Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 935
Filter
1.
Front Cell Infect Microbiol ; 14: 1407051, 2024.
Article in English | MEDLINE | ID: mdl-38947127

ABSTRACT

The Cecum is a key site for cellulose digestion in nutrient metabolism of intestine, but its mechanisms of microbial and gene interactions has not been fully elucidated during pathogenesis of obesity. Therefore, the cecum tissues of the New Zealand rabbits and their contents between the high-fat diet-induced group (Ob) and control group (Co) were collected and analyzed using multi-omics. The metagenomic analysis indicated that the relative abundances of Corallococcus_sp._CAG:1435 and Flavobacteriales bacterium species were significantly lower, while those of Akkermansia glycaniphila, Clostridium_sp._CAG:793, Mycoplasma_sp._CAG:776, Mycoplasma_sp._CAG:472, Clostridium_sp._CAG:609, Akkermansia_sp._KLE1605, Clostridium_sp._CAG:508, and Firmicutes_bacterium_CAG:460 species were significantly higher in the Ob as compared to those in Co. Transcriptomic sequencing results showed that the differentially upregulated genes were mainly enriched in pathways, including calcium signaling pathway, PI3K-Akt signaling pathway, and Wnt signaling pathway, while the differentially downregulated genes were mainly enriched in pathways of NF-kappaB signaling pathway and T cell receptor signaling pathway. The comparative analysis of metabolites showed that the glycine, serine, and threonine metabolism and cysteine and methionine metabolism were the important metabolic pathways between the two groups. The combined analysis showed that CAMK1, IGFBP6, and IGFBP4 genes were highly correlated with Clostridium_sp._CAG:793, and Akkermansia_glycaniphila species. Thus, the preliminary study elucidated the microbial and gene interactions in cecum of obese rabbit and provided a basis for further studies in intestinal intervention for human obesity.


Subject(s)
Cecum , Diet, High-Fat , Gastrointestinal Microbiome , Obesity , Animals , Rabbits , Diet, High-Fat/adverse effects , Cecum/microbiology , Cecum/metabolism , Obesity/metabolism , Obesity/microbiology , Host Microbial Interactions , Metagenomics , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Gene Regulatory Networks , Male , Gene Expression Profiling
2.
Sci Rep ; 14(1): 15696, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977909

ABSTRACT

As the largest organ in the human body, skeletal muscle is essential for breathing support, movement initiation, and maintenance homeostasis. It has been shown that programmed cell death (PCD), which includes autophagy, apoptosis, and necrosis, is essential for the development of skeletal muscle. A novel form of PCD called ferroptosis is still poorly understood in relation to skeletal muscle. In this study, we observed that the activation of ferroptosis significantly impeded the differentiation of C2C12 myoblasts into myotubes and concurrently suppressed the expression of OTUB1, a crucial deubiquitinating enzyme. OTUB1-silenced C2C12 mouse myoblasts were used to investigate the function of OTUB1 in ferroptosis. The results show that OTUB1 knockdown in vitro significantly increased C2C12 ferroptosis and inhibited myogenesis. Interestingly, the induction of ferroptosis resulting from OTUB1 knockdown was concomitant with the activation of autophagy. Furthermore, OTUB1 interacted with the P62 protein and stabilized its expression by deubiquitinating it, thereby inhibiting autophagy-dependent ferroptosis and promoting myogenesis. All of these findings demonstrate the critical role that OTUB1 plays in controlling ferroptosis, and we suggest that focusing on the OTUB1-P62 axis may be a useful tactic in the treatment and prevention of disorders involving the skeletal muscle.


Subject(s)
Autophagy , Cell Differentiation , Cysteine Endopeptidases , Ferroptosis , Muscle Development , Muscle Fibers, Skeletal , Myoblasts , Animals , Mice , Muscle Fibers, Skeletal/metabolism , Ferroptosis/genetics , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Myoblasts/metabolism , Myoblasts/cytology , Cell Line , Deubiquitinating Enzymes/metabolism , Deubiquitinating Enzymes/genetics , Ubiquitination , Humans , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics
3.
Int Immunopharmacol ; 138: 112598, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981223

