Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 286
Filter
1.
Theranostics ; 14(10): 3827-3842, 2024.
Article in English | MEDLINE | ID: mdl-38994027

ABSTRACT

Rationale: In male mammals, many developmental-stage-specific RNA transcripts (both coding and noncoding) are preferentially or exclusively expressed in the testis, where they play important roles in spermatogenesis and male fertility. However, a reliable platform for efficiently depleting various types of RNA transcripts to study their biological functions during spermatogenesis in vivo has not been developed. Methods: We used an adeno-associated virus serotype nine (AAV9)-mediated CRISPR-CasRx system to knock down the expression of exogenous and endogenous RNA transcripts in the testis. Virus particles were injected into the seminiferous tubules via the efferent duct. Using an autophagy inhibitor, 3-methyladenine (3-MA), we optimized the AAV9 transduction efficiency in germ cells in vivo. Results: AAV9-mediated delivery of CRISPR-CasRx effectively and specifically induces RNA transcripts (both coding and noncoding) knockdown in the testis in vivo. In addition, we showed that the co-microinjection of AAV9 and 3-MA into the seminiferous tubules enabled long-term transgene expression in the testis. Finally, we found that a promoter of Sycp1 gene induced CRISPR-CasRx-mediated RNA transcript knockdown in a germ-cell-type-specific manner. Conclusion: Our results demonstrate the efficacy and versatility of the AAV9-mediated CRISPR-CasRx system as a flexible knockdown platform for studying gene function during spermatogenesis in vivo. This approach may advance the development of RNA-targeting therapies for conditions affecting reproductive health.


Subject(s)
CRISPR-Cas Systems , Dependovirus , Gene Knockdown Techniques , Spermatogenesis , Testis , Male , Animals , Dependovirus/genetics , CRISPR-Cas Systems/genetics , Mice , Testis/metabolism , Gene Knockdown Techniques/methods , Spermatogenesis/genetics , RNA/genetics , Genetic Vectors/genetics , Genetic Vectors/administration & dosage
2.
Adv Sci (Weinh) ; : e2405050, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973148

ABSTRACT

Transition metal disulfide compounds (TMDCs) emerges as the promising candidate for new-generation flexible (opto-)electronic device fabrication. However, the harsh growth condition of TMDCs results in the necessity of using hard dielectric substrates, and thus the additional transfer process is essential but still challenging. Here, an efficient strategy for preparation and easy separation-transfer of high-uniform and quality-enhanced MoS2 via the precursor pre-annealing on the designed graphene inserting layer is demonstrated. Based on the novel strategy, it achieves the intact separation and transfer of a 2-inch MoS2 array onto the flexible resin. It reveals that the graphene inserting layer not only enhances MoS2 quality but also decreases interfacial adhesion for easy separation-transfer, which achieves a high yield of ≈99.83%. The theoretical calculations show that the chemical bonding formation at the growth interface has been eliminated by graphene. The separable graphene serves as a photocarrier transportation channel, making a largely enhanced responsivity up to 6.86 mA W-1, and the photodetector array also qualifies for imaging featured with high contrast. The flexible device exhibits high bending stability, which preserves almost 100% of initial performance after 5000 cycles. The proposed novel TMDCs growth and separation-transfer strategy lightens their significance for advances in curved and wearable (opto-)electronic applications.

