Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 200
Filter
1.
MedComm (2020) ; 5(5): e555, 2024 May.
Article in English | MEDLINE | ID: mdl-38706741

ABSTRACT

Indoleamine 2,3-dioxygenase 1 (IDO1), the key enzyme in the catabolism of the essential amino acid tryptophan (Trp) through kynurenine pathway, induces immune tolerance and is considered as a critical immune checkpoint, but its impacts as a metabolism enzyme on glucose and lipid metabolism are overlooked. We aim to clarify the potential role of IDO1 in aerobic glycolysis in pancreatic cancer (PC). Analysis of database revealed the positive correlation in PC between the expressions of IDO1 and genes encoding important glycolytic enzyme hexokinase 2 (HK2), pyruvate kinase (PK), lactate dehydrogenase A (LDHA) and glucose transporter 1 (GLUT1). It was found that IDO1 could modulate glycolysis and glucose uptake in PC cells, Trp deficiency caused by IDO1 overexpression enhanced glucose uptake by stimulating GLUT1 translocation to the plasma membrane of PC cells. Besides, Trp deficiency caused by IDO1 overexpression suppressed the apoptosis of PC cells via promoting glycolysis, which reveals the presence of IDO1-glycolysis-apoptosis axis in PC. IDO1 inhibitors could inhibit glycolysis, promote apoptosis, and exhibit robust therapeutic efficacy when combined with GLUT1 inhibitor in PC mice. Our study reveals the function of IDO1 in the glucose metabolism of PC and provides new insights into the therapeutic strategy for PC.

2.
Int J Gen Med ; 17: 1833-1843, 2024.
Article in English | MEDLINE | ID: mdl-38715746

ABSTRACT

Purpose: To determine the current status of vitamin D status and the associated factors for its deficiency among Chinese hospital staff. Methods: The physical examination data of 2509 hospital staff members was analyzed alongside that of 1507 patients who visited the hospital during the corresponding period of the examination. Serum concentration of 25-hydroxyvitamin D (25(OH)D) were measured in the participants. The hospital staff also completed surveys about general information, laboratory examination, and occupational characteristics. Results: The median vitamin D status (serum 25(OH)D concentration) of the participants was 9.0 ng/mL, ranging from 6.5 to 44.7 ng/mL, and the prevalence of deficiency (<12.3 ng/mL) was 81.47% (2044/2509). The multivariable logistic regression revealed that nurses (OR = 1.54, 95% CI 1.09-2.19, p = 0.015), BMI below 18 (OR = 2.39, 95% CI 1.02-5.58, p = 0.045) associated with higher prevalence of vitamin D deficiency. In the contrast, age above 30 (OR = 0.69, 95% CI 0.53-0.91, p = 0.009) and a high level of uric acid (OR = 0.56, 95% CI 0.41-0.78, p = 0.001) associated with lower prevalence of vitamin D deficiency. The prevalence of vitamin D deficiency was higher among the hospital staff (81.47%) compared to the patients who visited the hospital during the same time period (65.69%). A substantial disparity was observed in the propensity score matching dataset (69.14% vs 79.94%, p < 0.001). Conclusion: Hospital staff are a high-risk group for vitamin D deficiency. Paying attention to vitamin D status and supplementation of this vitamin are pertinent aspects of hospital staff health care. Outdoor activities, vitamin D supplementation, and foods rich in vitamin D should be advocated.