ABSTRACT

Euphorbia L. is a traditionally used herb and contains many newly identified compounds with novel chemical structures. Euphorbia factor L2 (EFL2), a diterpenoid derived from Euphorbia seeds, is reported to alleviate acute lung injury and arthritis by exerting anti-inflammatory effects. In this study, we aimed to test the therapeutic benefit and mechanisms of EFL2 in NLRP3 inflammasome-mediated gouty models and identified the potential molecular mechanism. A cell-based system was used to test the specific inhibitory effect of EFL2 on NLRP3-related inflammation. The gouty arthritis model and an air pouch inflammation model induced by monosodium urate monohydrate (MSU) crystals were used for in vivo experiments. Nlrp3-/- mice and in vitro studies were used for mechanistic exploration. Virtual molecular docking and biophysical assays were performed to identify the direct binding and regulatory target of EFL2. The inhibitory effect of EFL2 on inflammatory cell infiltration was determined by flow cytometry in vivo. The mechanism by which EFL2 activates the NLRP3 inflammasome signaling pathway was evaluated by immunological experiment and transmission electron microscopy. In vitro, EFL2 specifically reduced NLRP3 inflammasome-mediated IL-1ß production and alleviated MSU crystal-induced arthritis, as well as inflammatory cell infiltration. EFL2 downregulated NF-κB phosphorylation and NLRP3 inflammasome expression by binding to glucocorticoid receptors. Moreover, EFL2 could specifically suppress the lysosome damage-mediated NLRP3 inflammasome activation process. It is expected that this work may be useful to accelerate the development of anti-inflammatory drugs originated from traditional herbs and improve therapeutics in gout and its complications.

4.
J Chromatogr A ; 1730: 465140, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38986401

ABSTRACT

In this work, a novel polyaniline-modified magnetic microporous organic network (MMON-PANI) composite was fabricated for effective magnetic solid phase extraction (MSPE) of five typical nonsteroidal anti-inflammatory drugs (NSAIDs) from animal-derived food samples before high performance liquid chromatography (HPLC) detection. The core-shell sea urchin shaped MMON-PANI integrates the merits of Fe3O4, MON, and PANI, exhibiting large specific surface area, rapid magnetic responsiveness, good stability, and multiple binding sites to NSAIDs. Convenient and effective extraction of trace NSAIDs from chicken, beef and pork samples is realized on MMON-PANI via the synergetic π-π, hydrogen bonding, hydrophobic, and electrostatic interactions. Under optimal conditions, the MMON-PANI-MSPE-HPLC-UV method exhibits wide linear ranges (0.2-1000 µg L-1), low limits of detection (0.07-1.7 µg L-1), good precisions (intraday and inter-day RSDs < 5.4 %, n = 3), large enrichment factors (98.6-99.9), and less adsorbent consumption (3 mg). The extraction mechanism and selectivity of MMON-PANI are also evaluated in detail. This work proves the incorporation of PANI onto MMON is an efficient way to promote NSAIDs enrichment and provides a new strategy to synthesize multifunctional MON-based composites in sample pretreatment.

5.
J Colloid Interface Sci ; 672: 610-617, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38861848

ABSTRACT

The development of a highly efficient, stable, and low-cost bifunctional catalyst is imperative for facilitating the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). However, significant challenges are involved in extending its applications to rechargeable zinc-air batteries. This study presents a bifunctional catalyst, Zr2ON2@NiFe layered double hydroxide (LDH), that was developed by utilizing a urea-glass route for synthesizing the Zr2ON2 precursor, followed by riveting NiFe LDH nanosheets using a hydrothermal method. Specifically, the vertical distribution of NiFe LDH on the Zr2ON2 surface ensures the maximization of the number of accessible active sites and interfacial catalysis of NiFe LDH. Notably, Zr2ON2@NiFe LDH demonstrates ORR and OER bifunctional electrocatalytic behavior and high stability owing to its heterostructure and composition. Furthermore, a rechargeable zinc-air battery using a Zr2ON2@NiFe LDH electrocatalyst as the air cathode demonstrated a high peak power density (172 mW cm-2) and galvanostatic charge-discharge cycle stability (5 mA cm-2 over 443 h). Thus, this study presents an efficient and cost-effective strategy for the design of bifunctional electrocatalysts.

