Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Natl Sci Rev ; 10(2): nwac226, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36817832

ABSTRACT

A single-crystalline Ni-rich (SCNR) cathode with a large particle size can achieve higher energy density, and is safer, than polycrystalline counterparts. However, synthesizing large SCNR cathodes (>5 µm) without compromising electrochemical performance is very challenging due to the incompatibility between Ni-rich cathodes and high temperature calcination. Herein, we introduce Vegard's Slope as a guide for rationally selecting sintering aids, and we successfully synthesize size-controlled SCNR cathodes, the largest of which can be up to 10 µm. Comprehensive theoretical calculation and experimental characterization show that sintering aids continuously migrate to the particle surface, suppress sublattice oxygen release and reduce the surface energy of the typically exposed facets, which promotes grain boundary migration and elevates calcination critical temperature. The dense SCNR cathodes, fabricated by packing of different-sized SCNR cathode particles, achieve a highest electrode press density of 3.9 g cm-3 and a highest volumetric energy density of 3000 Wh L-1. The pouch cell demonstrates a high energy density of 303 Wh kg-1, 730 Wh L-1 and 76% capacity retention after 1200 cycles. SCNR cathodes with an optimized particle size distribution can meet the requirements for both electric vehicles and portable devices. Furthermore, the principle for controlling the growth of SCNR particles can be widely applied when synthesizing other materials for Li-ion, Na-ion and K-ion batteries.

2.
J Colloid Interface Sci ; 628(Pt A): 64-71, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-35908432

ABSTRACT

Composite solid-state electrolytes (CSEs) are regarded as a promising alternative for the next-generation lithium-ion batteries because they integrate the advantages of inorganic electrolytes and organic electrolytes. However, there are two issues faced by current CSEs: 1) a green and feasible approach to prepare CSEs in large scales is desired; and 2) the trace solvents, remaining from the preparation processes, lead to some serious concerns, such as safety hazard issues, electrolyte-electrode interfacial issues, and reduced durability of batteries. Here, a continuous thermal-extrusion process is presented to realize the large-scale fabrication of solvent-free CSE. A 38.7-meter CSE membrane was prepared as a demonstration in this study. Thanks to the elimination of residual solvents, the electrolyte membrane exhibited a high tensile strength of 3.85 MPa, satisfactory lithium transference number (0.495), and excellent electrochemical stability (5.15 V). Excellent long-term stability was demonstrated by operating the symmetric lithium cell at a stable current density of 0.1 mA cm-2 for over 3700 h. Solvent-free CSE lithium metal batteries showed a discharge capacity of 155.7 - 25.17 mAh g-1 at 0.1 - 2.0C, and the discharge capacity remained 78.1% after testing for 380cycles.

3.
ACS Nano ; 14(12): 17163-17173, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33166116

ABSTRACT

A popular practice in Li-S battery research is to utilize highly nanostructured hosts and excessive electrolytes to enhance sulfur-specific capacities. However, from the perspective of commercialization, this is a less meaningful approach in the pursuit of high-energy Li-S batteries. Herein, we report the fabrication of a nanoskin composed of a conjugated microporous polymer by electropolymerization to create a closed system for a sulfur cathode. The nanoskin is ultrathin, conductive, continuous, and contains uniform micropores of approximately 0.8 nm. The nanoskin sealing prevents the shuttling of polysulfide species without using the absorption effect, enhances the utilization of electrolytes, and allows a fast transport of lithium ions. As a result, the Li-S batteries comprising the cathode with nanoskin exhibit superior stability (∼86% capacity retention) under lean electrolyte conditions and a prolonged lifetime (1000 cycles). At a low electrolyte/sulfur ratio of 4 µL mg-1, the designed cathode delivered a practical energy density of over 300 Wh kg-1 without using any sophisticated hosts.

4.
Nat Nanotechnol ; 15(10): 883-890, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32719493

ABSTRACT

The growth of sodium dendrites and the associated solid electrolyte interface (SEI) layer is a critical and fundamental issue influencing the safety and cycling lifespan of sodium batteries. In this work, we use in-situ 23Na magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) techniques, along with an innovative analytical approach, to provide space-resolved and quantitative insights into the formation and evolution of sodium metal microstructures (SMSs; that is, dendritic and mossy Na metal) during the deposition and stripping processes. Our results reveal that the growing SMSs give rise to a linear increase in the overpotential until a transition voltage of 0.15 V is reached, at which point violent electrochemical decomposition of the electrolyte is triggered, leading to the formation of mossy-type SMSs and rapid battery failure. In addition, we determined the existence of NaH in the SEI on sodium metal with ex-situ NMR results. The poor electronic conductivity of NaH is beneficial for the growth of a stable SEI on sodium metal.