4.
Acta Cardiol ; : 1-13, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771356

ABSTRACT

BACKGROUND: Inflammation plays a pivotal role in the pathogenesis of heart failure (HF). This study was aimed to the potential association between complete blood cell count (CBC)-derived inflammatory biomarkers and HF. METHODS: Data from the National Health and Nutrition Examination Survey (NHANES) 2009-2018 were utilised. We evaluated the associations between HF and five systemic inflammation markers derived from CBC: systemic immune-inflammation index (SII), systemic inflammatory response index (SIRI), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and monocyte-to-lymphocyte ratio (MLR). Demographic characteristics, physical examinations, and laboratory data were systematically collected for comparative analysis between HF and non-HF individuals. Fitted smoothing curves and threshold effect analysis delineated the relationship. In addition, Spearman correlation and subgroup analyses were further conducted. RESULTS: A total of 26,021 participants were categorised into HF (n = 858) and non-HF (n = 25,163) groups. After adjusting for confounding variables, SIRI, NLR, and MLR had significant positive correlations with the risk of HF. Participants in the highest quarter groups of SIRI, NLR, and MLR showed a increased risk of developing HF compared to those in the lowest quarter group. Furthermore, subgroup and sensitivity analyses indicated that SIRI, NLR, and MLR had a stronger correlation to HF (all p < 0.05). Smoothing curve fitting highlighted a nonlinear relationship between CBC-derived inflammatory biomarkers and HF. CONCLUSIONS: Our results illustrated a significant association between elevated levels of SIRI, NLR, and MLR and an increased risk of HF. SIRI, NLR, and MLR could potentially serve as systemic inflammation hazard markers for HF.

5.
Heliyon ; 10(7): e28348, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38586409

ABSTRACT

Residual stress refers to self-equilibrating stress present within materials, with the potential to significantly affect manufacturing processes and performance. Therefore, accurately and quantitatively measuring residual stress is always of great importance. This study provides a comprehensive review of various characterization techniques for residual stress, including their principles, development history, applications, and limitations. Initially, several destructive techniques such as the hole-drilling method, ring-core method, deep hole drilling method, slitting method, and contour method are summarized. Subsequently, three nondestructive techniques based on X-ray/electron diffraction, magnetic signals, and ultrasonic signals are evaluated. In the final part of this overview, special attention is given to a newly-developed technique for measuring residual stress, which combines incremental focused ion beam (FIB) milling and digital image correlation (DIC). Our review aims to guide further investigations on residual stress and identify the future development of techniques for measuring residual stress.

6.
ESC Heart Fail ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656659

ABSTRACT

AIMS: Atrial fibrillation (AF) is the most common arrhythmia. Heart failure (HF) is a disease caused by heart dysfunction. The prevalence of AF and HF were progressively increasing over time. The co-existence of AF and HF presents a significant therapeutic challenge. In order to provide new ideas for the diagnosis of AF and HF, it is necessary to carry out biomarker related studies. METHODS AND RESULTS: The training set and validation set data of AF and HF patient samples were downloaded from the GEO database, 'limma' was used to compare the differences in gene expression levels between the disease group and the normal group to screen for differentially expressed genes (DEGs). Weighted correlation network analysis (WGCNA) identified the modules with the highest positive correlation with AF and HF. Functional enrichment and PPI network construction of key genes were carried out. Biomarkers were screened by machine learning. The infiltration of immune cells in AF and HF groups was evaluated by R-packet 'CIBERSORT'. The miRNA network was constructed and potential therapeutic agents for biomarker genes were predicted through the drugbank database. Through WGCNA analysis, it was found that the modules most positively correlated with AF and HF were MEturquoise (r = 0.21, P value = 0.09) and MEbrown (r = 0.62, P value = 8e-12), respectively. We screened 25 genes that were highly correlated with both AF and HF. Lasso regression analysis results showed 7 and 20 core genes in AF and HF groups, respectively. The top 20 important genes in AF and HF groups were obtained as core genes by RF model analysis. Four biomarkers were obtained after the intersection of core genes in four groups, namely, GLUL, NCF2, S100A12, and SRGN. The diagnostic efficacy of four genes in AF validation sets was good (AUC: GLUL 0.76, NCF2 0.64, S100A12 0.68, and SRGN 0.76), as well as in the HF validation set (AUC: GLUL 0.76, NCF2 0.84, S100A12 0.92, and SRGN 0.68). The highest correlation with neutrophils was observed for GLUL, NCF2, and S100A12, while SRGN exhibited the strongest correlation with T cells CD4 memory resting in the AF group. GLUL, NCF2, S100A12, and SRGN were most associated with neutrophils in the HF group. A total of 101 miRNAs were predicted by four genes, and GLUL, NCF2, and S100A12 predicted a total of 10 potential therapeutic agents. CONCLUSIONS: We identified four biological markers that are highly correlated with AF and HF, namely, GLUL, NCF2, S100A12, and SRGN. Our findings provide theoretical basis for the clinical diagnosis and treatment of AF and HF.

