Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.841
Filter
1.
Anal Chim Acta ; 1316: 342836, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38969426

ABSTRACT

BACKGROUND: As promising biomarkers of diabetes, α-glucosidase (α-Glu) and ß-glucosidase (ß-Glu) play a crucial role in the diagnosis and management of diseases. However, there is a scarcity of techniques available for simultaneously and sensitively detecting both enzymes. What's more, most of the approaches for detecting α-Glu and ß-Glu rely on a single-mode readout, which can be affected by multiple factors leading to inaccurate results. Hence, the simultaneous detection of the activity levels of both enzymes in a single sample utilizing multiple-readout sensing approaches is highly attractive. RESULTS: In this work, we constructed a facile sensing platform for the simultaneous determination of α-Glu and ß-Glu by utilizing a luminescent covalent organic framework (COF) as a fluorescent indicator. The enzymatic hydrolysis product common to both enzymes, p-nitrophenol (PNP), was found to affect the fluorometric signal through an inner filter effect on COF, enhance the colorimetric response by intensifying the absorption peak at 400 nm, and induce changes in RGB values when analyzed using a smartphone-based color recognition application. By combining fluorometric/colorimetric measurements with smartphone-assisted RGB mode, we achieved sensitive and accurate quantification of α-Glu and ß-Glu. The limits of detection for α-Glu were determined to be 0.8, 1.22, and 1.85 U/L, respectively. Similarly, the limits of detection for ß-Glu were 0.16, 0.42, and 0.53 U/L, respectively. SIGNIFICANCE: Application of the proposed sensing platform to clinical serum samples revealed significant differences in the two enzymes between healthy people and diabetic patients. Additionally, the proposed sensing method was successfully applied for the screening of α-Glu inhibitors and ß-Glu inhibitors, demonstrating its viability and prospective applications in the clinical management of diabetes as well as the discovery of antidiabetic medications.


Subject(s)
Glycoside Hydrolase Inhibitors , Metal-Organic Frameworks , alpha-Glucosidases , beta-Glucosidase , Metal-Organic Frameworks/chemistry , Humans , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , beta-Glucosidase/antagonists & inhibitors , beta-Glucosidase/metabolism , alpha-Glucosidases/metabolism , alpha-Glucosidases/blood , Colorimetry/methods , Limit of Detection , Nitrophenols/metabolism , Nitrophenols/chemistry , Nitrophenols/analysis , Drug Evaluation, Preclinical , Fluorescent Dyes/chemistry
2.
Front Pharmacol ; 15: 1396606, 2024.
Article in English | MEDLINE | ID: mdl-38953104

ABSTRACT

Background: Niraparib, a poly ADP-ribose polymerase inhibitors (PARPi), has been widely applied in the intervention of epithelial ovarian, fallopian tube, or primary peritoneal cancer. Nevertheless, as of the present moment, there are limited instances demonstrating favorable outcomes stemming from niraparib therapy in patients with clear cell renal cell carcinoma (ccRCC). Case presentation: Here, we report a case of a 50-year-old patient with ccRCC who subsequently developed distant metastasis. The patient received monotherapy with pazopanib and combination therapy with axitinib and tislelizumab, demonstrating limited efficacy. Liquid biopsy revealed missense mutations in the CDK12 and RAD51C of the homologous recombination repair (HRR) pathway, suggesting potential sensitivity to PARPi. Following niraparib treatment, the patient's condition improved, with no significant side effects. Conclusion: In summary, patients with ccRCC harboring HRR pathway gene mutation may potentially benefit from niraparib. This will present more options for ccRCC patients with limited response to conventional treatments.