6.
Int J Biol Macromol ; 274(Pt 2): 133270, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906357

ABSTRACT

Aeromonas veronii, an opportunistic pathogen, is known to cause serious infections across various species. In our previous study, we discovered that A. veronii GL2 exhibited a virulence up to ten times greater than that of FO1. To ascertain the factors contributing to the disparity in virulence between the two strains, we conducted a comparative transcriptome analysis. This analysis reveals a significant upregulation (P < 0.05) of the ascR gene in GL2 compared with FO1. Additionally, six differentially expressed genes (DEGs) were identified within the "Bacterial secretion system" pathway (map03070), with ascR being an essential component of type III secretion system (T3SS). AscR, considered as SctR family export apparatus subunit within the T3SS, has ambiguous roles in the biological properties, gene expression profiles, virulence and colonization of A. veronii. Therefore, we constructed a mutant strain (ΔascR) by homologous recombination. Comparative analysis with the wide-type GL2 reveals no significant differences in terms of colony morphology, growth curve, hemolytic activity and protease activity. However, significant reductions (P < 0.01) were observed in the abilities of biofilm formation and swimming mobility. No remarkable difference was noted in the lengths of flagella. The LD50 value of ΔascR was to be 5.15 times higher than that of GL2. Interestingly, the mRNA expression of ascC, ascD, ascJ and ascI genes in the T3SS, and mshB, mshE, mshK and mshP genes in the MSHA type pili were significantly upregulated (P < 0.05) in ΔascR, potentially due to transcriptional compensation. Further analysis of enzymatic biomarkers revealed that ΔascR might not destruct the recognition of innate immune response in host remarkably, but the colonization levels of A.veronii were significantly suppressed (P < 0.01) in ΔascR group. In conclusion, the ascR gene may be a key determinant in regulating the virulence of A. veronii, and the destruction of the T3SS caused by ascR deficiency results in these notable changes.

7.
Front Endocrinol (Lausanne) ; 15: 1398367, 2024.
Article in English | MEDLINE | ID: mdl-38938515

ABSTRACT

Study Design: Retrospective radiological analysis. Objective: The aim of this study is to evaluate the distribution of bone mineral density (BMD) in lumbar vertebrae using the Hounsfield unit (HU) measurement method and investigate the clinical implications of HU values for assessing lumbar vertebrae BMD. Method: Two hundred and ninety-six patients were retrospectively reviewed and divided into six groups according to age: Group 1(20-29 years old), Group 2 (30-39 years old), Group 3 (40-49 years old), Group 4 (50-59 years old), Group 5 (60-69 years old), Group 6 (70-79 years old). Six different locations from each vertebra of L1-L5 were selected as regions of interest: the anterior, middle and posterior parts of the upper and lower slices of the vertebrae. HU values were measured for the six regions of interest, followed by statistical analysis. Results: The HU values of vertebrae showed a decreasing trend from young patients to elderly patients in Group 1 to Group 5. There was no significant difference in HU values among different vertebrae in the same age group. In all age groups, the HU values of the anterior and posterior part of the vertebral body were significantly different from L1 to L3, with the anterior part of the vertebral body having lower HU values than the posterior part. The HU values of the anterior and posterior part of the vertebral body of L4 and L5 were statistically significant only in Group 5 and Group 6, and the HU values of the anterior part of the vertebral body were lower than those of the posterior part. The HU values of posterior part of L4 and L5 in Group6 were higher than those in Group5. Conclusion: Bone mineral density in the lumbar vertebrae is not uniformly distributed, potentially attributed to varying stress stimuli. The assessment of local HU values in the lumbar spine is of significant importance for surgical treatment.


Subject(s)
Bone Density , Lumbar Vertebrae , Humans , Lumbar Vertebrae/diagnostic imaging , Bone Density/physiology , Middle Aged , Female , Male , Retrospective Studies , Adult , Aged , Young Adult , Tomography, X-Ray Computed , Osteoporosis/diagnostic imaging , Absorptiometry, Photon
8.
Biomimetics (Basel) ; 9(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38921221

ABSTRACT

This paper presents an enhanced crayfish optimization algorithm (ECOA). The ECOA includes four improvement strategies. Firstly, the Halton sequence was used to improve the population initialization of the crayfish optimization algorithm. Furthermore, the quasi opposition-based learning strategy is introduced to generate the opposite solution of the population, increasing the algorithm's searching ability. Thirdly, the elite factor guides the predation stage to avoid blindness in this stage. Finally, the fish aggregation device effect is introduced to increase the ability of the algorithm to jump out of the local optimal. This paper performed tests on the widely used IEEE CEC2019 test function set to verify the validity of the proposed ECOA method. The experimental results show that the proposed ECOA has a faster convergence speed, greater performance stability, and a stronger ability to jump out of local optimal compared with other popular algorithms. Finally, the ECOA was applied to two real-world engineering optimization problems, verifying its ability to solve practical optimization problems and its superiority compared to other algorithms.