7.
Expert Opin Drug Saf ; : 1-9, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38676389

ABSTRACT

BACKGROUND: Our study aimed to identify inclisiran-related adverse events(AEs) for primary hypercholesterolemia and arteriosclerotic cardiovascular disease(ASCVD) from the US FDA Adverse Event Reporting System (FAERS) database, analyzing its links to AEs in the overall patient population and sex-specific subgroups to improve medication safety. METHODS: We analyzed inclisiran-related AEs signals by using statistical methods like Reporting Odds Ratio (ROR), Proportional Reporting Ratios (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Multi-item Gamma-Poisson Shrinker (MGPS). RESULTS: Analyzing 2,400 AE reports with inclisiran as the primary suspected drug in the FAERS database, we identified 70 AE signals over 13 organ systems using the above four methods. Notable findings were strong signals for systemic diseases and various reactions at the site of administration (ROR 1.49, 95% CI 1.41-1.57), and various musculoskeletal and connective tissue diseases (ROR 4.07, 95% CI 3.83-4.03) in overall and gender-specific populations. Myalgia, a new ADE signal not in the drug insert, was a top signal by intensity and frequency (ROR 14.76, 95% CI 12.84-16.98). CONCLUSION: Our study revealed the strongest AE signals associated with inclisiran in both the overall population and gender subgroups, highlighting potential risks in clinical medication use and guiding balanced clinical decision-making.

8.
ACS Biomater Sci Eng ; 10(4): 2463-2476, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38445948

ABSTRACT

The challenges in the treatment of extensive bone defects are infection control and bone regeneration. Bone tissue engineering is currently one of the most promising strategies. In this study, a short biopeptide with specific osteogenic ability is designed by fusion peptide technology and encapsulated with chitosan-modified poly(lactic acid-glycolic acid) (PLGA) microspheres. The fusion peptide (FP) mainly consists of an osteogenic functional sequence (P-15) and a bone-specific binding sequence (Asp-6), which can regulate bone formation accurately and efficiently. Chitosan-modified PLGA with antimicrobial and pro-healing effects is used to achieve the sustained release of fusion peptides. In the early stage, the antimicrobial and soft tissue healing effects can stop the wound infection as soon as possible, which is relevant for the subsequent bone regeneration process. Our data show that CS-PLGA@FP microspheres have antibacterial and pro-cell migration effects in vitro and excellent pro-wound-healing effects in vivo. In addition, CS-PLGA@FP microspheres promote the expression of osteogenic-related factors and show excellent bone regeneration in a rat defect model. Therefore, CS-PLGA@FP microspheres are an efficient biomaterial that can accelerate the recovery of bone defects.


Subject(s)
Anti-Infective Agents , Chitosan , Rats , Animals , Polylactic Acid-Polyglycolic Acid Copolymer , Polyglycolic Acid , Lactic Acid/pharmacology , Microspheres , Peptides/pharmacology
9.
Neurochem Res ; 49(5): 1212-1225, 2024 May.
Article in English | MEDLINE | ID: mdl-38381247

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons. LncRNA small nucleolar RNA host gene 14 (SNHG14) was found to promote neuron injury in PD. Here, we investigated the mechanisms of SNHG14 in PD process. In vivo or in vitro PD model was established by using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mice or 1-methyl-4-phenylpyridinium (MPP +)-stimulated SK-N-SH cells. The expression of genes and proteins was measured by qRT-PCR and Western blot. In vitro assays were conducted using ELISA, CCK-8, colony formation, EdU, flow cytometry, and Western blot assays, respectively. The oxidative stress was evaluated by determining the production of superoxide dismutase (SOD) and malondialdehyde (MDA). The direct interactions between miR-375-3p and NFAT5 (Nuclear factor of activated T-cells 5) or SNHG14 was verified using dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. SNHG14 and NFAT5 were elevated, while miR-375-3p was decreased in MPTP-mediated PD mouse model and MPP + -induced SK-N-SH cells. Knockdown of SNHG14 or NFAT5, or overexpression of miR-375-3p reversed MPP + -induced neuronal apoptosis, inflammation, and oxidative stress. Mechanistically, SNHG14 directly bound to miR-375, which targeted NFAT5. Inhibition of miR-375-3p abolished the inhibitory activity of SNHG14 knockdown on MPP + -evoked neuronal damage. Besides that, NFAT5 up-regulation counteracted the effects of miR-375-3p on MPP + -mediated neuronal damage. SNHG14 contributed to MPP + -induced neuronal injury by miR-375/NFAT5 axis, suggesting a new insight into the pathogenesis of PD.


