Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 477: 135219, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39053068

ABSTRACT

The relationship between perfluoroalkyl substances (PFASs) and the risk of breast cancer has been controversial. Here, we used the National Health and Nutrition Examination Survey (NHANES) database and a meta-analysis to examine the association between PFASs and breast cancer incidence. From the NHANES database, we obtained data on PFASs and breast cancer from 2003 to 2014. We searched PubMed, Web of Science, Scopus and PsycINFO from the establishment of the databases to August 24, 2023, for research on PFASs related to breast cancer. A meta-analysis was performed using Stata 12.0. A total of 1430 subjects aged 20 years or older were selected from the NHANES. The logistic regression results indicated that there was no correlation between breast cancer and PFASs (P > 0.05). The meta-analysis, included nine studies with a total of 2399 breast cancer patients, included in the meta-analysis, revealed no statistically significant association between PFASs and the risk of breast cancer (odds ratio = 1.04; 95 % confidence interval, 0.88-1.21; P > 0.05). The results show that PFASs are not associated with breast cancer risk.

2.
J Chem Neuroanat ; 138: 102420, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38626816

ABSTRACT

Protein aggregation is a pathological feature in various neurodegenerative diseases and is thought to play a crucial role in the onset and progression of neurological disorders. This pathological phenomenon has attracted increasing attention from researchers, but the underlying mechanism has not been fully elucidated yet. Researchers are increasingly interested in identifying chemicals or methods that can effectively detect protein aggregation or maintain protein stability to prevent aggregation formation. To date, several methods are available for detecting protein aggregates, including fluorescence correlation spectroscopy, electron microscopy, and molecular detection methods. Unfortunately, there is still a lack of methods to observe protein aggregation in situ under a microscope. This article reviews the two main aspects of protein aggregation: the mechanisms and detection methods of protein aggregation. The aim is to provide clues for the development of new methods to study this pathological phenomenon.


Subject(s)
Protein Aggregation, Pathological , Humans , Animals , Protein Aggregation, Pathological/metabolism , Protein Aggregates/physiology , Nervous System Diseases/metabolism , Neurodegenerative Diseases/metabolism
3.
IEEE Trans Pattern Anal Mach Intell ; 45(11): 13152-13169, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37399165

ABSTRACT

As a task that aims to assess the trustworthiness of the model's prediction output during deployment, confidence estimation has received much research attention recently, due to its importance for the safe deployment of deep models. Previous works have outlined two important characteristics that a reliable confidence estimation model should possess, i.e., the ability to perform well under label imbalance and the ability to handle various out-of-distribution data inputs. In this work, we propose a meta-learning framework that can simultaneously improve upon both characteristics in a confidence estimation model. Specifically, we first construct virtual training and testing sets with some intentionally designed distribution differences between them. Our framework then uses the constructed sets to train the confidence estimation model through a virtual training and testing scheme leading it to learn knowledge that generalizes to diverse distributions. Besides, we also incorporate our framework with a modified meta optimization rule, which converges the confidence estimator to flat meta minima. We show the effectiveness of our framework through extensive experiments on various tasks including monocular depth estimation, image classification, and semantic segmentation.

4.
Inorg Chem ; 62(24): 9314-9323, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37285310

ABSTRACT

P2-type Na0.67Mn0.5Fe0.5O2 (MF) has attracted great interest as a promising cathode material for sodium-ion batteries (SIBs) due to its high specific capacity and low cost. However, its poor cyclic stability and rate performance hinder its practical applications, which is largely related to lattice oxygen instability. Here, we propose to coat the cathode of SIBs with Li2ZrO3, which realizes the "three-in-one" modification of Li2ZrO3 coating and Li+, Zr4+ co-doping. The synergy of Li2ZrO3 coating and Li+/Zr4+ doping improves both the cycle stability and rate performance, and the underlying modification mechanism is revealed by a series of characterization methods. The doping of Zr4+ increases the interlayer spacing of MF, reduces the diffusion barrier of Na+, and reduces the ratio of Mn3+/Mn4+, thus inhibiting the Jahn-Teller effect. The Li2ZrO3 coating layer inhibits the side reaction between the cathode and the electrolyte. The synergy of Li2ZrO3 coating and Li+, Zr4+ co-doping enhances the stability of lattice oxygen and the reversibility of anionic redox, which improves the cycle stability and rate performance. This study provides some insights into stabilizing the lattice oxygen in layered oxide cathodes for high-performance SIBs.

