting TET2, highlighting its potential as a biomarker for ASD.


Subject(s)
Dioxygenases , MicroRNAs , Humans , Cell Differentiation , Dioxygenases/genetics , DNA/metabolism , DNA Methylation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
11.
Sci Rep ; 14(1): 5380, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38438497

ABSTRACT

The damage to the back of the target plate is a phenomenon that occurs when concrete is subjected to high-speed impact. In order to study the motion parameters of prefabricated spherical fragments penetrating finite thickness concrete targets at high speeds and the occurrence rules of concrete damage, as well as the impact of target back damage on the motion of fragments, experiments were conducted on 100 mm finite thickness concrete targets with prefabricated spherical fragments. The concrete model parameters in LS-DYNA were modified based on the residual velocity of fragments, and numerical simulations were conducted on the penetration of prefabricated fragments with different impact velocities and concrete target plates with different thicknesses. By analyzing the location of concrete target plate damage, the relationship between concrete thickness and concrete damage was obtained; Combining the motion parameters of fragment penetration process, the phenomenon of concrete collapse was linked to fragment motion, and the influence of concrete thickness on fragment motion parameters was analyzed. The results indicate that the thickness of the finite thickness concrete target plate and the penetration speed of fragments have a significant impact on the damage state of the target back, and further affect the motion change response stage during the penetration process of prefabricated fragments.

12.
BMC Public Health ; 24(1): 541, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383328

ABSTRACT

INTRODUCTION: An increasing number of original studies suggested that occupational noise exposure might be associated with the risk of hypertension, but the results remain inconsistent and inconclusive. In addition, the attributable fraction (AF) of occupational noise exposure has not been well quantified. We aimed to conduct a large-scale occupational population-based study to comprehensively investigate the relationship between occupational noise exposure and blood pressure and different hypertension subtypes and to estimate the AF for hypertension burden attributable to occupational noise exposure. METHODS: A total of 715,135 workers aged 18-60 years were included in this study based on the Key Occupational Diseases Surveillance Project of Guangdong in 2020. Multiple linear regression was performed to explore the relationships of occupational noise exposure status, the combination of occupational noise exposure and binaural high frequency threshold on average (BHFTA) with systolic and diastolic blood pressure (SBP, DBP). Multivariable logistic regression was used to examine the relationshipassociation between occupational noise exposure status, occupational noise exposure combined with BHFTA and hypertension. Furthermore, the attributable risk (AR) was calculated to estimate the hypertension burden attributed to occupational exposure to noise. RESULTS: The prevalence of hypertension among occupational noise-exposed participants was 13·7%. SBP and DBP were both significantly associated with the occupational noise exposure status and classification of occupational noise exposure combined with BHFTA in the crude and adjusted models (all P < 0·0001). Compared with workers without occupational noise exposure, the risk of hypertension was 50% greater among those exposed to occupational noise in the adjusted model (95% CI 1·42-1·58). For participants of occupational noise exposed with BHFTA normal, and occupational noise exposed with BHFTA elevated, the corresponding risks of hypertension were 48% (1·41-1·56) and 56% (1·46-1·63) greater than those of occupational noise non-exposed with BHFTA normal, respectively. A similar association was found in isolated systolic hypertension (ISH) and prehypertension. Subgroup analysis by sex and age showed that the positive associations between occupational noise exposure and hypertension remained statistically significant across all subgroups (all P < 0.001). Significant interactions between occupational noise status, classification of occupational noise exposure combined with BHFTA, and age in relation to hypertension risk were identified (all P for interaction < 0.001). The associations of occupational noise status, classification of occupational noise exposure combined with BHFTA and hypertension were most pronounced in the 18-29 age groups. The AR% of occupational noise exposure for hypertension was 28·05% in the final adjusted model. CONCLUSIONS: Occupational noise exposure was positively associated with blood pressure levels and the prevalence of hypertension, ISH, and prehypertension in a large occupational population-based study. A significantly increased risk of hypertension was found even in individuals with normal BHFTA exposed to occupational noise, with a further elevated risk observed in those with elevated BHFTA. Our findings provide epidemiological evidence for key groups associated with occupational noise exposure and hypertension, and more than one-fourth of hypertension cases would have been prevented by avoiding occupational noise exposure.