Subject(s)
Dopaminergic Neurons , MicroRNAs , Parkinson Disease , RNA, Long Noncoding , Animals , Mice , 1-Methyl-4-phenylpyridinium , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Tumor , Dopaminergic Neurons/metabolism , Inflammation/chemically induced , Inflammation/genetics , Inflammation/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Oxidative Stress , Parkinson Disease/genetics , Parkinson Disease/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
10.
Angew Chem Int Ed Engl ; 63(20): e202401750, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38407379

ABSTRACT

The catalytic performance for electrocatalytic CO2 reduction reaction (CO2RR) depends on the binding strength of the reactants and intermediates. Covalent organic frameworks (COFs) have been adopted to catalyze CO2RR, and their binding abilities are tuned via constructing donor-acceptor (DA) systems. However, most DA COFs have single donor and acceptor units, which caused wide-range but lacking accuracy in modulating the binding strength of intermediates. More elaborate regulation of the interactions with intermediates are necessary and challenge to construct high-efficiency catalysts. Herein, the three-component COF with D-A-A units was first constructed by introducing electron-rich diarylamine unit, electron-deficient benzothiazole and Co-porphyrin units. Compared with two-component COFs, the designed COF exhibit elevated electronic conductivity, enhanced reducibility, high efficiency charge transfer, further improving the electrocatalytic CO2RR performance with the faradic efficiency of 97.2 % at -0.8 V and high activity with the partial current density of 27.85 mA cm-2 at -1.0 V which exceed other two-component COFs. Theoretical calculations demonstrate that catalytic sites in three-component COF have suitable binding ability of the intermediates, which are benefit for formation of *COOH and desorption of *CO. This work offers valuable insights for the advancement of multi-component COFs, enabling modulated charge transfer to improve the CO2RR activity.

11.
Angew Chem Int Ed Engl ; 63(16): e202319247, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38381931

ABSTRACT

Binding water molecules to polar sites in covalent organic frameworks (COFs) is inevitable, but the corresponding solvent effects in electrocatalytic process have been largely overlooked. Herein, we investigate the solvent effects on COFs for catalyzing the oxygen reduction reaction (ORR). Our designed COFs incorporated different kinds of nitrogen atoms (imine N, pyridine N, and phenazine N), enabling tunable interactions with water molecules. These interactions play a crucial role in modulating electronic states and altering the catalytic centers within the COFs. Among the synthesized COFs, the one with pyridine N atoms exhibits the highest activity, with characterized by a half-wave potential of 0.78 V and a mass activity of 0.32 A mg-1, which surpass those from other metal-free COFs. Theoretical calculations further reveal that the enhanced activity can be attributed to the stronger binding ability of *OOH intermediates to the carbon atoms adjacent to the pyridine N sites. This work sheds light on the significance of considering solvent effects on COFs in electrocatalytic systems, providing valuable insights into their design and optimization for improved performance.

12.
China CDC Wkly ; 6(6): 105-108, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38406635

ABSTRACT

What is already known about this topic?: Anopheles sinensis (An. sinensis) is the predominant malaria vector in China. The impact of S-methoprene on the emergence process of mosquito larvae suggests its potential as a control method for vector mosquitoes. However, the efficacy of S-methoprene in controlling An. sinensis has not yet been demonstrated. What is added by this report?: The effectiveness of S-methoprene against An. sinensis was assessed in laboratory and semi-field conditions in Yunnan Province. What are the implications for public health practice?: These results offer valuable options and guidance for utilizing S-methoprene products in malaria reimportation prevention areas within Yunnan Province.