3.
Hepatol Int ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954360

ABSTRACT

BACKGROUND: The management of severe immune-related hepatotoxicity (irH) needs to be further optimized. This study aims to analyze the clinical characteristics of severe irH; improve the therapeutic strategy, especially salvage treatment in steroid-refractory irH; and determine the safety of immune checkpoint inhibitor (ICPi)-rechallenge. METHODS: This multicenter retrospective study included patients who developed severe irH and those without irH after immunotherapy between May 2019 and June 2023. Propensity score matching was used to match these two cohorts with similar baseline characteristics. RESULTS: Among 5,326 patients receiving ICPis, 51 patients developed severe irH. irH occurred after a median duration of 36 days and a median of two doses after the first ICPi administration. Patients receiving PD-L1 inhibitors faced a lower risk of developing severe irH. A higher dose of glucocorticoids (GCS) was administered to grade 4 irH than grade 3 irH. For steroid-sensitive patients, grade 4 irH individuals received a higher dosage of GCS than those with grade 3 irH, with no difference in time to resolution. Meanwhile, a significantly higher dose of GCS plus immunosuppression was needed in the steroid-refractory group. Liver biopsy of the steroid-refractory patients exhibited heterogeneous histological features. Twelve patients were retreated with ICPi. No irH reoccurred after a median follow-up of 9.3 months. CONCLUSION: irH requires multidimensional evaluation. PD-L1 inhibitors correlated with a lower risk of severe irH. Grade 4 irH demands a higher dose of GCS than recommended. Pathology may guide the salvage treatment for steroid-refractory irH. ICPi rechallenge in severe irH is feasible and safe.

4.
Sci Rep ; 14(1): 15152, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956404

ABSTRACT

Removing texture while preserving the main structure of an image is a challenging task. To address this, this paper propose an image smoothing method based on global gradient sparsity and local relative gradient constraints optimization. To reduce the interference of complex texture details, adopting a multi-directional difference constrained global gradient sparsity decomposition method, which provides a guidance image with weaker texture detail gradients. Meanwhile, using the luminance channel as a reference, edge-aware operator is constructed based on local gradient constraints. This operator weakens the gradients of repetitive and similar texture details, enabling it to obtain more accurate structural information for guiding global optimization of the image. By projecting multi-directional differences onto the horizontal and vertical directions, a mapping from multi-directional differences to bi-directional gradients is achieved. Additionally, to ensure the consistency of measurement results, a multi-directional gradient normalization method is designed. Through experiments, we demonstrate that our method exhibits significant advantages in preserving image edges compared to current advanced smoothing methods.

5.
Food Chem ; 458: 140256, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38959802

ABSTRACT

This study investigated the effect mechanism of selenium (Se)-enriched yeast on the rheological properties of dough from the perspective of yeast metabolism and gluten alteration. As the yeast Se content increased, the gas production rate of Se-enriched yeast slowed down, and dough viscoelasticity decreased. The maximum creep of Se-enriched dough increased by 29%, while the final creep increased by 54%, resulting in a softer dough. Non-targeted metabolomics analyses showed that Se inhibited yeast energy metabolism and promoted the synthesis of stress-resistance related components. Glutathione, glycerol, and linoleic acid contributed to the rheological property changes of the dough. The fractions and molecular weight distribution of protein demonstrated that the increase in yeast Se content resulted in the depolymerization of gluten. The intermolecular interactions, fluorescence spectrum and disulfide bond analysis showed that the disruption of intermolecular disulfide bond induced by Se-enriched yeast metabolites played an important role in the depolymerization of gluten.

6.
Microbiome ; 12(1): 120, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956705

ABSTRACT

BACKGROUND: Functional redundancy (FR) is widely present, but there is no consensus on its formation process and influencing factors. Taxonomically distinct microorganisms possessing genes for the same function in a community lead to within-community FR, and distinct assemblies of microorganisms in different communities playing the same functional roles are termed between-community FR. We proposed two formulas to respectively quantify the degree of functional redundancy within and between communities and analyzed the FR degrees of carbohydrate degradation functions in global environment samples using the genetic information of glycoside hydrolases (GHs) encoded by prokaryotes. RESULTS: Our results revealed that GHs are each encoded by multiple taxonomically distinct prokaryotes within a community, and the enzyme-encoding prokaryotes are further distinct between almost any community pairs. The within- and between-FR degrees are primarily affected by the alpha and beta community diversities, respectively, and are also affected by environmental factors (e.g., pH, temperature, and salinity). The FR degree of the prokaryotic community is determined by deterministic factors. CONCLUSIONS: We conclude that the functional redundancy of GHs is a stabilized community characteristic. This study helps to determine the FR formation process and influencing factors and provides new insights into the relationships between prokaryotic community biodiversity and ecosystem functions. Video Abstract.