Subject(s)
Hearing Loss, Noise-Induced , Hypertension , Noise, Occupational , Occupational Diseases , Occupational Exposure , Prehypertension , Humans , Noise, Occupational/adverse effects , Cross-Sectional Studies , Hypertension/epidemiology , Hypertension/etiology , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Occupational Diseases/epidemiology , Hearing Loss, Noise-Induced/etiology , China/epidemiology
13.
J Nutr ; 154(4): 1271-1281, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367811

ABSTRACT

BACKGROUND: Myokines have a prominent effect on improving insulin resistance (IR) by inducing browning of white adipose tissue (WAT). Although docosahexaenoic acids (DHA) and eicosapentaenoic acids (EPA) play roles in improving IR and stimulating browning, whether they mediate myokines directly remains unknown. OBJECTIVE: This study aims to investigate the effects of DHA and EPA on browning-related myokines under IR and clarify the mechanism via Ca2+ signaling. METHODS: The expression and secretion levels of myokines in IR mice and IR myotubes were detected after DHA/EPA treatment. The crosstalk between myotubes and adipocytes was evaluated through a method in which IR adipocytes were treated with the culture medium supernatant of myotubes treated with DHA/EPA. The expression of browning markers in the WAT of IR mice and adipocytes was determined. A calcium chelator was used to determine whether DHA and EPA regulate myokine production through a calcium ion-dependent pathway. RESULTS: In vivo experiments: 3:1 and 1:3 DHA/EPA promoted the mRNA levels of Irisin, IL-6, IL-15, and FGF21 in skeletal muscle, stimulated WAT browning, reduced lipid accumulation; 3:1 DHA/EPA upregulated the serum concentration of Irisin; 1:3 DHA/EPA upregulated the serum concentrations of Irisin, IL-6, and FGF21. In vitro experiments: the levels of Irisin and IL-6 in C2C12 myotubes and their medium supernatant were significantly elevated in the 3:1 and 1:3 groups and the upregulation of browning markers and reduction in fat accumulation were observed in adipocytes treated with the medium supernatant of C2C12 myotubes in the 3:1 and 1:3 groups. However, the above phenomena disappeared when Ca2+ signaling was inhibited. CONCLUSIONS: Treatment with DHA and EPA at composition ratios of 3:1 and 1:3 induces browning of WAT in IR mice, which is likely related to the promotion of the accumulation of myokines, especially Irisin and IL-6, via Ca2+ signaling.


Subject(s)
Insulin Resistance , Insulin , Mice , Animals , Insulin/metabolism , Myokines , Interleukin-6/genetics , Interleukin-6/metabolism , Eicosapentaenoic Acid/pharmacology , Fibronectins/metabolism , Calcium Signaling , Insulin, Regular, Human , Docosahexaenoic Acids/pharmacology
14.
ACS Appl Bio Mater ; 7(3): 1763-1777, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38377541

ABSTRACT

Encapsulation of plant polyphenols with micro-/nano-carriers for enhanced bioavailability has been well documented, but the preparation of these carriers and subsequent loading of polyphenols is a multiple process, which is generally complicated with potentially unexpected negative effects on the bioactivity of the polyphenols. Here, we reported a convenient method to assemble carrier-free polyphenol nanoparticles (NPs) based on oxidative coupling polymerization. The effectiveness was assessed with five different polyphenols including pyrocatechol (PY), catechin (CA), epigallocatechin gallate (EGCG), tannic acid (TA), and proanthocyanidin (PC). The structural characteristics of these assembled nanoparticles (PY NPs, CA NPs, EG NPs, TA NPs, and PC NPs) were systematically analyzed with dynamic light scattering (DLS), transmission electron microscopy (TEM), UV-visible spectroscopy, and Fourier transform infrared spectroscopy (FTIR). All NPs were colloidally stable with varying NaCl concentrations from 0 to 300 mM, were acid-resistant and alkali-intolerant, and were suitable for oral administration. An array of antioxidant assays further confirmed the superior antioxidant capabilities of NPs over Trolox and polyphenol monomers, indicating that the oxidative polymerization of polyphenols did not compromise the polyphenol activity of NPs. The in vitro simulated digestion studies validated that these responsive NPs were actually gastrointestinal pH-responsive and applicable to the gastrointestinal physiological environment. The bioaccessibility assessments by using a static in vitro digestion model revealed that better results were achieved with NPs than polyphenol monomers, with TA NPs showing about 1.5-fold higher bioaccessibility than other polyphenol nanoparticles. The present study with five polyphenols demonstrated that the oxidative polymerization of polyphenols provides an effective platform to assemble various carrier-free NPs with enhanced antioxidant activity, favorable stability, and improved bioaccessibility, which could be used promisingly as a functional food ingredient in food matrices or as oral drug delivery candidates for helping to manage human health or treating various gastrointestinal disorders in both the pharmaceutical and nutritional fields.


