Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 36(29)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38593836

ABSTRACT

We theoretically study the crossed Andreev reflection (CAR) of the normal metal-superconductor-normal metal (NSN) heterojunction based on Kekulé-Y patterned graphene with two doping types, i.e.nSnandnSpconfigurations. It is found that the enhanced CAR is more likely to occur in thenSpjunction rather than thenSnjunction. To be concrete, the almost perfect CAR occurs in a large range of incident angle in the single Dirac cone phase when the incident energy is inside the gap of the nonlinear band. Furthermore, the roles of the length of superconductor and pseudospin-valley coupling on conductance are also evaluated.

2.
J Phys Condens Matter ; 34(8)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34787103

ABSTRACT

We investigate the quantum transmission through the n-p-n heterojunction of massive 8-Pmmnborophene. It is found that the Dirac mass of the electron interacts nontrivially with the anisotropy of the 8-Pmmnborophene, leading to the occurrence of new transmission behaviors in this n-p-n heterojunction. Firstly, the effective energy range of nonzero transmission can be reduced but deviates from the mass amplitude, which induces the further controllability of the transmission property. Secondly, even if the equal-energy surfaces in the p and n parts do not encounter in thek-space, finite transmission is allowed to occur as well. In addition, the existence of Dirac mass can change the reflection manner from the retroreflection to the specular reflection under appropriate conditions. The findings in this work can be helpful in describing the quantum transport properties of the heterojunction based on 8-Pmmnborophene.

3.
Opt Express ; 28(6): 8560-8573, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32225478

ABSTRACT

We theoretically study the transport properties in a one-dimensional photonic lattice influenced by the presence of side-coupled P T-symmetric non-Hermitian defects. The P T symmetry is manifested as the complex potentials on the defects and the complex defect-lattice couplings, respectively. These two mechanisms are found to induce the Fano effect in the transport processes, with the different characteristics of it. Next, if the complex potentials and defect-lattice couplings co-exist, the Fano effect will be achieved more efficiently. However, further enhancing either of them can weaken the Fano interference seriously. Our findings reveal the physical essence of the Fano effect on the P T-symmetric non-Hermitian defects, and the results can provide insights into the engineering and dynamical control of Fano resonances in non-Hermitian photonic structures.

4.
J Phys Condens Matter ; 32(16): 165401, 2020 Apr 17.
Article in English | MEDLINE | ID: mdl-31846955

ABSTRACT

By introducing the next-nearest-neighboring (NNN) intersite coupling, we investigate the eigenenergies of the [Formula: see text]-symmetric non-Hermitian Su-Schrieffer-Heeger (SSH) model with two conjugated imaginary potentials at the end sites. It is found that with the strengthening of NNN coupling, the particle-hole symmetry is destroyed. As a result, the bonding band is first narrowed and then undergoes the top-bottom reversal followed by the its width's increase, whereas the antibonding band is widened monotonously. In this process, the topological state extends into the topologically-trivial region, and its energy departs from the energy zero point, accompanied by the emergence of one new topological state in this region. All these results give rise to the complication of the topological properties and the manner of [Formula: see text]-symmetry breaking. It can be concluded that the NNN coupling takes important effects to the change of the topological properties of the non-Hermitian SSH system.

SELECTION OF CITATIONS
SEARCH DETAIL
...