Subject(s)
Bacteria , Biodiversity , Glycoside Hydrolases , Polysaccharides , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/genetics , Polysaccharides/metabolism , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Ecosystem , Microbiota , Prokaryotic Cells/metabolism , Prokaryotic Cells/classification , Phylogeny , Hydrogen-Ion Concentration
7.
Cell Death Discov ; 10(1): 314, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972937

ABSTRACT

Kidney fibrosis is considered to be the ultimate aggregation pathway of chronic kidney disease (CKD), but its underlying mechanism remains elusive. Protein kinase C-delta (PKC-δ) plays critical roles in the control of growth, differentiation, and apoptosis. In this study, we found that PKC-δ was highly upregulated in human biopsy samples and mouse kidneys with fibrosis. Rottlerin, a PKC-δ inhibitor, alleviated unilateral ureteral ligation (UUO)-induced kidney fibrosis, inflammation, VDAC1 expression, and cGAS-STING signaling pathway activation. Adeno-associated virus 9 (AAV9)-mediated VDAC1 silencing or VBIT-12, a VDAC1 inhibitor, attenuated renal injury, inflammation, and activation of cGAS-STING signaling pathway in UUO mouse model. Genetic and pharmacologic inhibition of STING relieved renal fibrosis and inflammation in UUO mice. In vitro, hypoxia resulted in PKC-δ phosphorylation, VDAC1 oligomerization, and activation of cGAS-STING signaling pathway in HK-2 cells. Inhibition of PKC-δ, VDAC1 or STING alleviated hypoxia-induced fibrotic and inflammatory responses in HK-2 cells, respectively. Mechanistically, PKC-δ activation induced mitochondrial membrane VDAC1 oligomerization via direct binding VDAC1, followed by the mitochondrial DNA (mtDNA) release into the cytoplasm, and subsequent activated cGAS-STING signaling pathway, which contributed to the inflammation leading to fibrosis. In conclusion, this study has indicated for the first time that PKC-δ is an important regulator in kidney fibrosis by promoting cGAS-STING signaling pathway which mediated by VDAC1. PKC-δ may be useful for treating renal fibrosis and subsequent CKD.

8.
Front Endocrinol (Lausanne) ; 15: 1426380, 2024.
Article in English | MEDLINE | ID: mdl-38978623

ABSTRACT

Diabetes, a multifaceted metabolic disorder, poses a significant global health burden with its increasing prevalence and associated complications, such as diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, and diabetic angiopathy. Recent studies have highlighted the intricate interplay between N6-methyladenosine (m6A) and non-coding RNAs (ncRNAs) in key pathways implicated in these diabetes complications, like cell apoptosis, oxidative stress, and inflammation. Thus, understanding the mechanistic insights into how m6A dysregulation impacts the expression and function of ncRNAs opens new avenues for therapeutic interventions targeting the m6A-ncRNAs axis in diabetes complications. This review explores the regulatory roles of m6A modifications and ncRNAs, and stresses the role of the m6A-ncRNA axis in diabetes complications, providing a therapeutic potential for these diseases.


Subject(s)
Adenosine , Diabetes Complications , RNA, Untranslated , Humans , Diabetes Complications/metabolism , Diabetes Complications/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism , RNA, Untranslated/genetics , Animals , Oxidative Stress
9.
Drug Des Devel Ther ; 18: 2761-2773, 2024.
Article in English | MEDLINE | ID: mdl-38979399