3.
J Environ Manage ; 364: 121443, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38878575

ABSTRACT

Nanofiltration (NF) has been proven to be with great potential for the separation of morpholines with molecular weight less than 200 Da in refining reverse osmosis concentrate (ROC), but its application is significantly restricted by the membrane fouling, which can reduce the rejection and service time. To enable the long-term operation stability of nanofiltration, this work focuses on the fouling behavior of each substance in the hydrosaline organic solution on nanofiltration membrane, aiming to give insight into the fouling mechanism. To this end, in this work, the effects of salts (i.e NaCl and Na2SO4), organic substances (including N-(2-hydroxypropyl)morpholine(NMH) and 4-morpholineacetate(MHA)) and representative divalent ions (Ca2+ and Mg2+) on the performance and physicochemical properties of DK membrane were systematically investigated. The results show that both salts and organics can induce DK membrane swelling, leading to an increase of the mean effective pore size. After the filtration of Na2SO4-NaCl-H2O, the mean pore size increased by 0.002 nm, resulting in the decrease of the removal ratio of NMH and MHA for 3.82% and 13.10%, respectively. With static adsorption of NMH and MHA, the mean pore size of DK membrane increased by 0.005 and 0.003 nm. The swelling slowed the entrance of more organic molecules into membrane pores. Among them, MHA led to the terrible irreversible pore blocking. As the concentration of Ca2+ increased, gypsum scaling was formed on the membrane surface. During this process, NMH and MHA played different roles, i.e. NMH accelerated the CaSO4 crystallization while MHA inhibited. As a conclusion, the fouling behavior of substances in the high saline organic wastewater on DK membrane were systematically revealed with the fouling mechanisms proposed, which could provide an insightful guidance for membrane fouling control and cleaning in the treatment of high salinity and organic wastewater.


Subject(s)
Filtration , Membranes, Artificial , Osmosis , Water Purification , Water Purification/methods , Morpholines/chemistry , Adsorption
4.
Food Res Int ; 190: 114546, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945559

ABSTRACT

The thermal treatment carried out in the processing of apple products is very likely to induce Maillard reaction to produce furfurals, which have raised toxicological concerns. This study aimed to elucidate the formation of furfural compounds in apple products treated with pasteurization and high pressure processing (HPP). The method for simultaneous determination of five furfural compounds including 5-hydroxymethyl-2-furfural (5-HMF), furfural (F), 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF), 2-acetylfuran (FMC), and 5-Methyl-2-furfural (MF) using high performance liquid chromatography equipped with diode array detector (HPLC-DAD) was successfully developed and validated. All five furfurals exhibited an increasing trend after the pasteurization treatment of apple clear juice, cloudy juice, and puree. 5-HMF, F, FMC, and MF were increased significantly during the precooking of apple puree. Whereas there was no significant change in the furfurals formation after apple products treated with high pressure processing (HPP) with 300 MPa and 15 min. Based on the variation of the fructose, glucose and sucrose detected in apple products after thermal treatment, it revealed that the saccharides and thermal treatment have great effect on the furfural compounds formation. The commercial fruit juice samples with different treatments and fruit puree samples treated with pasteurization were also analyzed. Five furfurals were detected more frequently in the fruit juice samples treated with pasteurization or ultra-high temperature instantaneous sterilization (UHT) than those treated with HPP. 5-HMF and FMC were detected in all fruit puree samples treated with pasteurization, followed by F, MF, and HDMF with the detection rate of 79.31 %, 72.41 %, and 51.72 %. The results could provide a reference for risk assessment of furfural compounds and dietary guidance of fruit products for human, especially for infants and young children. Moreover, moderate HPP treatment with 300 MPa and 15 min would be a worthwhile alternative processing technology in the fruit juice and puree production to reduce the formation of furfural compounds.


Subject(s)
Food Handling , Fruit and Vegetable Juices , Furaldehyde , Malus , Pasteurization , Pressure , Malus/chemistry , Furaldehyde/analysis , Furaldehyde/analogs & derivatives , Chromatography, High Pressure Liquid , Fruit and Vegetable Juices/analysis , Food Handling/methods , Maillard Reaction , Fruit/chemistry , Furans/analysis
5.
J Agric Food Chem ; 72(27): 15077-15091, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38920088

ABSTRACT

In recent decades, the unique structural attributes and purported insecticidal properties of oximes have garnered increasing attention. A variety of insecticides, encompassing fluxametamide, fluhexafon, and lepimectin, have been synthesized, all of which incorporate oximes. This review endeavors to encapsulate the insecticidal efficacy, structure-activity correlations, and operative mechanisms of oxime-containing compounds. Furthermore, it delves into the conceptual frameworks underpinning the design of innovative oxime-based insecticides, thereby shedding light on prospective advancements in this field.