5.
Prog Neurobiol ; 226: 102461, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37179048

ABSTRACT

Acute neuronal degeneration is always preceded under the light and electron microscopes by a stage called microvacuolation, which is characterized by a finely vacuolar alteration in the cytoplasm of the neurons destined to death. In this study, we reported a method for detecting neuronal death using two membrane-bound dyes, rhodamine R6 and DiOC6(3), which may be associated with the so-called microvacuolation. This new method produced a spatiotemporally similar staining pattern to Fluoro-Jade B in kainic acid-damaged brains in mice. Further experiments showed that increased staining of rhodamine R6 and DiOC6(3) was observed only in degenerated neurons, but not in glia, erythrocytes, or meninges. Different from Fluoro-Jade-related dyes, rhodamine R6 and DiOC6(3) staining is highly sensitive to solvent extraction and detergent exposure. Staining with Nile red for phospholipids and filipin III for non-esterified cholesterol supports that the increased staining of rhodamine R6 and DiOC6(3) might be associated with increased levels of phospholipids and free cholesterol in the perinuclear cytoplasm of damaged neurons. In addition to kainic acid-injected neuronal death, rhodamine R6 and DiOC6(3) were similarly useful for detecting neuronal death in ischemic models either in vivo or in vitro. As far as we know, the staining with rhodamine R6 or DiOC6(3) is one of a few histochemical methods for detecting neuronal death whose target molecules have been well defined and therefore may be useful for explaining experimental results as well as exploring the mechanisms of neuronal death.


Subject(s)
Fluorescent Dyes , Kainic Acid , Mice , Animals , Brain , Neurons , Rhodamines , Hippocampus
6.
Sensors (Basel) ; 23(7)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37050765

ABSTRACT

A dual-coil inductive displacement transducer is a non-contact type measuring element for measuring displacement and is widely used in large power equipment systems such as construction machinery and agricultural equipment. However, the effect of the coil excitation method on the performance of dual-coil inductive displacement sensors has not been studied. This paper investigates the impact of different coil excitation methods on the operating performance of displacement transducers. The working principle, electromagnetic characteristics, and electrical characteristics were analyzed by building a mathematical model. A transducer measurement device was used to determine the relationship between core displacement and coil inductance. Three coil excitation methods were proposed, and the effects of the three coil excitation methods on the amplitude variation, phase shift, linearity, and sensitivity of the output signal were studied by simulation based on the AD630 chip as the core of the conditioning circuit. Finally, the study's feasibility was demonstrated by comparing the experiment to the simulation. The results show that, under the uniform magnetic field strength distribution in the coil, the coil voltage variation is proportional to the inductive core displacement. The amplitude variation is the largest for the dual-coil series three-wire (DCSTW) and is the same for the dual-coil series four-wire (DCSFW) and dual-coil parallel differential (DCPD). DCSFW has an enormous phase shift. DCSTW has the best linearity. The research in this paper provides a theoretical basis for selecting a suitable coil excitation, which is conducive to further improving the operating performance of dual-coil inductive displacement transducers.

7.
Sensors (Basel) ; 23(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37050839

ABSTRACT

A double-coil inductive displacement transducer is a non-contact element for measuring displacement and is widely used in large power equipment systems such as construction machinery and agricultural machinery equipment. The type of coil excitation signal has an impact on the performance of the transducer, but there is little research on this. Therefore, the influence of the coil excitation signal on transducer performance is investigated. The working principle and characteristics of the double-coil inductive displacement transducer are analyzed, and the circuit simulation model of the transducer is established. From the aspects of phase shift, linearity, and sensitivity, the effects of a sine signal, a triangle signal, and a pulse signal on the transducer are compared and analyzed. The results show that the average phase shift, linearity, and sensitivity of the sine signal were 11.53°, 1.61%, and 0.372 V/mm, respectively; the average phase shift, linearity and sensitivity of the triangular signal were 1.38°, 1.56%, and 0.300 V/mm, respectively; and the average phase shift, linearity, and sensitivity of the pulse signal were 0.73°, 1.95%, and 0.621 V/mm, respectively. It can be seen that the phase shift of a triangle signal and a pulse signal is smaller than that of a sine signal, which can result in better signal phase-locked processing. The linearity of the triangle signal is better than the sine signal, and the sensitivity of the pulse signal is better than that of the sine signal.