9.
Toxics ; 12(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38922082

ABSTRACT

In this study, the degradation system of Shewanella oneidensis MR-1 and goethite was constructed with chlorpyrifos as the target contaminant. The effects of initial pH, contaminant concentration, and temperature on the removal rate of chlorpyrifos during the degradation process were investigated. The experimental conditions were optimized by response surface methodology with a Box-Behnken design (BBD). The results show that the removal rate of chlorpyrifos is 75.71% at pH = 6.86, an initial concentration of 19.18 mg·L-1, and a temperature of 30.71 °C. LC-MS/MS analyses showed that the degradation products were C4H11O3PS, C7H7Cl3NO4P, C9H11Cl2NO3PS, C7H7Cl3NO3PS, C9H11Cl3NO4P, C4H11O2PS, and C5H2Cl3NO. Presumably, the degradation pathways involved are: enzymatic degradation, hydrolysis, dealkylation, desulfur hydrolysis, and dechlorination. The findings of this study demonstrate the efficacy of the goethite/S. oneidensis MR-1 complex system in the removal of chlorpyrifos from water. Consequently, this research contributes to the establishment of a theoretical framework for the microbial remediation of organophosphorus pesticides in aqueous environments.

10.
Animal Model Exp Med ; 7(3): 347-361, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38895818

ABSTRACT

BACKGROUND: Apolipoprotein E4 (ApoE4) allele is the strongest genetic risk factor for late-onset Alzheimer's disease, and it can aggravate depressive symptoms in non-AD patients. However, the impact of ApoE4 on AD-associated depression-like behaviors and its underlying pathogenic mechanisms remain unclear. METHODS: This study developed a 5xFAD mouse model overexpressing human ApoE4 (E4FAD). Behavioral assessments and synaptic function tests were conducted to explore the effects of ApoE4 on cognition and depression in 5xFAD mice. Changes in peripheral and central lipid metabolism, as well as the levels of serotonin (5-HT) and γ-aminobutyric acid (GABA) neurotransmitters in the prefrontal cortex, were examined. In addition, the protein levels of 24-dehydrocholesterol reductase/glycogen synthase kinase-3 beta/mammalian target of rapamycin (DHCR24/GSK3ß/mTOR) and postsynaptic density protein 95/calmodulin-dependent protein kinase II/brain-derived neurotrophic factor (PSD95/CaMK-II/BDNF) were measured to investigate the molecular mechanism underlying the effects of ApoE4 on AD mice. RESULTS: Compared with 5xFAD mice, E4FAD mice exhibited more severe depression-like behaviors and cognitive impairments. These mice also exhibited increased amyloid-beta deposition in the hippocampus, increased astrocyte numbers, and decreased expression of depression-related neurotransmitters 5-HT and GABA in the prefrontal cortex. Furthermore, lipid metabolism disorders were observed in E4FAD, manifesting as elevated low-density lipoprotein cholesterol and reduced high-density lipoprotein cholesterol in peripheral blood, decreased cholesterol level in the prefrontal cortex, and reduced expression of key enzymes and proteins related to cholesterol synthesis and homeostasis. Abnormal expression of proteins related to the DHCR24/GSK3ß/mTOR and PSD95/CaMK-II/BDNF pathways was also observed. CONCLUSION: This study found that ApoE4 overexpression exacerbates depression-like behaviors in 5xFAD mice and confirmed that ApoE4 reduces cognitive function in these mice. The mechanism may involve the induction of central and peripheral lipid metabolism disorders. Therefore, modulating ApoE expression or function to restore cellular lipid homeostasis may be a promising therapeutic target for AD comorbid with depression. This study also provided a better animal model for studying AD comorbid with depression.


Subject(s)
Apolipoprotein E4 , Depression , Disease Models, Animal , Lipid Metabolism , Mice, Transgenic , Animals , Depression/metabolism , Apolipoprotein E4/genetics , Mice , Alzheimer Disease/metabolism , Male , Humans , Prefrontal Cortex/metabolism , Behavior, Animal
11.
Sci Rep ; 14(1): 14185, 2024 06 20.
Article in English | MEDLINE | ID: mdl-38902391