Subject(s)
Insecticides , Oximes , Insecticides/chemistry , Insecticides/pharmacology , Insecticides/chemical synthesis , Oximes/chemistry , Animals , Structure-Activity Relationship , Molecular Structure , Insecta/drug effects , Insecta/chemistry
6.
Imeta ; 3(2): e182, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882487

ABSTRACT

The Microbiome Protocols eBook (MPB) serves as a crucial bridge, filling gaps in microbiome protocols for both wet experiments and data analysis. The first edition, launched in 2020, featured 152 meticulously curated protocols, garnering widespread acclaim. We now extend a sincere invitation to researchers to participate in the upcoming 2nd version of MPB, contributing their valuable protocols to advance microbiome research.

7.
PLoS One ; 19(6): e0304760, 2024.
Article in English | MEDLINE | ID: mdl-38870122

ABSTRACT

PURPOSE: The genotype distribution of human papillomavirus (HPV) infection varies greatly in different regions. This study aims to determine the prevalence and type-specific distribution of HPV among females from Chengdu and Aba in Sichuan Province, which differ in geographical location, economic status, and living habits. These can serve as evidence of epidemic patterns for future design and implementation of vaccination and screening programs. METHODS: A retrospective cross-sectional study was conducted on 144 113 women who underwent cervical screening at Chengdu Women's and Children's Central Hospital from January 2015 to September 2020. Meanwhile, 1799 samples from February 2018 to December 2021 were collected from Aba Maternal and Child Health Hospital. HPV DNA genotype testing was performed using real-time PCR. The overall prevalence, annual trend, age-specific prevalence, and type distribution were analyzed. RESULTS: The overall HPV prevalence was 22.51% in Chengdu. During 2015-2020, the highest prevalence rate was observed in 2018. Age-specific HPV distribution displayed a bimodal distribution among women aged ≤25 or ≥46 years old. The top three prevalent genotypes were HPV52, -16, and -58. Although the total prevalence of HPV in Aba was 14.23%, there was an upward trend from 2018 to 2021. However, no significant differences were identified in HPV infection rate across all age groups. HPV52, -53, and -16 were the major genotypes. Furthermore, single-type HPV infections and high-risk HPV infections were identified as the most common infection types in both regions. CONCLUSION: Our findings demonstrate the overall prevalence of HPV was still high in Chengdu and Aba. The age-specific prevalence distribution demonstrated different patterns. Non-vaccine-covered HR-HPV53, -51and LR-HPV81, -CP8304 were frequently detected, which was worth significant clinical attention. In summary, regional HPV screening provides valuable clinical guidance for cervical cancer prevention and vaccine selection in Western China.


Subject(s)
Papillomaviridae , Papillomavirus Infections , Humans , Female , China/epidemiology , Papillomavirus Infections/epidemiology , Papillomavirus Infections/virology , Adult , Prevalence , Middle Aged , Cross-Sectional Studies , Retrospective Studies , Papillomaviridae/genetics , Papillomaviridae/classification , Papillomaviridae/isolation & purification , Young Adult , Genotype , Uterine Cervical Neoplasms/epidemiology , Uterine Cervical Neoplasms/virology , DNA, Viral/genetics , Cervix Uteri/virology
8.
J Phys Chem A ; 128(24): 4806-4813, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38839423

ABSTRACT

Recently, Guha and co-workers (Sarmah, K.; Kalita, A.; Purkayastha, S.; Guha, A. K. Pushing The Extreme of Multicentre Bonding: Planar Pentacoordinate Hydride. Angew. Chem. Int. Ed. 2024, e202318741) reported a highly intriguing bonding motif: planar pentacoordinate hydrogen (ppH) in Li5H6-, featuring C2v symmetry in the singlet state with two distinct H-Li (center-ring) bond distances. We herein revisited the potential energy surface of Li5H6- by using a target-oriented genetic algorithm. Our investigation revealed that the lowest-energy structure of Li5H6- exhibits a ppH configuration with very high D5h symmetry and a 1A1' electronic state. We did not find any electronic effect like Jahn-Teller distortion that could be responsible for lowering its symmetry. Moreover, our calculations demonstrated significant differences in the relative energies of other low-lying isomers. An energetically very competitive planar tetracoordinate hydrogen (ptH) isomer is also located, but it corresponds to a very shallow minimum on the potential energy surface depending on the used level of theory. Chemical bonding analyses, including AdNDP and EDA-NOCV, uncover that the optimal Lewis structure for Li5H6- involves H- ions stabilized by the Li5H5 crown. Surprisingly, despite the dominance of electrostatic interactions, the contribution from covalent bonding is also significant between ppH and the Li5H5 moiety, derived from H-(1s) → Li5H5 σ donation. Magnetically induced current density analysis revealed that due to minimal orbital overlap and the highly polar nature of the H-Li covalent interaction, the ppH exhibits local diatropic ring currents around the H centers, which fails to result in a global aromatic ring current. The coordination of Li5H6- with Lewis acids, BH3 and BMe3, instantly converts the ppH configuration to (quasi) ptH. These Lewis acid-bound ptH complexes show high electronic stability and high thermochemical stability against dissociation and, therefore, will be ideal candidates for the experimental realization.

