Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 918
Filter
1.
Front Microbiol ; 15: 1387957, 2024.
Article in English | MEDLINE | ID: mdl-38784815

ABSTRACT

The host genes play a crucial role in shaping the composition and structure of the gut microbiome. Red deer is listed as an endangered species by the International Union for the Conservation of Nature, and its pilose antlers have good medicinal value. Hybridization can lead to heterosis, resulting in increased pilose antler production and growth performance in hybrid deer. However, the role of the gut microbiome in hybrid deer remains largely unknown. In this study, alpha and beta diversity analysis showed that hybridization altered the composition and structure of the gut microbiome of the offspring, with the composition and structure of the hybrid offspring being more similar to those of the paternal parents. Interestingly, the LefSe differential analysis showed that there were some significantly enriched gut microbiome in the paternal parents (such as g_Prevotellaceae UCG-003, f_Bacteroidales RF16 group; Ambiguous_taxa, etc.) and the maternal parents (including g_Alistipes, g_Anaerosporobacter, etc.), which remained significantly enriched in the hybrid offspring. Additionally, the hybrid offspring exhibited a significant advantage over the parental strains, particularly in taxa that can produce short-chain fatty acids, such as g_Prevotellaceae UCG-003, g_Roseburia, g_Succinivibrio, and g_Lachnospiraceae UCG-006. Similar to bacterial transmission, metagenomic analysis showed that some signaling pathways related to pilose antler growth ("Wnt signaling pathway," "PI3K Akt signaling pathway," "MAPK signaling pathway") were also enriched in hybrid red deer after hybridization. Furthermore, metabolomic analysis revealed that compared with the paternal and maternal parents, the hybrid offspring exhibited significant enrichment in metabolites related to "Steroid hormone biosynthesis," "Tryptophan metabolism," "Valine, leucine and isoleucine metabolism," and "Vitamin B metabolism." Notably, the metagenomic analysis also showed that these metabolic pathways were significantly enriched in hybrid deer. Finally, a correlation analysis between the gut microbiome and metabolites revealed a significant positive correlation between the enriched taxa in hybrid deer, including the Bacteroidales RF16 group, Prevotellaceae, and Succinivibrio, and metabolites, such as 7α-hydroxytestosterone, L-kynurenine, indole, L-isoleucine, and riboflavin. The study contributes valuable data toward understanding the role of the gut microbiome from red deer in hybridization and provides reference data for further screening potential probiotics and performing microbial-assisted breeding that promotes the growth of red deer pilose antlers and bodies, development, and immunity.

2.
BMC Surg ; 24(1): 165, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802757

ABSTRACT

BACKGROUND: Kidney transplantation (KT) improves clinical outcomes of patients with end stage renal disease. Little has been reported on the impact of early post-operative surgical complications (SC) on long-term clinical outcomes following KT. We sought to determine the impact of vascular complications, urological complications, surgical site complications, and peri-graft collections within 30 days of transplantation on patient survival, graft function, and hospital readmissions. METHODS: We conducted a single-centre, observational cohort study examining adult patients (≥ 18 years) who received a kidney transplant from living and deceased donors between January 1st, 2005 and December 31st, 2015 with follow-up until December 31st, 2016 (n = 1,334). Univariable and multivariable analyses were performed with Cox proportional hazards models to analyze the outcomes of SC in the early post-operative period after KT. RESULTS: The cumulative probability of SC within 30 days of transplant was 25%, the most common SC being peri-graft collections (66.8%). Multivariable analyses showed significant relationships between Clavien Grade 1 SC and death with graft function (HR 1.78 [95% CI: 1.11, 2.86]), and between Clavien Grades 3 to 4 and hospital readmissions (HR 1.95 [95% CI: 1.37, 2.77]). CONCLUSIONS: Early SC following KT are common and have a significant influence on long-term patient outcomes.