ABSTRACT

Helicobacter pylori (H. pylori), together with its CagA, has been implicated in causing DNA damage, cell cycle arrest, apoptosis, and the development of gastric cancer. Although lncRNA H19 is abundantly expressed in gastric cancer and functions as a pro-oncogene, it remains unclear whether lncRNA H19 contributes to the oncogenic process of H. pylori CagA. This study investigates the role of H19 in the DNA damage response and malignancy induced by H. pylori. It was observed that cells infected with CagA+ H. pylori strain (GZ7/cagA) showed significantly higher H19 expression, resulting in increased γH2A.X and p-ATM expression and decreased p53 and Rad51 expression. Faster cell migration and invasion was also observed, which was reversed by H19 knockdown in H. pylori. YWHAZ was identified as an H19 target protein, and its expression was increased in H19 knockdown cells. GZ7/cagA infection responded to the increased YWHAZ expression induced by H19 knockdown. In addition, H19 knockdown stimulated cells to enter the G2-phase and attenuated the effect of GZ7/cagA infection on the cellular S-phase barrier. The results suggest that H. pylori CagA can upregulate H19 expression, participate in the DNA damage response and promote cell migration and invasion, and possibly affect cell cycle arrest via regulation of YWHAZ.


Subject(s)
Antigens, Bacterial , Bacterial Proteins , Cell Movement , DNA Damage , Helicobacter pylori , RNA, Long Noncoding , Stomach Neoplasms , Humans , Antigens, Bacterial/metabolism , Antigens, Bacterial/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Helicobacter pylori/genetics , Stomach Neoplasms/microbiology , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Cell Movement/genetics , Cell Line, Tumor , Helicobacter Infections/microbiology , Helicobacter Infections/genetics , Helicobacter Infections/metabolism , Rad51 Recombinase/metabolism , Rad51 Recombinase/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Histones/metabolism
12.
Article in English | MEDLINE | ID: mdl-38862424

ABSTRACT

The order Acipenseriformes, which includes sturgeons and paddlefishes, represents "living fossils" with complex genomes that are good models for understanding whole-genome duplication (WGD) and ploidy evolution in fishes. Here, we sequenced and assembled the first high-quality chromosome-level genome for the complex octoploid Acipenser sinensis (Chinese sturgeon), a critically endangered species that also represents a poorly understood ploidy group in Acipenseriformes. Our results show that A. sinensis is a complex autooctoploid species containing four kinds of octovalents (8n), a hexavalent (6n), two tetravalents (4n), and a divalent (2n). An analysis taking into account delayed rediploidization reveals that the octoploid genome composition of Chinese sturgeon results from two rounds of homologous WGDs, and further provides insights into the timing of its ploidy evolution. This study provides the first octoploid genome resource of Acipenseriformes for understanding ploidy compositions and evolutionary trajectories of polyploid fishes.


Subject(s)
Evolution, Molecular , Fishes , Genome , Polyploidy , Whole Genome Sequencing , Animals , Fishes/genetics , Whole Genome Sequencing/methods , Genome/genetics , Phylogeny
13.
Front Pediatr ; 12: 1400319, 2024.
Article in English | MEDLINE | ID: mdl-38895190

ABSTRACT

This study represents the first documentation of the coexistence of complete androgen insensitivity syndrome (CAIS) with Müllerian duct remnants (MDRs) in mainland China. Additionally, we provide a comprehensive review of the existing literature concerning CAIS with MDRs resulting from androgen receptor (AR) gene mutations. This study broadens the clinical spectrum of CAIS and offer novel insights for further exploration into Müllerian duct regression. A 14-year-old patient, initially raised as female, presented to the clinic with complaints of "primary amenorrhea." Physical examination revealed the following: armpit hair (Tanner stage 2), breast development (Tanner stage 4 with bilateral breast nodule diameter of 7 cm), sparse pubic hair (Tanner stage 3), clitoris measuring 0.8 cm × 0.4 cm, separate urethral and vaginal openings, and absence of palpable masses in the bilateral groin or labia majora. The external genital virilization score was 0 points. Serum follicle-stimulating hormone level was 13.43 IU/L, serum luteinizing hormone level was 31.24 IU/L, and serum testosterone level was 14.95 nmol/L. Pelvic magnetic resonance imaging (MRI) did not reveal a uterus or bilateral fallopian tubes, but nodules on both sides of the pelvic wall indicated cryptorchidism. The karyotype was 46,XY. Genetic testing identified a maternal-derived hemizygous variation c.2359C > T (p.Arg787*) in the AR gene. During abdominal exploration, dysplastic testicles and a dysplastic uterus were discovered. Histopathological analysis revealed the presence of fallopian tube-like structures adjacent to the testicles. The CAIS patient documented in this study exhibited concurrent MDRs, thus expanding the spectrum of clinical manifestations of AIS. A review of prior literature suggests that the incidence of CAIS combined with histologically MDRs is not uncommon. Consequently, the identification of MDRs in AIS cases may represent an integral aspect of clinical diagnosis for this condition.

