Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Q J Exp Psychol (Hove) ; 75(12): 2318-2331, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35034530

ABSTRACT

Research has shown that body size judgements are frequently biased, or inaccurate. Critically, judgement biases are further exaggerated for individuals with eating disorders, a finding that has been attributed to difficulties integrating body features into a perceptual whole. However, current understanding of which body features are integrated when judging body size is lacking. In this study, we examine whether individuals integrate three-dimensional (3D) cues to body volume when making body size judgements. Computer-generated body stimuli were presented in a 3D Virtual Reality environment. Participants (N = 412) were randomly assigned to one of the two conditions: in one condition, the to-be-judged body was displayed binocularly (containing 3D cues to body volume); in the other, bodies were presented monocularly (two-dimensional [2D] cues only). Across 150 trials, participants were required to make a body size judgement of a target female body from a third-person point of view using an unmarked visual analogue scale (VAS). It was found that 3D cues significantly influenced body size judgements. Namely, thin 3D bodies were judged smaller, and overweight 3D bodies were judged larger, than their 2D counterpart. Furthermore, to reconcile these effects, we present evidence that the two perceptual biases, regression to the mean and serial dependence, were reduced by the additional 3D feature information. Our findings increase our understanding of how body size is perceptually encoded and creates testable predictions for clinical populations exhibiting integration difficulties.


Subject(s)
Feeding and Eating Disorders , Virtual Reality , Female , Humans , Cues , Judgment , Body Size
2.
Front Psychol ; 13: 1003250, 2022.
Article in English | MEDLINE | ID: mdl-36687820

ABSTRACT

Introduction: Body size judgements are frequently biased, or inaccurate, and these errors are further exaggerated for individuals with eating disorders. Within the eating disorder literature, it has been suggested that exaggerated errors in body size judgements are due to difficulties with integration. Across two experiments, we developed a novel integration task, named the Ebbinghaus Illusion for Bodies in Virtual Reality (VR), to assess whether nearby bodies influence the perceived size of a single body. VR was used to simulate the appearance of a small crowd around a central target body. Method and Results: In Experiment 1 (N = 412), participants were required to judge the size of a central female target within a crowd. Experiment 1 revealed an Ebbinghaus Illusion, in which a central female appeared larger when surrounded by small distractors, but comparatively smaller when surrounded by large distractors. In other words, the findings of Experiment 1 demonstrate that surrounding crowd information is integrated when judging an individual's body size; a novel measure of spatial integration (i.e., an Ebbinghaus Illusion for Bodies in VR). In Experiment 2 (N = 96), female participants were selected based on high (n = 43) and low (n = 53) eating disorder symptomatology. We examined whether the magnitude of this illusion would differ amongst those with elevated versus low eating disorder symptomatology, in accordance with weak central coherence theory, with the high symptomatology group displaying less spatial integration relative to the low group. The results of Experiment 2 similarly found an Ebbinghaus Illusion for Bodies in VR. However, illusion magnitude did not vary across high and low symptomatology groups. Discussion: Overall, these findings demonstrate that surrounding crowd information is integrated when judging individual body size; however, those with elevated eating disorder symptomatology did not show any integration deficit on this broader measure of spatial integration.

SELECTION OF CITATIONS
SEARCH DETAIL
...