Subject(s)
Kidney Failure, Chronic , Kidney Transplantation , Postoperative Complications , Humans , Kidney Transplantation/adverse effects , Male , Female , Middle Aged , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Adult , Kidney Failure, Chronic/surgery , Graft Survival , Patient Readmission/statistics & numerical data , Retrospective Studies , Treatment Outcome , Aged , Time Factors
3.
Clin Lab ; 70(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38747923

ABSTRACT

BACKGROUND: Familial hemophagocytic lymphohistiocytosis (FHL) onset in the fetal and neonatal periods is sporadic, and infants are susceptible to intrauterine death. Early and accurate diagnosis and treatment are the keys to preventing complications and death in FHL patients due to the complex and diverse clinical manifestations of the disease. METHODS: We report a rare case of a preterm infant with a low birth weight of 2,010 g and a gestational age of 32 + 4 weeks who presented with a leaky syndrome similar to sepsis after birth. Anti-infective, other support, and symptomatic treatments were not effective. Bone marrow examination results on day 13 suggested hemophago-cytosis. RESULTS: Various compound heterozygous UNC13D genes were found by exome sequencing, which confirmed the diagnosis of FHL type 3. Genetic variants of this locus have never been reported in the literature. CONCLUSIONS: Neonatal onset FHL is challenging to diagnose, especially in premature infants. It is necessary to complete exome sequencing if the patient has no apparent pathogen infection or effective treatment.


Subject(s)
Infant, Low Birth Weight , Infant, Premature , Lymphohistiocytosis, Hemophagocytic , Humans , Lymphohistiocytosis, Hemophagocytic/genetics , Lymphohistiocytosis, Hemophagocytic/diagnosis , Infant, Newborn , Exome Sequencing , Membrane Proteins/genetics , Male , Female , Gestational Age
4.
Microb Pathog ; 192: 106701, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38754566

ABSTRACT

Plaque-induced gingivitis is an inflammatory response in gingival tissues resulting from bacterial plaque accumulation at the gingival margin. Postbiotics can promote the proliferation of beneficial bacteria and optimise the state of microbiota in the oral cavity. In this study, we investigated the effect of inactivated Lacticaseibacillus paracasei Probio-01 on plaque-induced gingivitis and the dental plaque microbiota. A total of 32 healthy gingival participants (Group N, using blank toothpaste for 3 months) and 60 patients with plaque-induced gingivitis (30 in Group F, using inactivated Probio-01 toothpaste for 3 months, and 30 in Group B, using blank toothpaste for 3 months, respectively) were recruited. Clinical indices, which included bleeding on probing (BOP), gingival index (GI), and plaque index (PI), were used to assess the severity of gingivitis. Furthermore, 16SrDNA amplicon sequencing was used to explore changes in the gingival state and dental plaque microbiota in patients with plaque-induced gingivitis. The results showed that inactivated Probio-01 significantly reduced clinical indices of gingivitis, including BOP, GI, and PI, in participants with plaque-induced gingivitis and effectively relieved gingival inflammation, compared with that observed in the control group (group B). Inactivated Probio-01 did not significantly influence the diversity of dental plaque microbiota, but increased the relative abundance of dental plaque core bacteria, such as Leptotrichia and Fusobacterium (P < 0.05). Strong correlations were observed between the indices and abundance of dental plaque microbiota. Overall, the inactivated Probio-01 significantly reduced the clinical indices of gingivitis and effectively improved gingival inflammation in patients with plaque-induced gingivitis. The activity of inactivated Probio-01 against plaque-induced gingivitis was possibly mediated by its ability to regulate the dental plaque microbiota, as indicated by the close correlation between the plaque microbiota and clinical indices of gingivitis.