8.
J Pharm Biomed Anal ; 229: 115372, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37018956

ABSTRACT

Guang Dilong [P. aspergillum (E. Perrier)], is an animal-derived traditional Chinese medicine made from the dried body of Pheretima aspergillum (E. Perrier) (TCM). Due to its widely application and high medical values, preparations of P. aspergillum (E. Perrier) may be adulterated by four other species, including three crucial Pheretima species [P. vulgaris (Chen), P. pectinifera (Mkhaeken), and P. guillemi (Michaelsen)] and one considerable adulteration [Metaphire magna (Chen)]. This study developed a novel and effective strategy for analyzing and authenticating Guang Dilong based on enzymatic digestion of protein. The nanoLC-MS/MS technique used to evaluate complete peptidomics profiles of trypsin-digested samples, resulting in the identification of species-specific peptide biomarkers in P. aspergillum (E. Perrier). The significance of different samples and peptides in the target species set was then investigated using mathematical set theory. Consequently, seven peptides were chosen as prospective biomarkers. Finally, five specific peptide biomarkers for differentiating Guang Dilong with other species were confirmed and validated using UFLC-MS/MS and MRM mode. The suggested technique may also be beneficial in evaluating the quality of other animal-derived goods for safety issues in order to avoid misidentification.


Subject(s)
Peptides , Tandem Mass Spectrometry , Animals , Chromatography, Liquid , Biomarkers , Digestion
9.
Genomics ; 115(2): 110573, 2023 03.
Article in English | MEDLINE | ID: mdl-36746218

ABSTRACT

Considerable studies have given convincing evidence of a forefront position for vascular aging in preventing cardiovascular disease. Various functions of Long non-coding RNAs (lncRNAs) are becoming increasingly distinct in aging-related diseases. This study aims at a better insight into the expression profile and mechanisms of lncRNAs in vascular senescence. High-throughput sequencing was used to detect the differential expression (DE) of lncRNAs and mRNAs in the aorta of 96 W and 8 W-old mice, while 1423 lncRNAs and 80 mRNAs were differentially expressed. By performing GO and KEGG enrichment analysis, we found that DE lncRNAs were mainly involved in purine metabolism and cGMP-PKG signaling pathways. In addition, a co-expression functional network of DE lncRNAs and DE mRNAs was constructed, and ENSMUST00000218874 could interact with 41 DE mRNAs, suggesting that it may play an essential role in vascular senescence. This study reveals DE lncRNAs in naturally aging vascular, which may provide new ideas and targets for aging-related cardiovascular diseases.


Subject(s)
RNA, Long Noncoding , Transcriptome , Mice , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Aorta/metabolism , Signal Transduction , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Profiling , Gene Regulatory Networks
10.
Opt Lett ; 48(3): 815-818, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36723596

ABSTRACT

This Letter proposes a simple approach for the realization of a broadband near-infrared (NIR) luminescence source in erbium ion single-doped tellurite glass, which is bent on tailoring the network structure. Under the collective action of multiple broadening mechanisms and fluorescence capture, broadband fluorescence with a full width at half maximum (FWHM) of 132 nm (1500-1632 nm) was achieved. To the best of our knowledge, this is the largest FWHM reported for erbium single-doping of tellurite glass materials. Meanwhile, this fiberglass exhibits excellent thermal stability and high visible to NIR transmittance. Furthermore, a novel equivalent five-level Stark splitting model is proposed that can effectively explain the spectrum broadening. This study is beneficial for the further development of broadband optical amplification.

11.
Environ Plan B Urban Anal City Sci ; 50(5): 1298-1312, 2023 Jun.
Article in English | MEDLINE | ID: mdl-38603005

ABSTRACT

Human mobility patterns created from mobile phone call detail records (CDRs) can provide an essential resource in data-poor environments to monitor the effects of health outbreaks. Analysis of this data can be instrumental for understanding the movement pattern of populations allowing governments to set and refine policies to respond to community health risks. Building on CDR mobility analysis techniques, this research set out to test whether combining CDR mobility indicators with socio-economic information can illustrate differences between different socio-economic groups' exposure risks to COVID-19. The work focuses on the Western Area of Sierra Leone which houses the capital Freetown because it lacks existing mobility data and therefore can be a great example of how CDR can be transformed for this use. To determine mobility patterns, we applied the radius of gyration, regularity of movement, and motif types analytics commonly used in CDR research. We then applied a clustering algorithm to these results to understand user trends. Then we compared the results of the three methods with socio-economic status determined from census data in the same geography. The results show the daily movement of cell phone users of lower socio-economic status covered greater distances in the Western Area before and after lockdown, thereby showing a greater risk to COVID-19. The research also shows that groups of higher social status decreased mobility significantly after lockdown and did not return to pre-COVID-19 levels, unlike lower-social status groups.