14.
Fish Shellfish Immunol ; 151: 109701, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38878911

ABSTRACT

In the field of aquaculture, the enhancement of animal health and disease prevention is progressively being tackled using alternatives to antibiotics, including vaccines and probiotics. This study was designed to evaluate the potential of a recombinant Bacillus methylotrophicus, engineered to express the outer membrane channel protein TolC of Aeromonas hydrophila AH3 and the green fluorescent protein GFP, as an oral vaccine. Initially, the genes encoding tolC and GFP were cloned into a prokaryotic expression system, and anti-TolC mouse antiserum was generated. Subsequently, the tolC gene was subcloned into a modified pMDGFP plasmid, which was transformed into B. methylotrophicus WM-1 for protein expression. The recombinant B. methylotrophicus BmT was then administered to grass carp via co-feeding, and its efficacy as an oral vaccine was assessed. Our findings demonstrated successful expression of the 55 kDa TolC and 28 kDa GFP proteins, and the preparation of polyclonal antibodies with high specificity. The BmT exhibited stable expression of the GFP-TolC fusion protein and excellent genetic stability. Following oral immunization, significant elevations were observed in serum-specific IgM levels and the activities of acid phosphatase (ACP), alkaline phosphatase (AKP), superoxide dismutase (SOD), and lysozyme (LZM) in grass carp. Concurrently, significant upregulation of immune-related genes, including IFN-I, IL-10, IL-1ß, TNF-α, and IgT, was noted in the intestines, head kidney, and spleen of the grass carp. Colonization tests further revealed that the BmT persisted in the gut of immunized fish even after a fasting period of 7 days. Notably, oral administration of BmT enhanced the survival rate of grass carp following A. hydrophila infection. These results suggest that the oral BmT vaccine developed in this study holds promise for future applications in aquaculture.

15.
Discov Oncol ; 15(1): 217, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856766

ABSTRACT

BACKGROUND: Tyrosine kinase inhibitor (TKI) resistance is a significant factor exacerbating the burden on chronic myeloid leukemia (CML) patients and impacting clinical efficacy. The main goal is to offer new insights into overcoming drug resistance in treating CML. METHODS: Imatinib (IM) resistant K562/IM cells were generated using gradient induction. Responses to IM, lycorine, and autophagy modulators were assessed using CCK-8. Protein expression of Beclin-1, Atg5, LC3, Caspase-3, P62, Bax, Bcl-2, and P-gp was detected using Western blot. Lycorine-induced apoptosis and cell cycle changes were evaluated through flow cytometry, while autophagy alterations were detected using monodansylcadaverine (MDC) staining. In the K562/IM mice model, non-obese diabetic severe combined immunodeficent (NOD-SCID) mice were subcutaneously inoculated with K562/IM cells. After 17 days of lycorine injection, assessments included tumor size, hematoxylin-eosin (HE) staining, and Ki67 expression. RESULTS: After 72 h of IM treatment, K562/IM cells showed a 55.86-fold increase in drug resistance compared to K562 cells. Lycorine treatment for 24 h inhibited cell proliferation and induced G0/G1 phase cell cycle arrest and apoptosis in both K562 and K562/IM cells. MDC staining indicated reduced autophagy in K562/IM cells, mitigated by lycorine. In vivo experiments demonstrated reduced tumor size and Ki67 proliferation index in the lycorine treatment group (K562+L, K562/IM+L) compared to the control group, particularly in the drug-resistant group. However, no significant change in Ki67 was observed in the K562 group after lycorine treatment. CONCLUSION: In summary, K562/IM cells displayed heightened autophagy levels compared to K562 cells. Lycorine effectively impeded the proliferation of K562/IM cells through diverse mechanisms, including reduced autophagy, enhanced apoptosis, and induced cell cycle arrest.