5.
Front Endocrinol (Lausanne) ; 15: 1328679, 2024.
Article in English | MEDLINE | ID: mdl-38779451

ABSTRACT

Objective: The established link between posttranslational modifications of histone and non-histone lysine (K) residues in cell metabolism, and their role in cancer progression, is well-documented. However, the lactylation expression signature in triple-negative breast cancer (TNBC) remains underexplored. Methods: We conducted a comprehensive lactylproteome profiling of eight pairs of TNBC samples and their matched adjacent tissues. This was achieved through 4-Dimensional label-free quantitative proteomics combined with lactylation analysis (4D-LFQP-LA). The expression of identified lactylated proteins in TNBC was detected using immunoblotting and immunohistochemistry (IHC) with specific primary antibodies, and their clinicopathological and prognostic significance was evaluated. Results: Our analysis identified 58 lactylation sites on 48 proteins, delineating the protein lactylation alteration signature in TNBC. Bioinformatic and functional analyses indicated that these lactylated proteins play crucial roles in regulating key biological processes in TNBC. Notably, lactylation of lysine at position 12 (H4K12lac) in the histone H4 domain was found to be upregulated in TNBC. Further investigations showed a high prevalence of H4K12lac upregulation in TNBC, with positive rates of 93.19% (137/147) and 92.93% (92/99) in TNBC tissue chip and validation cohorts, respectively. H4K12lac expression correlated positively with Ki-67 and inversely with overall survival (OS) in TNBC (HR [hazard ratio] =2.813, 95%CI [credibility interval]: 1.242-6.371, P=0.0164), suggesting its potential as an independent prognostic marker (HR=3.477, 95%CI: 1.324-9.130, P=0.011). Conclusions: Lactylation is a significant post-translational modification in TNBC proteins. H4K12lac emerges as a promising biomarker for TNBC, offering insights into the lactylation profiles of TNBC proteins and linking histone modifications to clinical implications in TNBC.


Subject(s)
Biomarkers, Tumor , Histones , Protein Processing, Post-Translational , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Humans , Histones/metabolism , Female , Biomarkers, Tumor/metabolism , Prognosis , Middle Aged , Proteomics/methods , Proteome/metabolism , Adult , Lysine/metabolism
6.
Front Genet ; 15: 1391842, 2024.
Article in English | MEDLINE | ID: mdl-38784033

ABSTRACT

Introduction: In recent years, there has been a strong association between transient receptor potential (TRP) channels and the development of various malignancies, drug resistance, and resistance to radiotherapy. Consequently, we have investigated the relationship between transient receptor potential channels and cervical cancer from multiple angles. Methods: Patients' mRNA expression profiles and gene variants were obtained from the TCGA database. Key genes in transient receptor potential channel prognosis-related genes (TRGs) were screened using the least absolute shrinkage and selection operator (LASSO) regression method, and a risk signature was constructed based on the expression of key genes. Various analyses were performed to evaluate the prognostic significance, biological functions, immune infiltration, and response to immunotherapy based on the risk signature. Results: Our research reveals substantial differences between high and low-risk groups in prognosis, tumor microenvironment, tumor mutational load, immune infiltration, and response to immunotherapy. Patients in the high-risk group exhibited poorer prognosis, lower tumor microenvironment scores and reduced response to immunotherapy while showing increased sensitivity to specific targeted drugs. In vitro experiments further illustrated that inhibiting transient receptor potential channels effectively decreased the proliferation, invasion, and migration of cervical cancer cells. Discussion: This study highlights the significant potential of transient receptor potential channels in cervical cancer, emphasizing their crucial role in prognostic prediction and personalized treatment strategies. The combination of TRP inhibitors with immunotherapy and targeted drugs may offer promise for individuals affected by cervical cancer.

7.
Clin Chim Acta ; 559: 119728, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38750779

ABSTRACT

BACKGROUND AND AIMS: The incidence of Clostridioides difficile infection and the prevalence of hypervirulent ST1 (BI/NAP1/027)strain are increasing, especially in developing countries. We aimed to develop a new PCR assay for the identification of hypervirulent ST1 strains and toxigenic C. difficile in stool samples. MATERIALS AND METHODS: We established a quadruplex TaqMan real-time PCR (pilW_4-plex PCR) assay targeting the pilW, a ST1-specific type Ⅳ minor pilin gene, and three C. difficile genes including cdtB, tcdB, and hsp. The sensitivity and specificity of the assay was tested using 403C. difficile isolates and 180 unformed stool sample. The results were compared with anaerobic culture-based conventional PCR method and MLST. RESULTS: The pilW_4-plex PCR identified toxigenic C. difficile in 333 (82.6%, 333/403) isolates with 100% sensitivity and specificity, and in 78 (43.3%, 78/180) stool samples with the sensitivity and specificity of 94.7% and 93.3%, respectively. Hypervirulent ST1 were detected in 21 strains and nine stool samples by the pilW_4-plex PCR. The pilW_4-plex PCR assay has no cross-reaction with non-toxigenic C. difficile or other bacteria. CONCLUSION: The pilW_4-plex PCR assay is an accurate and rapid method with high sensitivity and specificity for identification of ST1 and detection of toxigenic C. difficile in stool.