12.
BMC Vet Res ; 18(1): 440, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36522721

ABSTRACT

BACKGROUND: Interferon regulatory factor 1 (IRF1) is an important transcription factor that activates the type I interferon (IFN-I) response and plays a vital role in the antiviral immune response. Although IRF1 has been identified in several mammals, little information related to its function in canines has been described. RESULTS: In this study, canine IRF1 (CaIRF1) was cloned. After a series of bioinformatics analyses, we found that the CaIRF1 protein structure was similar to that of other animal IRF1 proteins, including a conserved DNA-binding domain (DBD), an IRF-association domain 2 (IAD2) domain and two nuclear localization signals (NLSs). An indirect immunofluorescence assay (IFA) revealed that CaIRF1 was mainly distributed in the nucleus. Overexpression of CaIRF1 in Madin-Darby canine kidney cells (MDCK) induced high levels of interferon ß (IFNß) and IFN-stimulated response element (ISRE) promoter activation and induced interferon-stimulated gene (ISG) expression. Subsequently, we assayed the antiviral activity of CaIRF1 against vesicular stomatitis virus (VSV) and canine parvovirus type-2 (CPV-2) in MDCK cells. Overexpression of CaIRF1 effectively inhibited the viral yields of VSV and CPV-2, while knocking down of CaIRF1 expression mildly increased viral gene copies. CONCLUSIONS: CaIRF1 is involved in the cellular IFN-I signaling pathway and plays an important role in the antiviral response.


Subject(s)
Antiviral Agents , Interferons , Animals , Dogs , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/metabolism , Antiviral Agents/pharmacology , Interferons/metabolism , Interferon-beta/genetics , Gene Expression Regulation , Mammals
13.
AAPS PharmSciTech ; 24(1): 14, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36478061

ABSTRACT

Nanotechnology and coamorphous are both advanced technologies that can effectively improve the solubility of drugs. This study has been the first attempt to combine these two approaches to construct the coamorphous nanoparticles to improve the dissolution and investigated the effect of physical properties of coamorphous solid on the nanosizing process. Two types of coamorphous solid, i.e., curcumin-artemisinin and quercetin-lysine, were selected as models. Coamorphous curcumin-artemisinin could highly contribute to the size reduction during milling compared to the crystalline form, which might attribute to the change of crystallinity. Nanosized coamorphous curcumin-artemisinin showed higher dissolution than nanocrystals and single coamorphous sample. However, quercetin-lysine coamorphous nanoparticles did not reflect significant dissolution improvement compared with the microsized sample. The difference of initial dissolutions for both could be the main reason. The directly mixing and drying method was confirmed to be an effective and simple approach to maintain the dissolution of nanosized coamorphous sample.


Subject(s)
Lysine , Quercetin , Particle Size , Nanotechnology
14.
Front Microbiol ; 13: 1064747, 2022.
Article in English | MEDLINE | ID: mdl-36569076

ABSTRACT

Feline parvovirus often causes a fatal infectious disease and has a serious impact on domestic cats and wild felines. Feline chaphamaparvovirus (FeChPV) is a novel type of feline parvovirus that has been successively identified in Canada, Italy, and Turkey. The prevalence and pathogenicity of FeChPV in other regions is still unknown. In this study, we recorded the detection of FeChPV in a cat shelter in China. A high prevalence (81.08%, 30/37) of FeChPV was detected in cats with symptoms of upper respiratory tract disease (URTD) in this cat shelter. Multiple pathogen testing indicated high coinfection rates of 80% (24/30) with other common viruses in FeChPV-positive cats. Analyses of the necropsy and histopathological findings revealed severe lymphadenitis, encephalitis, and viral DNA in several tissues (including brain) of the deceased cat. Finally, we obtained nearly full-length genomes of four strains with 98.4%~98.6% homology with previously reported genomes. Notably, VP1 proteins showed seven unique amino acid mutations, while NS1 proteins carried eight mutations. In the evolutionary tree based on VP1 and NS1, the sequences clustered in a large branch with Italian and Canadian FeChPV strains. Given the possible association of FeChPV with URTD, further studies are necessary to evaluate the pathogenicity and epidemiological characteristics of this novel feline pathogen.