ABSTRACT

Purpose: Immune checkpoint inhibitors (ICIs) combined with chemotherapy have become the first-line standard treatment for locally advanced or metastatic esophageal squamous cell carcinoma (ESCC). The evidence also demonstrates improved synergistic effects of chemotherapy when combined with delayed administration of ICIs. In this study, we conducted a retrospective investigation into the treatment efficacy of taxol plus platinum (TP) chemotherapy combined with delayed administration of PD-1 inhibitors for ESCC patients. Patients and Methods: Clinical data of ESCC patients who received PD-1 inhibitors 3-5 days after TP chemotherapy as first-line treatment was retrospectively reviewed between January 2019 and April 2023. Clinical outcomes and treatment safety were analyzed. The potential roles of neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), monocyte-to-lymphocyte ratio (MLR), and pan-immune-inflammation value (PIV) were investigated. Results: A total of 34 locally advanced, recurrent or metastatic ESCC patients received PD-1 inhibitors 3-5 days following TP chemotherapy were included. The objective response rate (ORR) and disease control rate (DCR) were 85.3% and 97.1% respectively. The median progression-free survival (PFS) and overall survival (OS) were 13.2 and 19.1 month respectively. Seven patients received radical surgery, 1 patient achieved pathologic complete response (pCR) and 3 patients achieved major pathologic response (MPR). Among the 27 patients without surgery, the median PFS and OS were 9.7 and 19.1 month respectively. A more favorable prognosis was correlated with NLR less than 3 at the 3rd and 4th cycle of immunochemotherapy. No significant correlations between other parameters (PLR, MLR and PIV) and prognosis were observed. A total of 22 patients developed grade 3-4 toxicity events. Conclusion: The optimized sequence of PD-1 inhibitors administered 3-5 days after TP chemotherapy as the first-line treatment of ESCC demonstrated favorable treatment efficacy. Pretreatment NLR of less than 3 at the 3rd and 4th cycle of immunochemotherapy is associated with a better prognosis.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Immune Checkpoint Inhibitors , Paclitaxel , Programmed Cell Death 1 Receptor , Humans , Retrospective Studies , Male , Female , Middle Aged , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/pathology , Paclitaxel/administration & dosage , Aged , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Immune Checkpoint Inhibitors/administration & dosage , Immune Checkpoint Inhibitors/pharmacology , Adult , Neoplasm Recurrence, Local/drug therapy , Neoplasm Metastasis
10.
Adv Sci (Weinh) ; : e2405210, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984453

ABSTRACT

The modulation of the chemical microenvironment surrounding metal nanoparticles (NPs) is an effective means to enhance the selectivity and activity of catalytic reactions. Herein, a post-synthetic modification strategy is developed to modulate the hydrophobic microenvironment of Ru nanoparticles encapsulated in a metal-organic framework (MOF), MIP-206, namely Ru@MIP-Fx (where x represents perfluoroalkyl chain lengths of 3, 5, 7, 11, and 15), in order to systematically explore the effect of the hydrophobic microenvironment on the electrocatalytic activity. The increase of perfluoroalkyl chain length can gradually enhance the hydrophobicity of the catalyst, which effectively suppresses the competitive hydrogen evolution reaction (HER). Moreover, the electrocatalytic production rate of ammonia and the corresponding Faraday efficiency display a volcano-like pattern with increasing hydrophobicity, with Ru@MIP-F7 showing the highest activity. Theoretical calculations and experiments jointly show that modification of perfluoroalkyl chains of different lengths on MIP-206 modulates the electronic state of Ru nanoparticles and reduces the rate-determining step for the formation of the key intermediate of N2H2 *, leading to superior electrocatalytic performance.

11.
Chin J Cancer Res ; 36(3): 240-256, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988488

ABSTRACT

Bruton's tyrosine kinase inhibitors (BTKis) have revolutionized the treatment of B-cell lymphomas. However, safety issues related to the use of BTKis may hinder treatment continuity and further affect clinical efficacy. A comprehensive and systematic expert consensus from a pharmacological perspective is lacking for safety issues associated with BTKi treatment. A multidisciplinary consensus working group was established, comprising 35 members from the fields of hematology, cardiovascular disease, cardio-oncology, clinical pharmacy, and evidence-based medicine. This evidence-based expert consensus was formulated using an evidence-based approach and the Delphi method. The Joanna Briggs Institute Critical Appraisal (JBI) tool and Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach were used to rate the quality of evidence and grade the strength of recommendations, respectively. This consensus provides practical recommendations for BTKis medication based on nine aspects within three domains, including the management of common adverse drug events such as bleeding, cardiovascular events, and hematological toxicity, as well as the management of drug-drug interactions and guidance for special populations. This multidisciplinary expert consensus could contribute to promoting a multi-dimensional, comprehensive and standardized management of BTKis.