16.
Eur J Pharm Biopharm ; : 114367, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876360

ABSTRACT

Despite the great potential of starving therapy caused by nanoreactor based on glucose oxidase (GOX) in tumor therapy, efficiency and uncontrolled reaction rates in vivo lead to inevitable toxicity to normal tissues, which seriously hindering their clinical conversion. Herein, a cascade nanoreactor (GOX/Mn/MPDA) was constructed by coating mesoporous polydopamine nanoparticles (MPDA) with MnO2 shell and then depositing GOX into honeycomb-shaped manganese oxide nanostructures to achieve a combination of ferroptosis, photothermal therapy and starving therapy. Upon uptake of nanodrugs to cancer cells, the MnO2 shell would deplete glutathione (GSH) and produce Mn2+, while a large amount of H2O2 generated from the catalytic oxidation of glucose by GOX would accelerate the Fenton-like reaction mediated by Mn2+, producing high toxic •OH. More importantly, the cascade reaction between GOX and MnO2 would be further strengthened by localized hyperthermia caused by irradiated by near-infrared laser (NIR), inducing significant anti-tumor effects in vitro and in vivo. Regarding the effectiveness of tumor treatment in vivo, the tumor inhibition rate achieved an impressive 64.33%. This study provided a new strategy for anti-tumor therapeutic by designing a photothermal-enhanced cascade catalytic nanoreactor.

17.
Discov Med ; 36(185): 1289-1297, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38926115

ABSTRACT

BACKGROUND: Genetic mutations play a crucial role in the development and progression of myelodysplastic syndromes (MDS), impacting the immune microenvironment and influencing the choice of treatment regimen, as well as the efficacy and prognosis of patients. The objective of this study was to examine variations in hematological and immunological characteristics associated with common gene mutations in MDS patients and establish a foundation for the precise treatment of MDS. METHODS: The hematological, immunological, and other clinical features of 71 recently diagnosed MDS patients from January 1, 2019, to July 31, 2023, were retrospectively analyzed. These patients were categorized based on their gene mutations, and the variances in hematological and immunological characteristics among distinct groups were compared. RESULTS: Hematological variances were observed among different gene mutation groups. Specifically, platelet counts in the splicing factor 3B subunit 1 (SF3B1) mutation group were notably higher compared to the wild-type group (p = 0.009). Conversely, in the additional sex combs like 1 (ASXL1) mutation groups, monocyte ratios were significantly elevated in comparison to the wild-type group (p = 0.046), and in the ten-eleven translocation 2 (TET2) mutation group, lymphocyte ratios were significantly lower (p = 0.022). Additionally, the leukocyte (p = 0.005), neutrophil ratio (p = 0.002), and lymphocyte ratio (p = 0.001) were significantly higher in the Runt-related transcription factor 1 (RUNX1) mutation group. Regarding immunological distinctions, the Natural Killer (NK) cell ratio demonstrated a significant increase in the SF3B1 mutation group (p = 0.005). Moreover, the TET2 mutation group exhibited a significantly higher Interleukin-8 (IL-8) level (p = 0.017). In contrast, the U2 small nuclear RNA auxiliary factor 1 (U2AF1) group displayed significantly lower levels of IL-1ß (p = 0.033), IL-10 (p = 0.033), and Tumour Necrosis Factor-α (TNF-α) (p = 0.009). CONCLUSION: Distinct variations exist in the immune microenvironment of MDS associated with different genetic mutations. Further studies are imperative to delve into the underlying mechanisms that drive these differences.


Subject(s)
Dioxygenases , Mutation , Myelodysplastic Syndromes , RNA Splicing Factors , Humans , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/immunology , Myelodysplastic Syndromes/blood , Female , Male , Middle Aged , Aged , RNA Splicing Factors/genetics , Retrospective Studies , Adult , Aged, 80 and over , DNA-Binding Proteins/genetics , Phosphoproteins/genetics , Phosphoproteins/immunology , Killer Cells, Natural/immunology , Core Binding Factor Alpha 2 Subunit/genetics , Platelet Count , Repressor Proteins
18.
Clin Lab ; 70(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38747923

ABSTRACT

BACKGROUND: Familial hemophagocytic lymphohistiocytosis (FHL) onset in the fetal and neonatal periods is sporadic, and infants are susceptible to intrauterine death. Early and accurate diagnosis and treatment are the keys to preventing complications and death in FHL patients due to the complex and diverse clinical manifestations of the disease. METHODS: We report a rare case of a preterm infant with a low birth weight of 2,010 g and a gestational age of 32 + 4 weeks who presented with a leaky syndrome similar to sepsis after birth. Anti-infective, other support, and symptomatic treatments were not effective. Bone marrow examination results on day 13 suggested hemophago-cytosis. RESULTS: Various compound heterozygous UNC13D genes were found by exome sequencing, which confirmed the diagnosis of FHL type 3. Genetic variants of this locus have never been reported in the literature. CONCLUSIONS: Neonatal onset FHL is challenging to diagnose, especially in premature infants. It is necessary to complete exome sequencing if the patient has no apparent pathogen infection or effective treatment.