15.
PeerJ Comput Sci ; 8: e1098, 2022.
Article in English | MEDLINE | ID: mdl-36262129

ABSTRACT

Person re-identification plays an important role in the construction of the smart city. A reliable person re-identification system relieves users from the inefficient work of identifying the specific individual from enormous numbers of photos or videos captured by different surveillance devices. The most existing methods either focus on local discriminative features without global contextual information or scatter global features while ignoring the local features, resulting in ineffective attention to irregular pedestrian zones. In this article, a novel Transformer-CNN Coupling Network (TCCNet) is proposed to capture the fluctuant body region features in a heterogeneous feature-aware manner. We employ two bridging modules, the Low-level Feature Coupling Module (LFCM) and the High-level Feature Coupling Module (HFCM), to improve the complementary characteristics of the hybrid network. It is significantly helpful to enhance the capacity to distinguish between foreground and background features, thereby reducing the unfavorable impact of cluttered backgrounds on person re-identification. Furthermore, the duplicate loss for the two branches is employed to incorporate semantic information from distant preferences of the two branches into the resulting person representation. The experiments on two large-scale person re-identification benchmarks demonstrate that the proposed TCCNet achieves competitive results compared with several state-of-the-art approaches. The mean Average Precision (mAP) and Rank-1 identification rate on the MSMT17 dataset achieve 66.9% and 84.5%, respectively.

16.
Int J Mol Sci ; 23(19)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36232841

ABSTRACT

Canine parvovirus (CPV-2) is one of the most important pathogens in dogs, and despite the continual development of vaccines against CPV-2, CPV-2 is still circulating in the canine population. The CPV-2a/2b/2c variant has replaced the original CPV-2 virus and seems to exhibit accelerated transmission. Although CPV-2 infection has been frequently reported, no studies have summarized information of CPV-2 variants currently circulating worldwide. To track the evolution of CPV-2, we downloaded and analyzed all VP2 sequences from the NCBI database (from 1978 to 2022). We found that CPV-2c shows a tendency to replace CPV-2a as the new dominant variant in Asia, South America, North America and Africa. Additionally, CPV-2c, which is prevalent in most regions of Asia, carries two special mutations in VP2, A5G and Q370R, and has become a dominant mutation with spillover already occurring. In conclusion, this summary of the types of global epidemic variants provides new insight into the evolution of CPV-2 and raises awareness for blocking the spread of this virus. The spread of Asian-derived CPV-2c urgently needs to be further under surveillance.


Subject(s)
Dog Diseases , Parvoviridae Infections , Parvovirus, Canine , Animals , Capsid Proteins/genetics , Dog Diseases/epidemiology , Dogs , Parvoviridae Infections/epidemiology , Parvoviridae Infections/veterinary , Parvovirus, Canine/genetics , Phylogeny
17.
Chemosphere ; 307(Pt 3): 136074, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35987271

ABSTRACT

Fe/Mn@carbon cloth (CC) was successfully fabricated through high-temperature shock (HTS) technique and used as cathode modification in heterogeneous electro-Fenton (hetero-EF) process for methylisothiazolinone (MIT) degradation. The nanocrystalline on Fe/Mn@CC electrode is doped with Fe and Mn oxides and coated with carbon layer, which could markedly enhance the electrocatalysis with high electro-chemical active area and low resistance. Fe/Mn@CC modified cathode can efficiently in-situ produce and activate H2O2, showing high electrocatalytic activity to MIT degradation. The 95.2% MIT degradation with in 100 min were achieved under the condition of 30 mA current, 0.75 L min-1 aeration intensity and initial pH = 3. Based on the CV curves and stability test, the high degradation activity revealed the kinetically beneficial regeneration of FeII/MnII in Fe/Mn@CC and activation of H2O2. The electron transfer between FeII/III and MnII/III, together with the direct FeII/MnII regeneration on the cathode, could markedly promote the H2O2 utilization, and eventually lead to MIT degradation.