5.
Nat Commun ; 11(1): 3544, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32669558

ABSTRACT

Air-stability is one of the most important considerations for the practical application of electrode materials in energy-harvesting/storage devices, ranging from solar cells to rechargeable batteries. The promising P2-layered sodium transition metal oxides (P2-NaxTmO2) often suffer from structural/chemical transformations when contacted with moist air. However, these elaborate transitions and the evaluation rules towards air-stable P2-NaxTmO2 have not yet been clearly elucidated. Herein, taking P2-Na0.67MnO2 and P2-Na0.67Ni0.33Mn0.67O2 as key examples, we unveil the comprehensive structural/chemical degradation mechanisms of P2-NaxTmO2 in different ambient atmospheres by using various microscopic/spectroscopic characterizations and first-principle calculations. The extent of bulk structural/chemical transformation of P2-NaxTmO2 is determined by the amount of extracted Na+, which is mainly compensated by Na+/H+ exchange. By expanding our study to a series of Mn-based oxides, we reveal that the air-stability of P2-NaxTmO2 is highly related to their oxidation features in the first charge process and further propose a practical evaluating rule associated with redox couples for air-stable NaxTmO2 cathodes.

6.
ACS Omega ; 4(9): 13972-13980, 2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31497715

ABSTRACT

A simple and low-cost polymer-aided sol-gel method was developed to prepare γ-Al2O3 protective layers for LiNi0.6Co0.2Mn0.2O2 (NCM622) cathode materials. The selected polyvinyl alcohol polymer additive not only facilitates the formation of a uniform and thin γ-Al2O3 layer on the irregular and rough cathode particle surface to protect it from corrosion but also serves as a pore-forming agent to generate micropores in the film after sintering to allow fast transport of lithium ions, which guaranteed the excellent and stable battery performance at high working voltage. Detailed studies in the full battery mode showed that the leached corrosion species from the cathode had a more profound harmful effect to the graphite anode, which seemed to be the dominating factor that caused the battery performance decay.

7.
Proc Natl Acad Sci U S A ; 115(6): 1156-1161, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29351993

ABSTRACT

Lithium metal has gravimetric capacity ∼10× that of graphite which incentivizes rechargeable Li metal batteries (RLMB) development. A key factor that limits practical use of RLMB is morphological instability of Li metal anode upon electrodeposition, reflected by the uncontrolled area growth of solid-electrolyte interphase that traps cyclable Li, quantified by the Coulombic inefficiency (CI). Here we show that CI decreases approximately exponentially with increasing donatable fluorine concentration of the electrolyte. By using up to 7 m of Li bis(fluorosulfonyl)imide in fluoroethylene carbonate, where both the solvent and the salt donate F, we can significantly suppress anode porosity and improve the Coulombic efficiency to 99.64%. The electrolyte demonstrates excellent compatibility with 5-V LiNi0.5Mn1.5O4 cathode and Al current collector beyond 5 V. As a result, an RLMB full cell with only 1.4× excess lithium as the anode was demonstrated to cycle above 130 times, at industrially significant loading of 1.83 mAh/cm2 and 0.36 C. This is attributed to the formation of a protective LiF nanolayer, which has a wide bandgap, high surface energy, and small Burgers vector, making it ductile at room temperature and less likely to rupture in electrodeposition.


Subject(s)
Electric Power Supplies , Electrolytes/chemistry , Fluorine/chemistry , Lithium , Electrodes , Oxidation-Reduction , Photoelectron Spectroscopy
8.
ACS Appl Mater Interfaces ; 10(1): 593-601, 2018 Jan 10.
Article in English | MEDLINE | ID: mdl-29243904

ABSTRACT

The growth and proliferation of Li dendrites during repeated Li cycling has long been a crucial issue that hinders the development of secondary Li-metal batteries. Building a stable and robust solid state electrolyte interphase (SEI) on the Li-anode surface is regarded as a promising strategy to overcome the dendrite issues. In this work, we report a simple strategy to engineer the interface chemistry of Li-metal anodes by using tiny amounts of dimethyl sulfate (DMS, C2H6SO4) as the SEI-forming additive. With the preferential reduction of DMS, an SEI layer composed of Li2S/Li2O forms on the Li surface. This inorganic SEI layer features high structural modulus and low interfacial resistant, enabling a dense and dendrite-free Li deposition as evidenced by scanning electron microscopy, atomic force microscopy, and in situ optical images. In addition, this SEI layer can prevent the deposited Li from direct contact with corrosive electrolytes, thus rendering an improved cycling stability of Li anodes with an average Coulombic efficiency of 97% for up to 150 cycles. When the DMS additive is introduced into a Li/NCM full cell, the cycle life of Li-metal batteries can be also improved significantly. This work demonstrates a feasible route to suppress Li dendrite growth by designing appropriate film-forming additives to regulate the interfacial properties of the SEI layer, and also the sulfonyl-based derivatives revealed in this work represent a large variety of new film-forming molecules, providing a broad selectivity for constructing high efficiency and cycle-stable Li anodes to address the intrinsic problems of rechargeable Li-metal batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...