Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Dis Model ; 9(2): 354-372, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38385019

ABSTRACT

To effectively combat emerging infectious diseases like COVID-19, it is crucial to adopt strict prevention and control measures promptly to effectively contain the spread of the epidemic. In this paper, we propose a transmission model to investigate the influence of two control strategies: reducing contact numbers and improving medical resources. We examine these strategies in terms of constant control and time-varying control. Through sensitivity analysis on two reproduction numbers of the model with constant control, we demonstrate that reducing contact numbers is more effective than improving medical resources. Furthermore, these two constant controls significantly influence the peak values and timing of infections. Specifically, intensifying control measures can reduce peak values, albeit at the expense of delaying the peak time. In the model with time-varying control, we initially explore the corresponding optimal control problem and derive the characteristic expression of optimal control. Subsequently, we utilize real data from January 10th to April 12th, 2020, in Wuhan city as a case study to perform parameter estimation by using our proposed improved algorithm. Our findings illustrate that implementing optimal control measures can effectively reduce infections and deaths, and shorten the duration of the epidemic. Then, we numerically explore that implementing control measures promptly and increasing intensity to reduce contact numbers can make actual control be more closer to optimized control. Finally, we utilize the real data from October 31st to November 18th, 2021, in Hebei province as a second case study to validate the feasibility of our proposed suggestions.

2.
Math Biosci Eng ; 20(12): 20914-20938, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38124581

ABSTRACT

This paper aims to explore the complex dynamics and impact of vaccinations on controlling epidemic outbreaks. An epidemic transmission model which considers vaccinations and two different infection statuses with different infectivity is developed. In terms of a dynamic analysis, we calculate the basic reproduction number and control reproduction number and discuss the stability of the disease-free equilibrium. Additionally, a numerical simulation is performed to explore the effects of vaccination rate, immune waning rate and vaccine ineffective rate on the epidemic transmission. Finally, a sensitivity analysis revealed three factors that can influence the threshold: transmission rate, vaccination rate, and the hospitalized rate. In terms of optimal control, the following three time-related control variables are introduced to reconstruct the corresponding control problem: reducing social distance, enhancing vaccination rates, and enhancing the hospitalized rates. Moreover, the characteristic expression of optimal control problem. Four different control combinations are designed, and comparative studies on control effectiveness and cost effectiveness are conducted by numerical simulations. The results showed that Strategy C (including all the three controls) is the most effective strategy to reduce the number of symptomatic infections and Strategy A (including reducing social distance and enhancing vaccination rate) is the most cost-effective among the three strategies.


Subject(s)
Epidemics , Epidemics/prevention & control , Disease Outbreaks/prevention & control , Vaccination , Computer Simulation , Basic Reproduction Number
3.
Polymers (Basel) ; 15(24)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38139949

ABSTRACT

An experimental investigation was focused on the failure behavior of unidirectional fiber-reinforced polymers when subjected to combined longitudinal/transverse compression and in-plane shear due to off-axis loading. Block-shaped and end-loaded specimens, spanning ten different fiber orientations (0°, 5°, 10°, 15°, 20°, 30°, 45°, 60°, 75°, and 90° with respect to the loading direction), were loaded to ultimate failure using a dedicated fixture. Different failure modes, including longitudinal compression, in-plane shear, and transverse compression, were identified, along with distinctive characteristics of the corresponding failure envelopes. Four physically based failure theories-Hashin, Camanho, Puck, and LaRC05-were subjected to a comparative analysis. Criteria derived from the concept of the action plane consistently outperformed in describing matrix-dominated failures, providing both qualitative and quantitative predictions of failure stresses and fracture plane orientation. However, for fiber-dominated failures, these theories seem to fall short in providing satisfactory predictions, particularly in accurately describing the influence of shear on fiber compression failure. Although criteria based on fiber-kinking theory can reasonably explain the formation of kink bands, they tend to yield overly conservative results. Recalibrations and minor refinement based on experimental results were implemented, leading to an improved agreement. Finally, the constructive role of off-axis compression tests in characterizing the failure behavior of unidirectional composites is discussed.

4.
Materials (Basel) ; 16(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37834586

ABSTRACT

In order to improve the performance of 17-4PH under wear conditions (e.g., gears, etc.) and reduce the cost of metal additive manufacturing, TiC needs to be added to 17-4PH to improve its wear resistance. Micron-sized TiC-reinforced 17-4PH stainless steel composites with different contents (0-15 wt%) have been prepared by fused filament fabrication 3D printing for the first time. The effects of TiC content on the structure and properties of composites were studied by XRD, SEM, and sliding wear. The obtained results show that the microstructure of TiC-reinforced 17-4PH stainless steel composites mainly consists of austenite. With the increase in TiC content, the grain size is obviously refined, and the average grain size decreases from 65.58 µm to 19.41 µm. The relative densities of the composites are maintained above 95% with the addition of TiC. The interfaces between TiC particles and the 17-4PH matrix are metallurgical bonds. The hardness of the composites increases and then decreases with increasing TiC content, and the maximum hardness (434 HV) is obtained after adding 10 wt.% of TiC content. The wear rate of the composites was reduced from 2.191 × 10-5 mm3 /(N‧m) to 0.509 × 10-5 mm3 /(N‧m), which is a 3.3-fold increase in wear resistance. The COF value declines with the addition of TiC. The reasons for the significant improvement in the composites' performance are fine grain strengthening, solid solution strengthening, and second phase strengthening. The wear mechanisms are mainly abrasive and adhesive wear. Compared to the 10 wt% TiC composites, the 15 wt% TiC composites show limited improvement in wear resistance due to more microcracks and TiC agglomeration.