Subject(s)
Clostridioides difficile , Clostridioides difficile/genetics , Clostridioides difficile/isolation & purification , Humans , Real-Time Polymerase Chain Reaction , Feces/microbiology , Polymerase Chain Reaction/methods , Clostridium Infections/diagnosis , Clostridium Infections/microbiology , Virulence/genetics , Sensitivity and Specificity
8.
Environ Pollut ; 355: 124214, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38801883

ABSTRACT

Fenpropidin (FPD), a widely employed chiral fungicide, is frequently detected in diverse environments. In an in vitro rat liver microsomes cultivation (RLMs), the metabolism exhibited the order of R-FPD > S-FPD, with respective half-lives of 10.42 ± 0.11 and 12.06 ± 0.15 min, aligning with kinetic analysis results. CYP3A2 has been demonstrated to be the most significant oxidative enzyme through CYP450 enzyme inhibition experiments. Molecular dynamics simulations unveiled the enantioselective metabolic mechanism, demonstrating that R-FPD forms hydrogen bonds with the CYP3A2 protein, resulting in a higher binding affinity (-6.58 kcal mol-1) than S-FPD. Seven new metabolites were identified by Liquid chromatography time-of-flight high-resolution mass spectrometry, which were mainly generated through oxidation, reduction, hydroxylation, and N-dealkylation reactions. The toxicity of the major metabolites predicted by the TEST procedure was found to be stronger than the predicted toxicity of FPD. Moreover, the enantioselective fate of FPD was studied by examining its degradation in three soils with varying physical and chemical properties under aerobic, anaerobic, and sterile conditions. Enantioselective degradation of FPD occurred in soils without enantiomeric transformation, displaying a preference for R-FPD degradation. R-FPD is a low-risk stereoisomer both in the environment and in mammals. The research presented a systematic and comprehensive method for analyzing the metabolic and degradation system of FPD enantiomers. This approach aids in understanding the behavior of FPD in the environment and provides valuable insights into their potential risks to human health.

9.
Int J Neurosci ; : 1-7, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38701375

ABSTRACT

OBJECTIVE: To explore the improvement effect of probiotics combined with dietary fiber on constipation in patients with schizophrenia. METHODS: To compare the improvement scores of constipation, constipation symptoms, quality of life, neurotrophic factors-related indicators, and clinical efficacy between the two groups. RESULTS: There was no statistically significant difference in Cleveland Constipation Scoring System (CCS) scores in the control group before and after treatment (p > 0.05), while the CCS scores in the observation group decreased significantly after treatment (p < 0.05); Patient Assessment of Constipation Symptoms scores significantly decreased in the observation group compared to the control group (p < 0.05), with no significant difference in Patient Assessment of Constipation Quality of Life scores between the two groups pre- and post-treatment; Neuron-specific enolase levels decreased significantly in both groups post-treatment, while brain-derived neurotrophic factor, neuregulin-1, and nerve growth factor levels increased significantly, with a more pronounced rise in the observation group (p < 0.05). Additionally, the total effective rate of clinical treatment in the observation group was higher than that in the control group (p < 0.05). CONCLUSION: Probiotics combined with dietary fiber can improve constipation symptoms in patients with schizophrenia accompanied by constipation, effectively maintain the balance of intestinal microbiota, and improve the quality of life of patients. Additionally, levels of neurotrophic factors associated with bowel function and neurological health increased significantly, with a higher total effective rate of clinical treatment observed in the probiotics and dietary fiber group. These findings suggest the potential efficacy of probiotics and dietary fiber in managing constipation in this patient population.

10.
Asian J Surg ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38604844
11.
Adv Mater ; : e2314054, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573654