Subject(s)
Infant, Low Birth Weight , Infant, Premature , Lymphohistiocytosis, Hemophagocytic , Humans , Lymphohistiocytosis, Hemophagocytic/genetics , Lymphohistiocytosis, Hemophagocytic/diagnosis , Infant, Newborn , Exome Sequencing , Membrane Proteins/genetics , Male , Female , Gestational Age
19.
Front Genet ; 15: 1391842, 2024.
Article in English | MEDLINE | ID: mdl-38784033

ABSTRACT

Introduction: In recent years, there has been a strong association between transient receptor potential (TRP) channels and the development of various malignancies, drug resistance, and resistance to radiotherapy. Consequently, we have investigated the relationship between transient receptor potential channels and cervical cancer from multiple angles. Methods: Patients' mRNA expression profiles and gene variants were obtained from the TCGA database. Key genes in transient receptor potential channel prognosis-related genes (TRGs) were screened using the least absolute shrinkage and selection operator (LASSO) regression method, and a risk signature was constructed based on the expression of key genes. Various analyses were performed to evaluate the prognostic significance, biological functions, immune infiltration, and response to immunotherapy based on the risk signature. Results: Our research reveals substantial differences between high and low-risk groups in prognosis, tumor microenvironment, tumor mutational load, immune infiltration, and response to immunotherapy. Patients in the high-risk group exhibited poorer prognosis, lower tumor microenvironment scores and reduced response to immunotherapy while showing increased sensitivity to specific targeted drugs. In vitro experiments further illustrated that inhibiting transient receptor potential channels effectively decreased the proliferation, invasion, and migration of cervical cancer cells. Discussion: This study highlights the significant potential of transient receptor potential channels in cervical cancer, emphasizing their crucial role in prognostic prediction and personalized treatment strategies. The combination of TRP inhibitors with immunotherapy and targeted drugs may offer promise for individuals affected by cervical cancer.

20.
Front Microbiol ; 15: 1387957, 2024.
Article in English | MEDLINE | ID: mdl-38784815

ABSTRACT

The host genes play a crucial role in shaping the composition and structure of the gut microbiome. Red deer is listed as an endangered species by the International Union for the Conservation of Nature, and its pilose antlers have good medicinal value. Hybridization can lead to heterosis, resulting in increased pilose antler production and growth performance in hybrid deer. However, the role of the gut microbiome in hybrid deer remains largely unknown. In this study, alpha and beta diversity analysis showed that hybridization altered the composition and structure of the gut microbiome of the offspring, with the composition and structure of the hybrid offspring being more similar to those of the paternal parents. Interestingly, the LefSe differential analysis showed that there were some significantly enriched gut microbiome in the paternal parents (such as g_Prevotellaceae UCG-003, f_Bacteroidales RF16 group; Ambiguous_taxa, etc.) and the maternal parents (including g_Alistipes, g_Anaerosporobacter, etc.), which remained significantly enriched in the hybrid offspring. Additionally, the hybrid offspring exhibited a significant advantage over the parental strains, particularly in taxa that can produce short-chain fatty acids, such as g_Prevotellaceae UCG-003, g_Roseburia, g_Succinivibrio, and g_Lachnospiraceae UCG-006. Similar to bacterial transmission, metagenomic analysis showed that some signaling pathways related to pilose antler growth ("Wnt signaling pathway," "PI3K Akt signaling pathway," "MAPK signaling pathway") were also enriched in hybrid red deer after hybridization. Furthermore, metabolomic analysis revealed that compared with the paternal and maternal parents, the hybrid offspring exhibited significant enrichment in metabolites related to "Steroid hormone biosynthesis," "Tryptophan metabolism," "Valine, leucine and isoleucine metabolism," and "Vitamin B metabolism." Notably, the metagenomic analysis also showed that these metabolic pathways were significantly enriched in hybrid deer. Finally, a correlation analysis between the gut microbiome and metabolites revealed a significant positive correlation between the enriched taxa in hybrid deer, including the Bacteroidales RF16 group, Prevotellaceae, and Succinivibrio, and metabolites, such as 7α-hydroxytestosterone, L-kynurenine, indole, L-isoleucine, and riboflavin. The study contributes valuable data toward understanding the role of the gut microbiome from red deer in hybridization and provides reference data for further screening potential probiotics and performing microbial-assisted breeding that promotes the growth of red deer pilose antlers and bodies, development, and immunity.

SELECTION OF CITATIONS
SEARCH DETAIL
...