9.
Nano Lett ; 24(20): 5975-5983, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38726841

ABSTRACT

In the emerging two-dimensional organic-inorganic hybrid perovskites, the electronic structures and carrier behaviors are strongly impacted by intrinsic electron-phonon interactions, which have received inadequate attention. In this study, we report an intriguing phenomenon of negative carrier diffusion induced by electron-phonon coupling in (2T)2PbI4. Theoretical calculations reveal that the electron-phonon coupling drives the band alignment in (2T)2PbI4 to alternate between type I and type II heterostructures. As a consequence, photoexcited holes undergo transitions between the organic ligands and inorganic layers, resulting in abnormal carrier transport behavior compared to other two-dimensional hybrid perovskites. These findings provide valuable insights into the role of electron-phonon coupling in shaping the band alignments and carrier behaviors in two-dimensional hybrid perovskites. They also open up exciting avenues for designing and fabricating functional semiconductor heterostructures with tailored properties.

10.
J Agric Food Chem ; 72(22): 12415-12424, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38779960

ABSTRACT

A series of novel 2-Ar-1,2,3-triazole derivatives were designed and synthesized based on our previously discovered active compound 6d against Rhizoctonia solani. Most of these compounds exhibited good antifungal activity against R. solani at a concentration of 25 µg/mL. Based on the results of biological activity, we established a three-dimensional quantitative structure-activity relationship (3D-QSAR) model that guided the synthesis of compound 7y. Compound 7y exhibited superior activity against R. solani (EC50 = 0.47 µg/mL) compared to the positive controls hymexazol (EC50 = 12.80 µg/mL) and tebuconazole (EC50 = 0.87 µg/mL). Furthermore, compound 7y demonstrated better protective activity than the aforementioned two commercial fungicides in both detached leaf assays and greenhouse experiments, achieving 56.21% and 65.75% protective efficacy, respectively, at a concentration of 100 µg/mL. The ergosterol content was determined and molecular docking was performed to explore the mechanism of these active molecules. DFT calculation and MEP analysis were performed to illustrate the results of this study. These results suggest that compound 7y could serve as a novel 2-Ar-1,2,3-triazole lead compound for controlling R. solani.


Subject(s)
Drug Design , Fungicides, Industrial , Molecular Docking Simulation , Plant Diseases , Quantitative Structure-Activity Relationship , Rhizoctonia , Triazoles , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Rhizoctonia/drug effects , Rhizoctonia/growth & development , Plant Diseases/microbiology , Molecular Structure , Hydrazines/chemistry , Hydrazines/pharmacology
11.
Org Lett ; 26(21): 4443-4450, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38772011

ABSTRACT

Highly functionalized organic molecules are in high demand, but their preparation is challenging. Copper-catalyzed transformation of alkynyl- and allenyl-containing substrates has emerged as a powerful tool to achieve this objective. Herein, an efficient copper-catalyzed difunctionalization of propargylic carbonates through tandem nucleophilic substitution/boroprotonation has been developed, affording the formation of thiol-, selenium-, and boron-functionalized alkenes with high yield and stereoselectivity. Two distinct catalytic mechanisms involving a single reaction without any requirement of catalyst change were successfully demonstrated.