ABSTRACT

A cost-effective, scalable ball milling process is employed to synthesize the InGeSiP3 compound with a cubic ZnS structure, aiming to address the sluggish reaction kinetics of Si-based anodes for Lithium-ion batteries. Experimental measurements and first-principles calculations confirm that the synthesized InGeSiP3 exhibits significantly higher electronic conductivity, larger Li-ion diffusivity, and greater tolerance to volume change than its parent phases InGe (or Si)P2 or In (or Ge, or Si)P. These improvements stem from its elevated configurational entropy. Multiple characterizations validate that InGeSiP3 undergoes a reversible Li-storage mechanism that involves intercalation, followed by conversion and alloy reactions, resulting in a reversible capacity of 1733 mA h g-1 with an initial Coulombic efficiency of 90%. Moreover, the InGeSiP3-based electrodes exhibit exceptional cycling stability, retaining an 1121 mA h g-1 capacity with a retention rate of ≈87% after 1500 cycles at 2000 mA g-1 and remarkable high-rate capability, achieving 882 mA h g-1 at 10 000 mA g-1. Inspired by the distinctive characteristic of high entropy, the synthesis is extended to high entropy GaCu (or Zn)InGeSiP5, CuZnInGeSiP5, GaCuZnInGeSiP6, InGeSiP2S (or Se), and InGeSiPSSe. This endeavor overcomes the immiscibility of different metals and non-metals, paving the way for the electrochemical energy storage application of high-entropy silicon-phosphides.

12.
BMC Cancer ; 24(1): 531, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671390

ABSTRACT

OBJECTIVE: In the pathogenesis of myeloproliferative neoplasms (MPN), inflammation plays an important role. However, it is unclear whether there is a causal link between inflammation and MPNs. We used a bidirectional, two-sample Mendelian randomization (MR) approach to investigate the causal relationship between systemic inflammatory cytokines and myeloproliferative neoplasms. METHODS: A genome-wide association study (GWAS) of 8293 European participants identified genetic instrumental variables for circulating cytokines and growth factors. Summary statistics of MPN were obtained from a GWAS including 1086 cases and 407,155 controls of European ancestry. The inverse-variance-weighted method was mainly used to compute odds ratios (OR) and 95% confidence intervals (Cl). RESULTS: Our results showed that higher Interleukin-2 receptor, alpha subunit (IL-2rα) levels, and higher Interferon gamma-induced protein 10 (IP-10) levels were associated with an increased risk of MPN (OR = 1.36,95%CI = 1.03-1.81, P = 0.032; OR = 1.55,95%CI = 1.09-2.22, P = 0.015; respectively).In addition, Genetically predicted MPN promotes expression of the inflammatory cytokines interleukin-10 (IL-10) (BETA = 0.033, 95% CI = 0.003 ~ 0.064, P = 0.032) and monokine induced by interferon-gamma (MIG) (BETA = 0.052, 95% CI = 0.002-0.102, P = 0.043) and, on activation, normal T cells express and secrete RANTES (BETA = 0.055, 95% CI = 0.0090.1, P = 0.018). CONCLUSION: Our findings suggest that cytokines are essential to the pathophysiology of MPN. More research is required if these biomarkers can be used to prevent and treat MPN.


Subject(s)
Cytokines , Genome-Wide Association Study , Mendelian Randomization Analysis , Myeloproliferative Disorders , Humans , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/blood , Cytokines/blood , Polymorphism, Single Nucleotide , Risk Factors , Male , Genetic Predisposition to Disease , Female , Case-Control Studies , Inflammation/genetics , Inflammation/blood
13.
Microorganisms ; 12(4)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38674698

ABSTRACT

Chromium (Cr) contamination, widely present in the environment, poses a significant threat to both ecology and human health. Microbial remediation technology has become a hot topic in the field of heavy metal remediation due to its advantages, such as environmental protection, low cost, and high efficiency. This paper focused on using various characterization and analysis methods to investigate the bioreduction effect and mechanism of microorganisms on Cr(VI) under various influencing factors. The main contents and conclusions were as follows: Shewanella oneidensis MR-1 was selected as the target strain for studying its reduction of Cr(VI) at different inoculation amounts, temperatures, pH values, time intervals, etc. The results indicated that S. oneidensis MR-1 exhibited an optimal reduction effect on Cr(VI) at pH 7 and a temperature of 35 °C. Additionally, electron shuttles (ESs), including humic acid (HA) and 9,10-antraquinone-2,6-disulfonate (AQDS), were introduced into the degradation system to improve the reduction efficiency of S. oneidensis MR-1. Upon adding goethite further, S. oneidensis MR-1 significantly enhanced its reducing ability by converting Fe(III) minerals to Fe(II) and reducing Cr(VI) to Cr(III) during electron transfer.

