Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Ethnopharmacol ; 241: 112013, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31170517

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Portulaca oleracea L. is used not only as an edible potherb but also as a traditional remedy to assuage the symptoms of various diseases. The water extract of P. oleracea (WEPO) has been found to effectively alleviate the signs and symptoms of pandemic influenza A virus (IAV) infection. However, the anti-IAV activity of WEPO is still unclear. AIM OF STUDY: In this study, we aimed to elucidate the anti-IAV activity of WEPO and investigate the potential mechanisms underlying the anti-H1N1 activity. MATERIALS AND METHODS: The cytotoxicity of WEPO and other Chinese herbs was measured using the cell viability test. The anti-IAV activity of WEPO was determined using the plaque reduction assay, real-time reverse transcription-polymerase chain reaction, and immunofluorescence assay. The virucidal activity of WEPO was determined by labeling the virus and using the time-dependent virucidal activity assay. RESULTS: The half-maximal effective concentration of WEPO for A/WSN/1933 (H1N1) was very low, with a high selectivity index. The production of circulating H1N1 and H3N2 was suppressed by WEPO. Additionally, the antiviral activity of WEPO was observed in the early stage of IAV infection. Furthermore, WEPO inhibited the binding of virus to cells and exhibited good virucidal activity, significantly decreasing the viral load within 10 min to prevent viral infection. CONCLUSIONS: We demonstrate the anti-IAV activity of WEPO and strongly recommend the use of WEPO, as an herbal regimen, to prevent and treat H1N1 infection at an early stage.


Subject(s)
Antiviral Agents/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Plant Extracts/pharmacology , Portulaca , A549 Cells , Animals , Dogs , Humans , Influenza A Virus, H1N1 Subtype/physiology , Madin Darby Canine Kidney Cells , Plant Components, Aerial , Viral Plaque Assay
2.
ACS Appl Mater Interfaces ; 11(1): 1163-1173, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30543414

ABSTRACT

Plasmonic material has emerged with multifunctionalities for its remarkable tailoring light emission, reshaping density of states (DOS), and focusing subwavelength light. However, restricted by its propagation loss and narrowband resonance in nature, it is a challenge for plasmonic material to provide a broadband DOS to advance its application. Here, we develop a novel nanoscale core-shell hyperbolic structure that possesses a remarkable coupling effect inside the multishell nanoscale composite owing to a higher DOS and a longer time of collective oscillations of the electrons than the plasmonic-based pure-metal nanoparticles. Subsequently, a giant localized electromagnetic wave of surface plasmon resonance is formed at the surface, causing pronounced out-coupling effect. Specifically, the nanoscale core-shell hyperbolic structure confines the energy well without being decayed, reducing the propagation loss and then achieving an unprecedented stimulated emission (random lasing action by dye molecule) with a record ultralow threshold (∼30 µJ/cm2). Besides, owing to the radial symmetry of the nanoscale core-shell hyperbolic structure, the excitation of high wavevector modes and induced additional DOS are easily accessible. We believe that the nanoscale core-shell hyperbolic structure paves a way to enlarge the development of plasmonic-based applications, such as high optoelectronic conversion efficiency of solar cells, great power extraction of light-emitting diodes, wide spectra photodetectors, carrying the emitter inside the core part as quantitative fluorescence microscopy and bioluminescence imaging system for in vivo and in vitro research on human body.

3.
Sci Rep ; 8(1): 9469, 2018 Jun 21.
Article in English | MEDLINE | ID: mdl-29930247

ABSTRACT

Transient technology is deemed as a paramount breakthrough for its particular functionality that can be implemented at a specific time and then totally dissolved. Hyperbolic metamaterials (HMMs) with high wave-vector modes for negative refraction or with high photonic density of states to robustly enhance the quantum transformation efficiency represent one of the emerging key elements for generating not-yet realized optoelectronics devices. However, HMMs has not been explored for implementing in transient technology. Here we show the first attempt to integrate transient technology with HMMs, i.e., transient HMMs, composed of multilayers of water-soluble and bio-compatible polymer and metal. We demonstrate that our newly designed transient HMMs can also possess high-k modes and high photonic density of states, which enables to dramatically enhance the light emitter covered on top of HMMs. We show that these transient HMMs devices loss their functionalities after immersing into deionized water within 5 min. Moreover, when the transient HMMs are integrated with a flexible substrate, the device exhibits an excellent mechanical stability for more than 3000 bending cycles. We anticipate that the transient HMMs developed here can serve as a versatile platform to advance transient technology for a wide range of application, including solid state lighting, optical communication, and wearable optoelectronic devices, etc.

SELECTION OF CITATIONS
SEARCH DETAIL
...