12.
Plants (Basel) ; 13(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38794399

ABSTRACT

Broccoli is a rich source of diverse bioactive compounds, but how their contents are influenced by different growing seasons and variations in broccoli head sizes remains elusive. To address this question, we quantified sixteen known bioactive compounds and seven minerals in broccoli with varying head sizes obtained in two different growing seasons. Our results suggest that the contents of vitamin C, total phenols, carotenoids, and glucoraphanin were significantly higher in samples from the summer-autumn season, showing increases of 157.46%, 34.74%, 51.80%, and 17.78%, respectively, compared with those from the winter-spring season. Moreover, chlorogenic acid is a phenolic compound with relatively high contents among the six detected, while beta-sitosterol is the sterol with relatively high contents. Further, principal component analysis was conducted to rank the comprehensive scores of the profiles of phenolic compounds, phytosterols, and minerals, demonstrating that the broccoli samples grown during the summer-autumn season achieved the highest composite scores. Our results indicate that broccoli heads from the summer-autumn season are richer in a combination of bioactive compounds and minerals than those from the winter-spring season based on the composite score. This study extends our understanding of the nutrition profiles in broccoli and also lays the foundation for breeding broccoli varieties with improved nutrition quality.

13.
Front Plant Sci ; 15: 1397274, 2024.
Article in English | MEDLINE | ID: mdl-38779062

ABSTRACT

A recombinant inbred line (RIL) population derived from wheat landrace Qingxinmai and breeding line 041133 exhibited segregation in resistance to powdery mildew and stripe rust in five and three field tests, respectively. A 16K genotyping by target sequencing (GBTS) single-nucleotide polymorphism (SNP) array-based genetic linkage map was used to dissect the quantitative trait loci (QTLs) for disease resistance. Four and seven QTLs were identified for adult-plant resistance (APR) against powdery mildew and stripe rust. QPm.caas-1B and QPm.caas-5A on chromosomes 1B and 5A were responsible for the APR against powdery mildew in line 041133. QYr.caas-1B, QYr.caas-3B, QYr.caas-4B, QYr.caas-6B.1, QYr.caas-6B.2, and QYr.caas-7B detected on the five B-genome chromosomes of line 041133 conferred its APR to stripe rust. QPm.caas-1B and QYr.caas.1B were co-localized with the pleiotropic locus Lr46/Yr29/Sr58/Pm39/Ltn2. A Kompetitive Allele Specific Polymorphic (KASP) marker KASP_1B_668028290 was developed to trace QPm/Yr.caas.1B. Four lines pyramiding six major disease resistance loci, PmQ, Yr041133, QPm/Yr.caas-1B, QPm.caas-2B.1, QYr.caas-3B, and QPm.caas-6B, were developed. They displayed effective resistance against both powdery mildew and stripe rust at the seedling and adult-plant stages.

14.
BMC Plant Biol ; 24(1): 454, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789943

ABSTRACT

Pleiotropy is frequently detected in agronomic traits of wheat (Triticum aestivum). A locus on chromosome 4B, QTn/Ptn/Sl/Sns/Al/Tgw/Gl/Gw.caas-4B, proved to show pleiotropic effects on tiller, spike, and grain traits using a recombinant inbred line (RIL) population of Qingxinmai × 041133. The allele from Qingxinmai increased tiller numbers, and the allele from line 041133 produced better performances of spike traits and grain traits. Another 52 QTL for the eight traits investigated were detected on 18 chromosomes, except for chromosomes 5D, 6D, and 7B. Several genes in the genomic interval of the locus on chromosome 4B were differentially expressed in crown and inflorescence samples between Qingxinmai and line 041133. The development of the KASP marker specific for the locus on chromosome 4B is useful for molecular marker-assisted selection in wheat breeding.