14.
Ecotoxicol Environ Saf ; 276: 116296, 2024 May.
Article in English | MEDLINE | ID: mdl-38593498

ABSTRACT

Microplastics (MPs), which are prevalent and increasingly accumulating in aquatic environments. Other pollutants coexist with MPs in the water, such as pesticides, and may be carried or transferred to aquatic organisms, posing unpredictable ecological risks. This study sought to assess the adsorption of lambda-cyhalothrin (LCT) by virgin and aged polyethylene MPs (VPE and APE, respectively), and to examine their influence on LCT's toxicity in zebrafish, specifically regarding acute toxicity, oxidative stress, gut microbiota and immunity. The adsorption results showed that VPE and APE could adsorb LCT, with adsorption capacities of 34.4 mg∙g-1 and 39.0 mg∙g-1, respectively. Compared with LCT exposure alone, VPE and APE increased the acute toxicity of LCT to zebrafish. Additionally, exposure to LCT and PE-MPs alone can induce oxidative stress in the zebrafish gut, while combined exposure can exacerbate the oxidative stress response and intensify intestinal lipid peroxidation. Moreover, exposure to LCT or PE-MPs alone promotes inflammation, and combined exposure leads to downregulation of the myd88-nf-κb related gene expression, thus impacting intestinal immunity. Furthermore, exposure to APE increased LCT toxicity to zebrafish more than VPE. Meanwhile, exposure to PE-MPs and LCT alone or in combination has the potential to affect gut microbiota function and alter the abundance and diversity of the zebrafish gut flora. Collectively, the presence of PE-MPs may affect the toxicity of pesticides in zebrafish. The findings emphasize the importance of studying the interaction between MPs and pesticides in the aquatic environment.


Subject(s)
Gastrointestinal Microbiome , Microplastics , Nitriles , Oxidative Stress , Polyethylene , Pyrethrins , Water Pollutants, Chemical , Zebrafish , Animals , Pyrethrins/toxicity , Nitriles/toxicity , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Oxidative Stress/drug effects , Gastrointestinal Microbiome/drug effects , Polyethylene/toxicity , Adsorption
15.
Stem Cells Dev ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38623785

ABSTRACT

The Hedgehog (Hh) signaling pathway orchestrates its influence through a dynamic interplay of Hh proteins, the cell surface receptor Ptch1, Smo, and Gli transcription factors, contributing to a myriad of developmental events. Indian Hedgehog (Ihh) and Gli zinc finger transcription factor 1 (Gli1) play crucial roles in developmental regulation within the Hh signaling pathway. Ihh regulates chondrocyte proliferation, differentiation, and bone formation, impacting the development of cranial bones, cartilage, and the temporomandibular joint (TMJ). Losing Ihh results in cranial bone malformation and decreased ossification and affects the formation of cranial base cartilage unions, TMJ condyles, and joint discs. Gli1 is predominantly expressed during early craniofacial development, and Gli1+ cells are identified as the primary mesenchymal stem cells (MSCs) for craniofacial bones, crucial for cell differentiation and morphogenesis. In addition, a complex mutual regulatory mechanism exists between Gli1 and Ihh, ensuring the normal function of the Hh signaling pathway by directly or indirectly regulating each other's expression levels. And the interaction between Ihh and Gli1 significantly impacts the normal development of craniofacial tissues. This review summarizes the pivotal roles of Gli1 and Ihh in the intricate landscape of mammalian craniofacial development and outlines the molecular regulatory mechanisms and intricate interactions governing the growth of bone and cartilage exhibited by Gli1 and Ihh, which provides new insights into potential therapeutic strategies for related diseases or researches of tissue regeneration.