Subject(s)
Hydrogen Peroxide , Water Pollutants, Chemical , Carbon , Electrodes , Ferrous Compounds , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Oxides , Temperature , Water Pollutants, Chemical/analysis
18.
Int J Mol Sci ; 23(12)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35742826

ABSTRACT

Canine circovirus (CanineCV) is an emerging virus in canines. Since the first strain of CanineCV was reported in 2012, CanineCV infection has shown a trend toward becoming a global epidemic. CanineCV infection often occurs with coinfection with other pathogens that may aggravate the symptoms of disease in affected dogs. Currently, CanineCV has not been successfully isolated by laboratories, resulting in a lack of clarity regarding its physicochemical properties, replication process, and pathogenic characteristics. To address this knowledge gap, the following results were obtained in this study. First, a CanineCV strain was rescued in F81 cells using infectious clone plasmids. Second, the Rep protein produced by the viral packaging rescue process was found to be associated with cytopathic effects. Additionally, the Rep protein and CanineCV inhibited the activation of the type I interferon (IFN-I) promoter, blocking subsequent expression of interferon-stimulated genes (ISGs). Furthermore, Rep was found to broadly inhibit host protein expression. We speculate that in CanineCV and canine parvovirus type 2 (CPV-2) coinfection cases, CanineCV promotes CPV-2 replication by inducing immunosuppression, which may increase the severity of clinical symptoms.


Subject(s)
Circoviridae Infections , Circovirus , Coinfection , Dog Diseases , Interferon Type I , Parvoviridae Infections , Parvovirus, Canine , Animals , Circoviridae Infections/epidemiology , Circoviridae Infections/veterinary , Circovirus/genetics , Dogs , Interferon Type I/genetics , Parvovirus, Canine/genetics
19.
Brain Struct Funct ; 227(1): 345-360, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34626230

ABSTRACT

To date, ischemia-induced damage to dendritic spines has attracted considerable attention, while the possible effects of ischemia on presynaptic components has received relatively less attention. To further examine ischemia-induced changes in pre- and postsynaptic specializations in the hippocampal CA1 subfield, we modeled global cerebral ischemia with two-stage 4-vessel-occlusion in rats, and found that three postsynaptic markers, microtubule-associated protein 2 (MAP2), postsynaptic density protein 95 (PSD95), and filamentous F-actin (F-actin), were all substantially decreased in the CA1 subfield after ischemia/reperfusion (I/R). Although no significant change was detected in synapsin I, a presynaptic marker, in the CA1 subfield at the protein level, confocal microscopy revealed that the number and size of synapsin I puncta were significantly changed in the CA1 stratum radiatum after I/R. The size of synapsin I puncta became slightly, but significantly reduced on Day 1.5 after I/R. From Days 2 to 7 after I/R, the number of synapsin I puncta became moderately decreased, while the size of synapsin I puncta was significantly increased. Interestingly, some enlarged puncta of synapsin I were observed in close proximity to the dendritic shafts of CA1 pyramidal cells. Due to the more substantial decrease in the number of F-actin puncta, the ratio of synapsin I/F-actin puncta was significantly increased after I/R. The decrease in synapsin I puncta size in the early stage of I/R may be the result of excessive neurotransmitter release due to I/R-induced hyperexcitability in CA3 pyramidal cells, while the increase in synapsin I puncta in the later stage of I/R may reflect a disability of synaptic vesicle release due to the loss of postsynaptic contacts.


Subject(s)
Ischemic Attack, Transient , Actins , Animals , Brain Ischemia , CA1 Region, Hippocampal , Hippocampus , Ischemia , Rats , Rats, Wistar , Synapsins
20.
Vet Sci ; 8(8)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34437470

ABSTRACT

Classical swine fever (CSF) is one of the most important viral diseases in swine, causing severe economic losses in the swine industry. In China, CSF is one of the key diseases that needs to be controlled; the government has implemented control measures, and vaccination with C-strain vaccines (C-vacs) has been compulsory since the 1950s. C-vacs do not allow the differentiation of field virus-infected and vaccinated animals (DIVA). In 2012, China proposed a goal of eradicating CSF. Additionally, a baculovirus-expressed E2 subunit vaccine (E2-vac) was licensed in 2018. However, the C-vac and E2-vac characteristics have not been compared. Here, we demonstrate that both the C-vac and E2-vac provide complete protection against CSF in pigs. The E2-vac allows DIVA, and the E2 antibody responses of stimulated pigs are developed earlier and are stronger than the C-vac antibody responses. Therefore, the E2-vac is a new candidate licensed vaccine to completely eradicate CSF on pig farms.

SELECTION OF CITATIONS
SEARCH DETAIL
...