Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Oncol (Dordr) ; 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37878209

ABSTRACT

Renal cell carcinoma (RCC) accounts for about 2% of cancer diagnoses and deaths worldwide. Recent studies emphasized the critical involvement of microbial populations in RCC from oncogenesis, tumor growth, and response to anticancer therapy. Microorganisms have been shown to be involved in various renal physiological and pathological processes by influencing the immune system function, metabolism of the host and pharmaceutical reactions. These findings have extended our understanding and provided more possibilities for the diagnostic or therapeutic development of microbiota, which could function as screening, prognostic, and predictive biomarkers, or be manipulated to prevent RCC progression, boost anticancer drug efficacy and lessen the side effects of therapy. This review aims to present an overview of the roles of microbiota in RCC, including pertinent mechanisms in microbiota-related carcinogenesis, the potential use of the microbiota as RCC biomarkers, and the possibility of modifying the microbiota for RCC prevention or treatment. According to these scientific findings, the clinical translation of microbiota is expected to improve the diagnosis and treatment of RCC.

2.
Materials (Basel) ; 12(22)2019 Nov 09.
Article in English | MEDLINE | ID: mdl-31717595

ABSTRACT

This work aims to assess ionic conduction in anhydrous cement particles and hydrated cement pastes with aging periods of 5-25 days. When a cement sample was humidified (relative humidity = 100%) over the range of 50-100 °C, it exhibited bulk conductivities of 10-3-10-2 S cm-1, regardless of the hydration level, whereas the interfacial conductivities varied in the range of 10-7-10-3 S cm-1, depending on the structural defects or conduction pathways of the sample. Both the bulk and interfacial conductivities were increased to 0.01 S cm-1 or higher at 100 °C, although the sample required previous moistening with water mist. The major charge carrier in the sample was determined to be hydroxide ions, and the total ion transport number was approximately 1. Exposing the sample to a mixture of carbon dioxide and water vapor caused a decrease in the bulk and interfacial conductivities; however, the bulk conductivity was returned to the initial value by treatment with an acid.

SELECTION OF CITATIONS
SEARCH DETAIL
...