16.
Sci Total Environ ; 930: 172787, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38677430

ABSTRACT

Grazing is widely used in more than one-forth of global terrestrial ecosystems, with three quarters are distributed on complex topography. Grazing and topography have both resulted in degradation of approximately 49 % of natural grasslands. However, research on the interaction between topography and livestock exclusion on grassland characteristics is scarce. This study was carried out on a typical steppe to explore the effect of topography and enclosure year on vegetation characteristics. Aboveground biomass, and species richness were examined for three different enclosure years (0, 3, and 6 years), on four slopes (0°, 15°, 30°, and 45° slope), and three aspects (flat, shady and sunny). The results indicated that: The aboveground biomass on the 0° slope had a greater value after 6 years of the enclosure. Aboveground biomass increased with the increasing enclosure year, while it decreased with increasing slope except enclosure for 0 year on shady slope. Aboveground biomass on the shady slopes was greater than on the sunny slopes. Species richness of community and perennial plants increased with increasing slope and enclosure year. The annual plants richness inversely correlated with slope and enclosure year. All plant diversity indexes increased with increasing enclosure year. Margalef and Shannon-wiener indexes decreased with increasing slope, while Simpson and Pielou indexes increased. This paper demonstrates that aspect, slope and enclosure affect aboveground biomass by affecting other vegetation characteristics. In conclusion, grassland production can be improved with moderate livestock exclusion under different topography.


Subject(s)
Biodiversity , Biomass , Grassland , Livestock , China , Animals , Plants , Ecosystem , Herbivory , Environmental Monitoring/methods , Conservation of Natural Resources
17.
Phytomedicine ; 129: 155600, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38614043

ABSTRACT

BACKGROUND: Breast cancer stands as the most common malignancy among women globally and a leading cause of cancer-related mortality. Conventional treatments, such as surgery, hormone therapy, radiotherapy, chemotherapy, and small-molecule targeted therapy, often fall short of addressing the complexity and heterogeneity of certain breast cancer subtypes, leading to drug resistance and metastatic progression. Thus, the search for novel therapeutic targets and agents is imperative. Given their low toxicity and abundant variety, natural products and their derivatives are increasingly considered valuable sources for small-molecule anticancer drugs. PURPOSE: This review aims to elucidate the pharmacological impacts and underlying mechanisms of active compounds found in select natural products and their derivatives, primarily focusing on breast cancer treatment. It intends to underscore the potential of these substances in combating breast cancer and guide future research directions for the development of natural product-based therapeutics. METHODS: We conducted comprehensive searches in electronic databases such as PubMed, Web of Science, and Scopus until October 2023, using keywords such as 'breast cancer', 'natural products', 'derivatives', 'mechanism', 'signaling pathways', and various keyword combinations. RESULTS: The review presents a spectrum of phytochemicals, including but not limited to flavonoids, polyphenols, and alkaloids, and examines their actions in various animal and cellular models of breast cancer. The anticancer effects of these natural products and derivatives are manifested through diverse mechanisms, including induction of cell death via apoptosis and autophagy, and suppression of tumor angiogenesis. CONCLUSION: An increasing array of natural products and their derivatives are proving effective against breast cancer. Future therapeutic strategies can benefit from strategic enhancement of the anticancer properties of natural compounds, optimization for targeted action, improved bioavailability, and minimized side effects. The forthcoming research on natural products should prioritize these facets to maximize their therapeutic potential.


Subject(s)
Biological Products , Breast Neoplasms , Drug Discovery , Phytochemicals , Humans , Breast Neoplasms/drug therapy , Biological Products/pharmacology , Biological Products/chemistry , Biological Products/therapeutic use , Female , Phytochemicals/pharmacology , Phytochemicals/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Antineoplastic Agents, Phytogenic/chemistry , Animals , Signal Transduction/drug effects
18.
Int J Pharm ; 657: 124160, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38663642

ABSTRACT

Addressing the pervasive issue of bacteria and biofilm infections is crucial in the development of advanced antifouling wound dressings. In this study, a novel wound healing treatment using sulfobetaine (SBMA) decorated electrospun fibrous membrane based on polycaprolactone (PCL)/nitric oxide (NO) donors was developed. The fabrication involved a dual strategy, first integrating NO donors into mesoporous polydopamine (MPDA) and complexed with PCL/PEI to electrospin nanofibers. The fibrous membrane exhibited a potent antibacterial response upon irradiation at 808 nm, owing to a combination of NO and photothermal effect that effectively targets bacteria and disrupts biofilms. Surface functionalization of the membrane with PEI allowed for the attachment of SBMA via Michael addition, fabricating a zwitterionic surface, which significantly hinders protein adsorption and reduces biofilm formation on the wound dressing. In vitro and in vivo assessments confirmed the rapid bactericidal capabilities and its efficacy in biofilm eradication. Combining photothermal activity, targeted NO release and antifouling surface, this multifaceted wound dressing addresses key challenges in bacterial infection management and biofilm eradication, promoting efficient wound healing.