Subject(s)
Antioxidants , Nanoparticles , Humans , Antioxidants/chemistry , Polymerization , Polyphenols/chemistry , Nanoparticles/chemistry , Hydrogen-Ion Concentration , Oxidative Stress
15.
Adv Healthc Mater ; 13(12): e2303297, 2024 May.
Article in English | MEDLINE | ID: mdl-38315874

ABSTRACT

Skin injury is a common health problem worldwide, and the highly complex healing process poses critical challenges for its management. Therefore, wound dressings with salutary effects are urgently needed for wound care. However, traditional wound dressing with a single function often fails to meet the needs of wound repair, and the integration of multiple functions has been required for wound repair. Herein, Cu2+-chelated epigallocatechin gallate nanoparticles (EAC NPs), with radical scavenging, inflammation relieving, bacteria restraining, and vascularization accelerating capacities, are adopted to functionalize collagen scaffold, aiming to promote wound healing. Radical scavenging experiments verify that EAC NPs could efficiently scavenge radicals. Additionally, EAC NPs could effectively remove Escherichia coli and Staphylococcus aureus. H2O2 stimuli-responsive EAC NPs show slow and sustained release properties of Cu2+. Furthermore, EAC NPs exhibit protective effects against H2O2-induced oxidative-stress damage and anti-inflammatory activity in vivo. Physicochemical characterizations show that the introduction of EAC NPs does not disrupt the gelation behavior of collagen, and the composite scaffolds (CS) remain porous structure similar to collagen scaffold. Animal experiments demonstrate that CS could promote wound healing through improving the thickness of renascent epidermis and number of new vessels. CS with multiple salutary functions is a promising dressing for wound care.


Subject(s)
Anti-Bacterial Agents , Anti-Inflammatory Agents , Catechin , Catechin/analogs & derivatives , Collagen , Copper , Nanoparticles , Wound Healing , Catechin/chemistry , Catechin/pharmacology , Wound Healing/drug effects , Copper/chemistry , Copper/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Collagen/chemistry , Nanoparticles/chemistry , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Mice , Antioxidants/pharmacology , Antioxidants/chemistry , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Tissue Scaffolds/chemistry , Male , Neovascularization, Physiologic/drug effects
16.
Analyst ; 149(7): 2103-2113, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38421308

ABSTRACT

The surface modification technique is applied in microfluidic devices to modify wettability and achieve different flow velocities. Currently available methods for poly(dimethylsiloxane) (PDMS) surfaces may reliably induce wettability changes, but only one area can be altered at a time. This work introduces the controlled gradient oxygen plasma modification (CGPM) technique, which layers several resin masks with varying porosities on top of the PDMS surface. Selective wettability of the PDMS surface can be achieved by varying the oxygen plasma density above the modified material's surface by manipulation of the porosity value. Through the implementation of the COMSOL plasma module, the impact of the mask's porosity, through-hole size, distribution, and distance from the PDMS surface on wettability was studied. The suggested CGPM approach was characterized by contact angle measurements. During the 25-second CGPM procedure, the PDMS surface's contact angle continually changed from 8.77° to 76.98°. An integrated microfluidic device was created and manufactured to identify D-dimers to illustrate this method. In comparison with standard oxygen plasma treatment, the D-dimer assay was finished in 10 minutes and had a dynamic range of 1-1000 ng mL-1, with a peak fluorescence signal augmentation of 78.3% and an average fluorescence intensity enhancement of 31.1%.