12.
Mater Horiz ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990691

ABSTRACT

The anomalous Hall effect (AHE), significantly enhanced by the extrinsic mechanism, has attracted attention for its almost unlimited Hall response, which exceeds the upper limit of the Berry curvature mechanism. However, due to the high conductivity in the clean regime and weak skew scattering, it is a great challenge to obtain large anomalous Hall conductivities and large anomalous Hall angles at the same time. Here, we unveil a new magnetic metal system, EuAl2Si2, which hosts both colossal anomalous Hall conductivity (σAxy ≥ 104 Ω-1 cm-1) and large anomalous Hall angle (AHA >10%). The scaling relation suggests that the skew scattering mechanism is dominant in the colossal anomalous Hall response and gives rise to a large skew scattering constant. The large effective SOC and large magnetic moment may account for this anomaly. Our results indicate that EuAl2Si2 is a good platform to study the extrinsic AHE mechanism.

13.
Article in English | MEDLINE | ID: mdl-38991972

ABSTRACT

The vacuum flash solution method has gained widespread recognition in the preparation of perovskite thin films, laying the foundation for the industrialization of perovskite solar cells. However, the low volatility of dimethyl sulfoxide and its weak interaction with formamidine-based perovskites significantly hinder the preparation of cell modules and the further improvement of photovoltaic performance. In this study, we describe an efficient and reproducible method for preparing large-scale, highly uniform formamidinium lead triiodide (FAPbI3) perovskite films. This is achieved by accelerating the vacuum flash rate and leveraging the complex synergism. Specifically, we designed a dual pump system to accelerate the depressurization rate of the vacuum system and compared the quality of perovskite film formed at different depressurization rates. Further, to overcome the limitations posed by DMSO, we substituted N-methylpyrrolidone as the ligand solvent, creating a stable intermediate complex phase. After annealing, it can be transformed into a uniform and pinhole-free FAPbI3 film. Due to the superior quality of these films, the large area perovskite solar module achieved a power conversion efficiency of 22.7% with an active area of 21.4 cm2. Additionally, it obtained an official certified efficiency of 22.1% with an aperture area of 22 cm2, and it demonstrated long-term stability.

14.
World J Virol ; 13(2): 91286, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38984081

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 is a highly contagious positive-sense, single-stranded RNA virus that has rapidly spread worldwide. As of December 17, 2023, 772838745 confirmed cases including 6988679 deaths have been reported globally. This virus primarily spreads through droplets, airborne transmission, and direct contact. Hospitals harbor a substantial number of confirmed coronavirus disease 2019 (COVID-19) patients and asymptomatic carriers, accompanied by high population density and a larger susceptible population. These factors serve as potential triggers for nosocomial infections, posing a threat during the COVID-19 pandemic. Nosocomial infections occur to varying degrees across different countries worldwide, emphasizing the urgent need for a practical approach to prevent and control the intra-hospital spread of COVID-19. This study primarily concentrated on a novel strategy combining preventive measures with treatment for combating COVID-19 nosocomial infections. It suggests preventive methods, such as vaccination, disinfection, and training of heathcare personnel to curb viral infections. Additionally, it explored therapeutic strategies targeting cellular inflammatory factors and certain new medications for COVID-19 patients. These methods hold promise in rapidly and effectively preventing and controlling nosocomial infections during the COVID-19 pandemic and provide a reliable reference for adopting preventive measures in the future pandemic.