13.
Nat Commun ; 15(1): 1889, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424127

ABSTRACT

Covalent organic frameworks (COFs) are ideal templates for constructing metal-free catalysts for the oxygen reduction reaction due to their highly tuneable skeletons and controllable porous channels. However, the development of highly active sites within COFs remains challenging due to their limited electron-transfer capabilities and weak binding affinities for reaction intermediates. Herein, we constructed highly active catalytic centres by modulating the electronic states of the pyridine nitrogen atoms incorporated into the frameworks of COFs. By incorporating different pyridine units (such as pyridine, ionic pyridine, and ionic imidazole units), we tuned various properties including dipole moments, reductive ability, hydrophilicity, and binding affinities towards reaction intermediates. Notably, the ionic imidazole COF (im-PY-BPY-COF) exhibited greater activity than the neutral COF (PY-BPY-COF) and ionic pyridine COF (ion-PY-BPY-COF). Specifically, im-PY-BPY-COF demonstrated a half-wave potential of 0.80 V in 0.1 M KOH, outperforming other metal-free COFs. Theoretical calculations and in situ synchrotron radiation Fourier transform infrared spectroscopy confirmed that the carbon atoms in the ionic imidazole rings improved the activity by facilitating binding of the intermediate OOH* and promoting the desorption of OH*. This study provides new insights into the design of highly active metal-like COF catalysts.

14.
Elife ; 132024 Jan 17.
Article in English | MEDLINE | ID: mdl-38231024

ABSTRACT

A central goal of evolutionary developmental biology is to decipher the evolutionary pattern of gene regulatory networks (GRNs) that control embryonic development, and the mechanism underlying GRNs evolution. The Nodal signaling that governs the body axes of deuterostomes exhibits a conserved GRN orchestrated principally by Nodal, Gdf1/3, and Lefty. Here we show that this GRN has been rewired in cephalochordate amphioxus. We found that while the amphioxus Gdf1/3 ortholog exhibited nearly no embryonic expression, its duplicate Gdf1/3-like, linked to Lefty, was zygotically expressed in a similar pattern as Lefty. Consistent with this, while Gdf1/3-like mutants showed defects in axial development, Gdf1/3 mutants did not. Further transgenic analyses showed that the intergenic region between Gdf1/3-like and Lefty could drive reporter gene expression as that of the two genes. These results indicated that Gdf1/3-like has taken over the axial development role of Gdf1/3 in amphioxus, possibly through hijacking Lefty enhancers. We finally demonstrated that, to compensate for the loss of maternal Gdf1/3 expression, Nodal has become an indispensable maternal factor in amphioxus and its maternal mutants caused axial defects as Gdf1/3-like mutants. We therefore demonstrated a case that the evolution of GRNs could be triggered by enhancer hijacking events. This pivotal event has allowed the emergence of a new GRN in extant amphioxus, presumably through a stepwise process. In addition, the co-expression of Gdf1/3-like and Lefty achieved by a shared regulatory region may have provided robustness during body axis formation, which provides a selection-based hypothesis for the phenomena called developmental system drift.


Subject(s)
Gene Regulatory Networks , Lancelets , Female , Animals , Lancelets/genetics , Animals, Genetically Modified , DNA, Intergenic , Embryonic Development , Transforming Growth Factor beta
15.
Sci Total Environ ; 917: 170293, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38286282