Subject(s)
Alleles , Chromosomes, Plant , Quantitative Trait Loci , Triticum , Triticum/genetics , Triticum/growth & development , Chromosomes, Plant/genetics , Phenotype , Genetic Pleiotropy , Plant Breeding
15.
Article in English | MEDLINE | ID: mdl-38600687

ABSTRACT

Broadband photodetectors have drawn intensive attention owing to their wide application prospects in optical communication, imaging, astronomy, and so on. Two-dimensional transition-metal dichalcogenides (TMDs) are considered as highly potential candidates for photodetection applications, benefiting from their excellent photoelectric properties. However, most of the photodetectors based on TMDs suffer from low performance in the near-infrared (NIR) region due to the weak optical absorption efficiency near their absorption band edge, which severely constrains their usage for broadband optoelectronics. Here, by taking advantage of the high absorption coefficient and environment-friendly property of Ag2S quantum dots (QDs), the hybrid of multilayer MoSe2/Ag2S QDs is demonstrated with a high-performance broadband photodetection capability (532-1270 nm). The favorable energy band alignment of MoSe2/Ag2S QDs facilitates effective separation and collection of photogenerated carriers, and the heterostructure device exhibits significant enhancement of performance compared to the bare MoSe2 device. High responsivity, detectivity, and external quantum efficiency of 25.5 A/W, 1.45 × 1011 Jones, and 1070% are obtained at a low working voltage of 1 V under 980 nm illumination. The responsivity of the device can reach up to 1.2 A/W at 1270 nm wavelength, which is competitive to the commercial NIR photodetectors. Meanwhile, broadband imaging capability is demonstrated. Our work may open up a facile and eco-friendly approach to construct high-performance broadband photodetectors for next-generation compact optoelectronic applications.

16.
Comput Biol Med ; 174: 108439, 2024 May.
Article in English | MEDLINE | ID: mdl-38643596

ABSTRACT

Cholestasis, characterized by the obstruction of bile flow, poses a significant concern in neonates and infants. It can result in jaundice, inadequate weight gain, and liver dysfunction. However, distinguishing between biliary atresia (BA) and non-biliary atresia in these young patients presenting with cholestasis poses a formidable challenge, given the similarity in their clinical manifestations. To this end, our study endeavors to construct a screening model aimed at prognosticating outcomes in cases of BA. Within this study, we introduce a wrapper feature selection model denoted as bWFMVO-SVM-FS, which amalgamates the water flow-based multi-verse optimizer (WFMVO) and support vector machine (SVM) technology. Initially, WFMVO is benchmarked against eleven state-of-the-art algorithms, with its efficiency in searching for optimized feature subsets within the model validated on IEEE CEC 2017 and IEEE CEC 2022 benchmark functions. Subsequently, the developed bWFMVO-SVM-FS model is employed to analyze a cohort of 870 consecutively registered cases of neonates and infants with cholestasis (diagnosed as either BA or non-BA) from Xinhua Hospital and Shanghai Children's Hospital, both affiliated with Shanghai Jiao Tong University. The results underscore the remarkable predictive capacity of the model, achieving an accuracy of 92.639 % and specificity of 88.865 %. Gamma-glutamyl transferase, triangular cord sign, weight, abnormal gallbladder, and stool color emerge as highly correlated with early symptoms in BA infants. Furthermore, leveraging these five significant features enhances the interpretability of the machine learning model's performance outcomes for medical professionals, thereby facilitating more effective clinical decision-making.


Subject(s)
Biliary Atresia , Cholestasis , Support Vector Machine , Humans , Biliary Atresia/diagnosis , Infant , Infant, Newborn , Male , Female , Machine Learning , Early Diagnosis
17.
Materials (Basel) ; 17(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38473499

ABSTRACT

Cement-stabilized macadam materials are widely utilized as semi-rigid base materials in road construction. However, conventional cement-stabilized macadam (CCSM) bases often develop shrinkage cracks during early construction and maintenance due to variations in humidity and temperature. Shrinkage cracks can subsequently result in reflective cracks in the asphalt pavement, significantly reducing the overall service life of the road. This study systematically evaluates the shrinkage and mechanical properties of large-size cement-stabilized macadam (LSCSM). Initially, the mix proportion for LSCSM is determined using the Bailey method. Subsequently, an experimental design based on the response surface method is implemented to comprehensively investigate various properties, including unconfined compressive strength, compressive rebound modulus, flexural strength, and the durability aspects of early drying shrinkage and temperature shrinkage through laboratory experiments. Further, the performance differences between CCSM and LSCSM are analyzed comparatively. The findings reveal that the compressive strength of LSCSM surpasses that of CCSM, albeit with comparatively lower compressive rebound modulus and flexural strength. LSCSM demonstrates a unique blend of characteristics, exhibiting traits of both semi-rigid and flexible materials. Furthermore, LSCSM exhibits favorable crack resistance properties, as evidenced by lower dry shrinkage strain, average dry and temperature shrinkage coefficient compared to CCSM. The proposed LSCSM in this study effectively reduces cement dosage and enhances the crack resistance performance of base materials.