15.
J Clin Neurosci ; 126: 270-283, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38986338

ABSTRACT

BACKGROUND: The use of both edaravone (EDA) and hyperbaric oxygen therapy (HBOT) is increasingly prevalent in the treatment of delayed encephalopathy after carbon monoxide poisoning (DEACMP). This meta-analysis aims to evaluate the efficacy of using EDA and HBOT in combination with HBOT alone in the treatment of DEACMP. METHODS: We searched and included all randomized controlled trials (RCTs) published before November 6, 2023, from 12 Chinese and English databases and clinical trial centers in China and the United States. The main outcome indicator was the total effective rate. The secondary outcome indicators included the Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), National Institutes of Health Stroke Scale (NIHSS), Barthel Index (BI), Hasegawa Dementia Scale (HDS), Fugl-Meyer Assessment (FMA), Superoxide Dismutase (SOD), and Malondialdehyde (MDA). Statistical measures utilized include risk ratios (RR), weighted mean difference (WMD), and 95 % confidence intervals (95 % CI). RESULTS: Thirty studies involving a combined total of 2075 participants were ultimately incorporated. It was observed that the combination of EDA with HBOT for the treatment of DEACMP demonstrated an improvement in the total effective rate (RR: 1.25; 95 % CI: 1.20-1.31; P < 0.01), MMSE (WMD: 3.67; 95 % CI: 2.59-4.76; P < 0.01), MoCA (WMD: 4.38; 95 % CI: 4.00-4.76; P < 0.01), BI (WMD: 10.94; 95 % CI: 5.23-16.66; P < 0.01), HDS (WMD: 6.80; 95 % CI: 4.05-9.55; P < 0.01), FMA (WMD: 8.91; 95 % CI: 7.22-10.60; P < 0.01), SOD (WMD: 18.45; 95 % CI: 16.93-19.98; P < 0.01); and a reduction in NIHSS (WMD: -4.12; 95 % CI: -4.93 to -3.30; P < 0.01) and MDA (WMD: -3.05; 95 % CI: -3.43 to -2.68; P < 0.01). CONCLUSION: Low-quality evidence suggests that for DEACMP, compared to using HBOT alone, the combined use of EDA and HBOT may be associated with better cognition and activity of daily living. In the future, conducting more meticulously designed multicenter and large-sample RCTs to substantiate our conclusions is essential.

16.
Toxicon ; : 107857, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38996976

ABSTRACT

Fluoride is a double-edged sword. It was widely used for early caries prevention while excessive intake caused a toxicology effect, affected enamel development, and resulted in dental fluorosis. The study aimed to evaluate the protective effect and mechanism of Epigallocatechin-3-gallate (EGCG) on the apoptosis induced by fluoride in ameloblast-like cells. We observed that NaF triggered apoptotic alterations in cell morphology, excessive NaF arrested cell cycle at the G1, and induced apoptosis by up-regulating Bax and down-regulating Bcl-2. NaF activated the insulin-like growth factor receptor (IGFR), and phosphatidylinositol-3-hydroxylase (p-PI3K), while dose-dependently down-regulating the expression of Forkhead box O1 (FoxO1). EGCG supplements reversed the changes in LS8 morphology, the cell cycle, and apoptosis induced by fluoride. These results indicated that EGCG possesses a protective effect against fluoride toxicity. Furthermore, EGCG suppressed the activation of p-PI3K and the down-regulation of FoxO1 caused by fluoride. Collectively, our findings suggested that EGCG attenuated fluoride-induced apoptosis by inhibiting the PI3K/FoxO1 signaling pathway. EGCG may serve as a new alternative method for dental fluorosis prevention, control, and treatment.