ABSTRACT

Biochar was popularly used for reducing greenhouse gas (GHG) emissions in vegetable production, but using biochar does not necessarily guarantee a reduction in GHG emissions. Herein, it's meaningful to elucidate the intricate interplay among biochar properties, soil characteristics, and GHG emissions in vegetable production to provide valuable insights for informed and effective mitigation strategies. Therefore, in current research, a meta-analysis of 43 publications was employed to address these issues. The boost-regression analysis results indicated that the performance of biochar in inhibiting N2O emissions was most affected by the N application rate both in high and low N application conditions. Besides, biochar had dual roles and showed well performance in reducing GHG emissions under low N input (≤300 kg N ha-1), while having the opposite effect during high N input (>300 kg N ha-1). Specifically, applying biochar under low N fertilization input could obviously reduce soil N2O emissions, CO2 emissions, and CH4 emissions by 18.7 %, 17.9 %, and 16.9 %, respectively. However, the biochar application under high N fertilization input significantly (P < 0.05) increased soil N2O emissions, CO2 emissions, and CH4 emissions by 39.7 %, 43.0 %, and 27.7 %, respectively. Except for the N application rate, the soil pH, SOC, biochar C/N ratio, biochar pH, and biochar pyrolysis temperature are also the key factors affecting the control of GHG emissions in biochar-amended soils. The findings of this study will contribute to deeper insights into the potential application of biochar in regulating GHG under consideration of N input, offering scientific evidence and guidance for sustainable agriculture management.


Subject(s)
Greenhouse Gases , Greenhouse Gases/analysis , Nitrogen/analysis , Carbon Dioxide/analysis , Nitrous Oxide/analysis , Soil/chemistry , Agriculture/methods , Charcoal , Fertilization , Fertilizers/analysis
16.
Dev Cell ; 59(4): 482-495.e6, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38272027

ABSTRACT

Mutations or dysregulation of nucleoporins (Nups) are strongly associated with neural developmental diseases, yet the underlying mechanisms remain poorly understood. Here, we show that depletion of Nup Seh1 in radial glial progenitors results in defective neural progenitor proliferation and differentiation that ultimately manifests in impaired neurogenesis and microcephaly. This loss of stem cell proliferation is not associated with defects in the nucleocytoplasmic transport. Rather, transcriptome analysis showed that ablation of Seh1 in neural stem cells derepresses the expression of p21, and knockdown of p21 partially restored self-renewal capacity. Mechanistically, Seh1 cooperates with the NuRD transcription repressor complex at the nuclear periphery to regulate p21 expression. Together, these findings identified that Nups regulate brain development by exerting a chromatin-associated role and affecting neural stem cell proliferation.


Subject(s)
Neocortex , Neural Stem Cells , Animals , Mice , Cell Differentiation , Gene Expression , Neocortex/metabolism , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism
17.
Ir J Med Sci ; 193(1): 407-415, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37466874

ABSTRACT

AIMS: Reminiscence therapy (RT) is a common nursing care program to ameliorate psychological disorders, while its application in stroke patients and their spouse caregivers is rare. Thus, this randomized, controlled study intended to investigate the influence of RT on anxiety, depression, and spiritual well-being in these individuals. METHODS: Totally, 162 couples of stroke patients and their spouse caregivers were randomly assigned to receive RT (N = 81) and control care (CC) (N = 81) by pairs 4 times per month for 6 months. Hospital Anxiety and Depression Scale for anxiety (HADS-A) and depression (HADS-D), Functional Assessment of Chronic Illness Therapy - Spiritual Well-being scale (FACIT-Sp) were evaluated at month (M)0, M1, M3, and M6. RESULTS: In stroke patients, RT reduced HADS-A score at M3 (P = 0.043) and M6 (P = 0.020), and HADS-D score at M6 (P = 0.034), while increased FACIT-Sp score at M1 (P = 0.023), M3 (P = 0.010), and M6 (P = 0.004) compared to CC. Meanwhile, RT induced greater ameliorations in HADS-A (P = 0.049) and FACIT-Sp (P < 0.001) scores from M0 to M6 versus CC, but less in HADS-D score (P = 0.076). In the aspect of spouse caregivers, RT deceased HADS-A score at M1 (P = 0.042), M3 (P = 0.001), and M6 (P < 0.001), lowered HADS-D score at M3 (P = 0.015) and M6 (P = 0.001), but elevated FACIT-Sp score at M1 (P = 0.042), M3 (P < 0.001), and M6 (P < 0.001) compared to CC. Noteworthily, RT facilitated the improvements of HADS-A (P < 0.001), HADS-D (P = 0.010), and FACIT-Sp (P < 0.001) scores from M0 to M6 versus CC. CONCLUSIONS: RT relieves anxiety, depression and boosts spiritual well-being in both stroke patients and their spouse caregivers.