17.
Nanomicro Lett ; 16(1): 109, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38315253

ABSTRACT

Developing high-performance aqueous Zn-ion batteries from sustainable biomass becomes increasingly vital for large-scale energy storage in the foreseeable future. Therefore, γ-MnO2 uniformly loaded on N-doped carbon derived from grapefruit peel is successfully fabricated in this work, and particularly the composite cathode with carbon carrier quality percentage of 20 wt% delivers the specific capacity of 391.2 mAh g-1 at 0.1 A g-1, outstanding cyclic stability of 92.17% after 3000 cycles at 5 A g-1, and remarkable energy density of 553.12 Wh kg-1 together with superior coulombic efficiency of ~ 100%. Additionally, the cathodic biosafety is further explored specifically through in vitro cell toxicity experiments, which verifies its tremendous potential in the application of clinical medicine. Besides, Zinc ion energy storage mechanism of the cathode is mainly discussed from the aspects of Jahn-Teller effect and Mn domains distribution combined with theoretical analysis and experimental data. Thus, a novel perspective of the conversion from biomass waste to biocompatible Mn-based cathode is successfully developed.

18.
Sci Adv ; 10(6): eabd7904, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38324682

ABSTRACT

Effective therapeutic modalities and drug administration strategies for the treatment of chronic obstructive pulmonary disease (COPD) exacerbations are lacking. Here, mucus and biofilm dual-penetrating immunoantimicrobials (IMAMs) are developed for bridging antibacterial therapy and pro-resolving immunotherapy of COPD. IMAMs are constructed from ceftazidime (CAZ)-encapsulated hollow mesoporous silica nanoparticles (HMSNs) gated with a charge/conformation-transformable polypeptide. The polypeptide adopts a negatively charged, random-coiled conformation, masking the pores of HMSNs to prevent antibiotic leakage and allowing the nebulized IMAMs to efficiently penetrate the bronchial mucus and biofilm. Inside the acidic biofilm, the polypeptide transforms into a cationic and rigid α helix, enhancing biofilm retention and unmasking the pores to release CAZ. Meanwhile, the polypeptide is conditionally activated to disrupt bacterial membranes and scavenge bacterial DNA, functioning as an adjuvant of CAZ to eradicate lung-colonizing bacteria and inhibiting Toll-like receptor 9 activation to foster inflammation resolution. This immunoantibacterial strategy may shift the current paradigm of COPD management.


Subject(s)
Nanoparticles , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/drug therapy , Lung , Nanoparticles/chemistry , Ceftazidime , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Peptides
19.
Nat Commun ; 15(1): 1871, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424044

ABSTRACT

CDK4/6 inhibitors (CDK4/6i) show anticancer activity in certain human malignancies, such as breast cancer. However, their application to other tumor types and intrinsic resistance mechanisms are still unclear. Here, we demonstrate that MYC amplification confers resistance to CDK4/6i in bladder, prostate and breast cancer cells. Mechanistically, MYC binds to the promoter of the E3 ubiquitin ligase KLHL42 and enhances its transcription, leading to RB1 deficiency by inducing both phosphorylated and total pRB1 ubiquitination and degradation. We identify a compound that degrades MYC, A80.2HCl, which induces MYC degradation at nanomolar concentrations, restores pRB1 protein levels and re-establish sensitivity of MYC high-expressing cancer cells to CDK4/6i. The combination of CDK4/6i and A80.2HCl result in marked regression in tumor growth in vivo. Altogether, these results reveal the molecular mechanisms underlying MYC-induced resistance to CDK4/6i and suggest the utilization of the MYC degrading molecule A80.2HCl to potentiate the therapeutic efficacy of CDK4/6i.


Subject(s)
Breast Neoplasms , Cyclin-Dependent Kinase Inhibitor Proteins , Humans , Male , Pelvis , Promoter Regions, Genetic , Prostate , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 6/genetics , Protein Kinase Inhibitors
20.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38399465

ABSTRACT

Hydroxyapatite (HAP) has garnered considerable interest in biomedical engineering for its diverse applications. Yet, the synthesis of HAP integrated with functional natural organic components remains an area ripe for exploration. This study innovatively utilizes the versatile properties of tea polyphenol (TP) to synthesize HAP nanomaterials with superior crystallinity and distinct morphologies, notably rod-like structures, via a chemical deposition process in a nitrogen atmosphere. This method ensures an enhanced integration of TP, as confirmed by thermogravimetric (TGA) analysis and a variety of microscopy techniques, which also reveal the dependence of TP content and crystallinity on the synthesis method employed. The research significantly impacts the field by demonstrating how synthesis conditions can alter material properties. It leads the way in employing TP-modified nano-HAP particles for biomedical applications. The findings of this study are crucial as they open avenues for the future development of tailored HAP nanomaterials, aiming at specific medical applications and advancements in nanotechnology.

SELECTION OF CITATIONS
SEARCH DETAIL
...