Subject(s)
Anti-Bacterial Agents , Bandages , Betaine , Biofilms , Indoles , Nanofibers , Polyesters , Wound Healing , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/administration & dosage , Biofilms/drug effects , Animals , Wound Healing/drug effects , Polyesters/chemistry , Indoles/chemistry , Indoles/pharmacology , Betaine/chemistry , Betaine/pharmacology , Betaine/analogs & derivatives , Nanofibers/chemistry , Polymers/chemistry , Nitric Oxide/metabolism , Staphylococcus aureus/drug effects , Biofouling/prevention & control , Nitric Oxide Donors/pharmacology , Nitric Oxide Donors/chemistry , Mice , Surface Properties , Escherichia coli/drug effects , Polyethyleneimine/chemistry
19.
Cancer Lett ; 591: 216867, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38593919

ABSTRACT

Autophagy, a self-digestion mechanism, has emerged as a promising target in the realm of cancer therapy, particularly in bladder cancer (BCa), a urological malignancy characterized by dysregulated biological processes contributing to its progression. This highly conserved catabolic mechanism exhibits aberrant activation in pathological events, prominently featured in human cancers. The nuanced role of autophagy in cancer has been unveiled as a double-edged sword, capable of functioning as both a pro-survival and pro-death mechanism in a context-dependent manner. In BCa, dysregulation of autophagy intertwines with cell death mechanisms, wherein pro-survival autophagy impedes apoptosis and ferroptosis, while pro-death autophagy diminishes tumor cell survival. The impact of autophagy on BCa progression is multifaceted, influencing metastasis rates and engaging with the epithelial-mesenchymal transition (EMT) mechanism. Pharmacological modulation of autophagy emerges as a viable strategy to impede BCa progression and augment cell death. Notably, the introduction of nanoparticles for targeted autophagy regulation holds promise as an innovative approach in BCa suppression. This review underscores the intricate interplay of autophagy with cell death pathways and its therapeutic implications in the nuanced landscape of bladder cancer.


Subject(s)
Autophagy , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Autophagy/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Epithelial-Mesenchymal Transition/drug effects , Nanoparticles , Apoptosis/drug effects , Animals , Ferroptosis/drug effects , Cell Death/drug effects
20.
Signal Transduct Target Ther ; 9(1): 98, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609366

ABSTRACT

Evidence suggests associations between COVID-19 patients or vaccines and glycometabolic dysfunction and an even higher risk of the occurrence of diabetes. Herein, we retrospectively analyzed pancreatic lesions in autopsy tissues from 67 SARS-CoV-2 infected non-human primates (NHPs) models and 121 vaccinated and infected NHPs from 2020 to 2023 and COVID-19 patients. Multi-label immunofluorescence revealed direct infection of both exocrine and endocrine pancreatic cells by the virus in NHPs and humans. Minor and limited phenotypic and histopathological changes were observed in adult models. Systemic proteomics and metabolomics results indicated metabolic disorders, mainly enriched in insulin resistance pathways, in infected adult NHPs, along with elevated fasting C-peptide and C-peptide/glucose ratio levels. Furthermore, in elder COVID-19 NHPs, SARS-CoV-2 infection causes loss of beta (ß) cells and lower expressed-insulin in situ characterized by islet amyloidosis and necrosis, activation of α-SMA and aggravated fibrosis consisting of lower collagen in serum, an increase of pancreatic inflammation and stress markers, ICAM-1 and G3BP1, along with more severe glycometabolic dysfunction. In contrast, vaccination maintained glucose homeostasis by activating insulin receptor α and insulin receptor ß. Overall, the cumulative risk of diabetes post-COVID-19 is closely tied to age, suggesting more attention should be paid to blood sugar management in elderly COVID-19 patients.


Subject(s)
COVID-19 , Diabetes Mellitus , Adult , Animals , Humans , Aged , SARS-CoV-2 , Receptor, Insulin , C-Peptide , DNA Helicases , Retrospective Studies , Poly-ADP-Ribose Binding Proteins , RNA Helicases , RNA Recognition Motif Proteins , Glucose
SELECTION OF CITATIONS
SEARCH DETAIL
...