17.
Immunobiology ; : 152825, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38997894

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a prevalent joint disorder characterized by cartilage degeneration and joint inflammation. Liquid-liquid phase separation (LLPS), a biophysical process involved in cellular organization, has recently gained attention in OA research. However, the relationship between LLPS and OA remains poorly understood. METHODS: We analyzed gene expression data from the GSE48556 dataset to identify LLPS-related genes associated with OA. Differential expression analysis, enrichment analyses, and machine learning algorithms were employed to explore the functional significance of LLPS-related genes in OA and then construct a diagnostic model for OA. In addition, IL-1ß as a pro-inflammatory factor to establish an in vitro OA model, and the protein expression levels of OA biomarkers were detected by western blot. RESULTS: A total of 145 LLPS-related genes were screened in OA samples. Enrichment analyses revealed these genes were mainly enriched in mRNA metabolic processes, cytoplasmic granules, and insulin resistance. Four characteristic genes for OA were selected by using machine learning algorithms, including ADRB2, H3F3B, GNL3L, and PELO. These genes showed satisfactory diagnostic values. Furthermore, there were association between these biomarkers and immune cells, including T cells CD8 and monocytes. In vitro experiments showed that IL-1ß stimulation significantly inhibited the cell viability of chondrocytes and enhanced the levels of pro-inflammatory factors, that could mimic the inflammatory state of OA. The expression levels of GNL3L and H3F3B proteins in IL-1ß group were obviously lower than those in control group, while levels of ADRB2 and PELO were higher, which was consistent with the results of bioinformatics analysis. CONCLUSION: Our study identifies LLPS-related genes as potential diagnostic biomarkers for OA. These findings provide insights into the molecular mechanisms underlying OA pathogenesis and offer opportunities for the development of novel therapeutic strategies.

18.
Stem Cells ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995653

ABSTRACT

Efficient homing of infused hematopoietic stem and progenitor cells (HSPCs) into the bone marrow (BM) is the prerequisite for successful hematopoietic stem cell transplantation. However, only a small part of infused HSPCs find their way to the BM niche. A better understanding of the mechanisms that facilitate HSPC homing will help to develop strategies to improve the initial HSPC engraftment and subsequent hematopoietic regeneration. Here, we show that irradiation upregulates the endomucin expression of endothelial cells in vivo and in vitro. Furthermore, depletion of endomucin in irradiated endothelial cells with short interfering RNA (siRNA) increases the HSPC-endothelial cell adhesion in vitro. To abrogate the endomucin of BM sinusoidal endothelial cells (BM-SECs) in vivo, we develop a siRNA-loaded bovine serum albumin nanoparticle for targeted delivery. Nanoparticle-mediated siRNA delivery successfully silences endomucin expression in BM-SECs and improves HSPC homing during transplantation. These results reveal that endomucin plays a critical role in HSPC homing during transplantation and that gene-based manipulation of BM-SEC endomucin in vivo can be exploited to improve the efficacy of HSPC transplantation.

19.
J Chem Phys ; 161(1)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38949280

ABSTRACT

In this work, we performed static density functional theory calculations and ab initio metadynamics simulations to systematically investigate the association mechanisms and dynamic structures of four kinds of ion pairs that could be formed before the nucleation of CaCO3. For Ca2+-HCO3- and Ca2+-CO32- pairs, the arrangement of ligands around Ca2+ evolves between the six-coordinated octahedral structure and the seven-coordinated pentagonal bipyramidal structure. The formation of ion pairs follows an associative ligand substitution mechanism. Compared with HCO3-, CO32- exhibits a stronger affinity to Ca2+, leading to the formation of a more stable precursor phase in the prenucleation stage, which promotes the subsequent CaCO3 nucleation. In alkaline environments, excessive OH- ions decrease the coordination preference of Ca2+. In this case, the formation of Ca(OH)+-CO32- and Ca(OH)2-CO32- pairs favors the dissociative ligand substitution mechanism. The inhibiting effects of OH- ion on the CaCO3 association can be interpreted from two aspects, i.e., (1) OH- neutralizes positive charges on Ca2+, decreases the electrostatic interactions between Ca2+ and CO32-, and thus hinders the formation of the CaCO3 monomer, and (2) OH- decreases the capacity of Ca2+ for accommodating O, making it easier to separate Ca2+ and CO32- ions. Our findings on the ion association behaviors in the initial stage of CaCO3 formation not only help scientists evaluate the impact of ocean acidification on biomineralization but also provide theoretical support for the discovery and development of more effective approaches to manage undesirable scaling issues.

SELECTION OF CITATIONS
SEARCH DETAIL
...