18.
Front Neurosci ; 18: 1341986, 2024.
Article in English | MEDLINE | ID: mdl-38533445

ABSTRACT

Introduction: In studies on consciousness detection for patients with disorders of consciousness, difference comparison of EEG responses based on active and passive task modes is difficult to sensitively detect patients' consciousness, while a single potential analysis of EEG responses cannot comprehensively and accurately determine patients' consciousness status. Therefore, in this paper, we designed a new consciousness detection paradigm based on a multi-stage cognitive task that could induce a series of event-related potentials and ERD/ERS phenomena reflecting different consciousness contents. A simple and direct task of paying attention to breathing was designed, and a comprehensive evaluation of consciousness level was conducted using multi-feature joint analysis. Methods: We recorded the EEG responses of 20 healthy subjects in three modes and reported the consciousness-related mean event-related potential amplitude, ERD/ERS phenomena, and the classification accuracy, sensitivity, and specificity of the EEG responses under different conditions. Results: The results showed that the EEG responses of the subjects under different conditions were significantly different in the time domain and time-frequency domain. Compared with the passive mode, the amplitudes of the event-related potentials in the breathing mode were further reduced, and the theta-ERS and alpha-ERD phenomena in the frontal region were further weakened. The breathing mode showed greater distinguishability from the active mode in machine learning-based classification. Discussion: By analyzing multiple features of EEG responses in different modes and stimuli, it is expected to achieve more sensitive and accurate consciousness detection. This study can provide a new idea for the design of consciousness detection methods.

19.
Org Lett ; 26(13): 2529-2534, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38513218

ABSTRACT

A selective oxidative [4+2] annulation of alkenes with imidazo-fused heterocycles has been developed by using the synergistic combination of photoredox and cobaloxime catalysts. It allows facile access to various imidazole-fused polyaromatic scaffolds accompanied by H2 evolution. This protocol features high regioselectivity as well as a broad substrate scope. Detailed mechanistic studies indicate that twice the electron/H transfer processes facilitated by this catalytic system achieve the annulation π-extension of imidazo-fused heterocycles with alkenes.

20.
Curr Radiopharm ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532606

ABSTRACT

BACKGROUND: Head and Neck Squamous Cell Carcinoma (HNSCC) is a malignant tumor with a high degree of malignancy, invasiveness, and metastasis rate. Radiotherapy, as an important adjuvant therapy for HNSCC, can reduce the postoperative recurrence rate and improve the survival rate. Identifying the genes related to HNSCC radiotherapy resistance (HNSCC-RR) is helpful in the search for potential therapeutic targets. However, identifying radiotherapy resistance-related genes from tens of thousands of genes is a challenging task. While interactions between genes are important for elucidating complex biological processes, the large number of genes makes the computation of gene interactions infeasible. METHODS: We propose a gene selection algorithm, RGIE, which is based on ReliefF, Gene Network Inference with Ensemble of Trees (GENIE3) and Feature Elimination. ReliefF was used to select a feature subset that is discriminative for HNSCC-RR, GENIE3 constructed a gene regulatory network based on this subset to analyze the regulatory relationship among genes, and feature elimination was used to remove redundant and noisy features. RESULTS: Nine genes (SPAG1, FIGN, NUBPL, CHMP5, TCF7L2, COQ10B, BSDC1, ZFPM1, GRPEL1) were identified and used to identify HNSCC-RR, which achieved performances of 0.9730, 0.9679, 0.9767, and 0.9885 in terms of accuracy, precision, recall, and AUC, respectively. Finally, qRT-PCR validated the differential expression of the nine signature genes in cell lines (SCC9, SCC9-RR). CONCLUSION: RGIE is effective in screening genes related to HNSCC-RR. This approach may help guide clinical treatment modalities for patients and develop potential treatments.

SELECTION OF CITATIONS
SEARCH DETAIL
...