Subject(s)
Depression , Stroke , Humans , Depression/psychology , Caregivers , Anxiety/psychology , Stroke/therapy , Psychotherapy , Quality of Life
18.
Angew Chem Int Ed Engl ; 63(5): e202317785, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38085127

ABSTRACT

Covalent organic frameworks (COFs) have been utilized for catalyzing the reduction of carbon dioxide (CO2RR) due to their atomic metal centers and controllable pore channels, which are facilitated by different covalent bonds. However, the exploration of boron-based linkages in these catalytic COFs has been limited owing to potential instability. Herein, we present the construction of boronic ester-linked COFs through nucleophilic substitution reactions in order to catalyze the CO2 RR. The inclusion of abundant fluorine atoms within the frameworks enhances their hydrophobicity and subsequently improves water tolerance and chemical stability of COFs. The content of boron atoms in the COF linkages was carefully controlled, with COFs featuring a higher density of boron atoms exhibiting increased electronic conductivity, enhanced reductive ability, and stronger binding affinity towards CO2 . Consequently, these COFs demonstrate improved activity and selectivity. The optimized COFs achieve the highest activity, achieving a turnover frequency of 1695.3 h-1 and a CO selectivity of 95.0 % at -0.9 V. Operando synchrotron radiation measurements confirm the stability of Co (II) atoms as catalytically active sites. By successfully constructing boronic ester-linked COFs, we not only address potential instability concerns but also achieve exceptional catalytic performance for CO2 RR.

19.
Pest Manag Sci ; 80(3): 1193-1205, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37888855

ABSTRACT

BACKGROUND: Previous studies of brown planthopper (BPH), Nilaparvata lugens, showed that carrying the plant pathogenic virus, rice ragged stunt virus (RRSV), enhanced the lethality of the entomopathogenic fungus, Metarhizium anisopliae (YTTR). The underlying mechanism for this was not established but a serine protease cascade was hypothesized to be involved. RESULTS: Two immune response genes, NlKPI and NlVenomase, were identified and shown to be involved. The synthesized double-strand RNA (dsRNA) techniques used in this study to explore gene function revealed that treatment with dsRNA to silence either gene led to a higher BPH mortality from M. anisopliae infection than the dsRNA control treatment. NlKPI and NlVenomase play vital roles in BPH immunity to defend against alien pathogens. Both genes participate in the immune response process of BPH against co-infection with RRSV and M. anisopliae YTTR by regulating the expression of antimicrobial peptides and phenoloxidase activity. CONCLUSION: Our study provided new targets for BPH biocontrol and laid a solid foundation for further research on the interaction of virus-insect-EPF (entomopathogenic fungus). © 2023 Society of Chemical Industry.


Subject(s)
Hemiptera , Metarhizium , Oryza , Plant Viruses , Reoviridae , Animals , Metarhizium/physiology , Hemiptera/physiology , RNA, Double-Stranded , Immunity , Oryza/genetics
20.
Chemistry ; 30(3): e202302997, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37823329

ABSTRACT

The oxygen reduction reaction (ORR) is the key reaction in metal air and fuel cells. Among the catalysts that promote ORR, carbon-based metal-free catalysts are getting more attention because of their maximum atom utilization, effective active sites and satisfactory catalytic activity and stability. However, the pyrolysis synthesis of these carbons resulted in disordered porosities and uncontrolled catalytic sites, which hindered us in realizing the catalysts' design, the optimization of catalyst performance and the elucidation of structure-property relationship at the molecular level. Covalent organic frameworks (COFs) constructed with designable building blocks have been employed as metal-free electrocatalysts for the ORR due to their controlled skeletons, tailored pores size and environments, as well as well-defined location and kinds of catalytic sites. In this Concept article, the development of metal-free COFs for the ORR is summarized, and different strategies including skeletons regulation, linkages engineering and edge-sites modulation to improve the catalytic selectivity and activity are discussed. Furthermore, this Concept provides prospectives for designing and constructing powerful electrocatalysts based on the catalytic COFs.

SELECTION OF CITATIONS
SEARCH DETAIL
...