5.
Foods ; 12(23)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38231648

ABSTRACT

Multiple varieties of flaxseeds have been identified in the world, yet the relationship between these varieties, their agronomic traits, and their seeds' quality remains unclear. This study aimed to determine the level of lignan, vitamins and carotenoids in 40 selected flaxseed varieties, and the relationship between varieties, agronomic traits, and seed quality was investigated. In this study, notably, fiber flax variety No. 225 exhibited the highest lignan content among all tested seeds. Additionally, oil variety No. 167 demonstrated the highest level of α-tocotrienol (α-T3), ß-tocopherol (ß-T), γ-tocotrienol (γ-T3), and ß-carotene (ß-Car.). Conversely, intermediate flax variety No. 16 displayed the highest content of α-tocopherol (α-T), but lowest content of lutein (Lut.), zeaxanthin (Zea.), ß-carotene (ß-Car.), and total carotenoids (Total Car.). Furthermore, a correlation was observed between petal color with the lignan, while a strong correlation has been explored in seed yield, seed type, plant natural height, and fiber content in straw. Nevertheless, further investigation is required to elucidate the internal relationship between varieties with compositions.

6.
Materials (Basel) ; 15(16)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36013684

ABSTRACT

This paper presents an experimental investigation on the mechanisms of damage onset and evolution in unidirectional PEEK/AS4 carbon fibre reinforced thermoplastic (CFRTP) composites subjected to off-axis compressive loadings. A test fixture was designed to prevent buckling, splitting, and end collapsing of the specimens during the test. A series of compression tests were conducted with specimens of various off-axis angles. The displacement and strain fields of all specimens during the tests were evaluated by the digital image correlation (DIC) method. In combination with the DIC results, the influence of the off-axis angles on the failure mechanisms and nonlinear stress-strain responses were analysed. The corresponding failure mechanisms were examined by scanning electron microscopy (SEM). The fracture angles of the tested specimens were evaluated and analysed according to Puck's theory. The off-axis compression failure envelope based on LaRC05 and Hashin criteria was presented and compared to the experimental results. It was shown that the LaRC05 criterion can provide accurate predictions when the off-axis angle is larger than 15°. The complex failure mechanisms were analysed to better understand the effect of ductility of the thermoplastic matrix to the composites. The series of tests provide an experimental failure envelope in combined stress states and can be used for the evaluation of failure theories and the criteria of thermoplastic composites.

7.
Theor Popul Biol ; 132: 82-91, 2020 04.
Article in English | MEDLINE | ID: mdl-31926932

ABSTRACT

Mosquitoes cause more human suffering than any other organism. It is estimated that over one million people worldwide die from mosquito-borne diseases every year. With the continuous efforts of many researchers, Wolbachia gets more and more attention due to its characteristics of maternal transmission in mosquito population and it may cause cytoplasmic incompatibility (CI) which makes healthy females cannot fertilize normally after mating with infected males. In this paper, mathematical models are established to study Wolbachia transmission in mosquito population, and integrated mosquito control strategies are explored. Firstly, a classical ordinary differential system with general birth and death rate functions is established to describe the maternal transmission and CI effect. It is shown that the replacement strategy that the Wolbachia-uninfected mosquitoes are replaced by the infected ones is determined by the initial infection frequency. And Wolbachia spreads more easily for greater maternal transmission and CI rate. Moreover, all the wild mosquitoes will eventually be infected with Wolbachia if the maternal transmission is complete. Secondly, an impulsive state feedback control model is constructed to describe the integrated mosquito control. Besides Wolbachia, insecticides are sprayed when the quantity of mosquitoes reaches some Economic Threshold. The existence and stability of Wolbachia replacement periodic solution are discussed. Finally, some discussions are done and the future research directions are prospected.


Subject(s)
Aedes , Insecticides , Vector Borne Diseases , Wolbachia , Animals , Female , Humans , Male , Mosquito Control
8.
J Theor Biol ; 448: 53-65, 2018 07 07.
Article in English | MEDLINE | ID: mdl-29625205

ABSTRACT

Dengue fever is one of the most important diseases causing illness and death all over the world, which brings tremendous threat to peoples' life and property security, especially in the undeveloped areas. The main vector, Aedes aegypti, must be controlled to prevent the transmission of dengue. There are a variety of methods to control it. Wolbachia is an innovative bacterium which breaks the dengue transmission cycle for its characteristics of cytoplasmic incompatibility and maternal transmission. In this paper, a sex-structured model with birth pulse is established to study the spread of Wolbachia in mosquito population. The results show that if the maternal transmission is perfect, Wolbachia will spread successfully. Moreover, all the mosquitoes will be infected with Wolbachia. If the maternal transmission is imperfect, there are two locally asymptotically stable periodic solutions. One is Wolbachia-extinction periodic solution, and the other is part replacement periodic solution. Numerical simulations show that the initial occupancy of Wolbachia-infected mosquitoes has an important effect on the success of part replacement strategy. If the initial occupancy is relatively large, the part replacement strategy can be successful. Furthermore, in consideration of the fact that the initial occupancy cannot be always large enough in the wild nature, to release Wolbachia-infected mosquitoes artificially into the wild nature becomes necessary. Therefore, we add a release strategy into the sex-structured model with birth pulse for further analysis. The condition to ensure the stability of the Wolbachia total replacement periodic solution is obtained. Finally, the effect of the release quantity is simulated numerically.


Subject(s)
Aedes/microbiology , Dengue/prevention & control , Pest Control, Biological/methods , Wolbachia/pathogenicity , Animals , Computer Simulation , Dengue/transmission , Dengue/virology , Models, Theoretical , Mosquito Vectors/microbiology , Mosquito Vectors/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...