Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Mater ; 17(4)2022 05 10.
Article in English | MEDLINE | ID: mdl-35483341

ABSTRACT

This study intends to improve the antibacterial and mineralization performance of photocurable dental resin composites (DRCs) to reduce the possibility of repair failure caused by secondary caries. To the end, functionalized hydroxyapatite (HAp), including Zn-doped (Zn/HAp) and Sr-doped HAp (Sr/HAp), were added into the bisphenol A glycidyl methacrylate and triethylene glycol dimethacrylate mixture, providing the DRCs with antibacterial and mineralization capacity, respectively. By controlling the total amount of inorganic filler at 70 wt%, these HAp powders were introduced into the resin matrix with barium glass powder (BaGP), while the ratios of HAp to aGP varied from 0:70 to 8:62. And the 8 wt% of HAp could be pure HAp, Zn/HAp, Sr/HAp, or Zn/HAp +Sr/HAp in different ratios (i.e. 2:6, 4:4, 6:2). Though the fillers varied, the obtained DRCs displayed similar micro-morphology, flexural strength (∼110 MPa) and modulus (∼7 GPa), and Vickers hardness (∼65). When the doping amounts of Sr2+/Zn2+reached 15 mol% of Ca2+in the Sr/HAp and Zn/HAp, the DRCs displayed a high antibacterial activity by killing ∼95%Staphylococcus aureus, and induced rich mineral deposition on surface in simulated body fluid. The incorporation of the Zn/HAp and Sr/HAp into the DRCs did not cause significant cytotoxicity, with L929 fibroblasts remaining >99% viability as cultured in extracts made from the DRCs. Therein, the DRC preparations containing both Zn/HAp and Sr/HAp have achieved improvements in both the biomineralization and antibacterial performance, as well as, having sufficient mechanical properties and excellent biocompatibility for dental restoration.


Subject(s)
Hydroxyapatites , Zinc , Anti-Bacterial Agents/pharmacology , Composite Resins , Durapatite , Materials Testing , Strontium , Surface Properties
2.
Colloids Surf B Biointerfaces ; 204: 111785, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33932894

ABSTRACT

Bone is an electrically responsive tissue, so electroactive materials that can deliver electrical cues to bone are helpful for enhancing regeneration under electrical stimulation (ES), and conductive materials are crucial in ES transmission to determine osteogenesis. Compared with polyesters, biodegradable polyorganophosphazenes (POPPs) show superiority in the field of bone tissue engineering thanks to their rich phosphorus/nitrogen contents, suggesting that the combination of POPPs-based conductive substrates with ES may achieve synergistic enhancements on osteogenesis. Herein, conductive composite films were fabricated by blending poly[(alanine ethyl ester)-(glycine ethyl ester)]phosphazene (PAGP) with carbon nanotubes (CNTs). After surface modification with polydopamine (PDA), bone marrow mesenchymal stromal cells (BMSCs) were cultured on the films under ES, using the cells cultured on conductive films composed of poly(L-lactide) (PLLA) and CNTs as controls. The BMSCs on PAGP/CNT films demonstrated significantly faster proliferation rates and stronger osteogenic differentiation potentials than those on PLLA/CNT films, while cell attachments on the two PDA-coated substrates were similar. Under appropriate ES, further increases in the expressions of osteogenic markers as alkaline phosphatase, collagen I and calcium deposition were identified in comparison with the cases without ES. The contributions of the osteocompatible POPPs, the substrate conductivity and the ES treatment to enhanced osteogenesis suggested new strategies for the design of bone repair materials.


Subject(s)
Mesenchymal Stem Cells , Nanotubes, Carbon , Cell Differentiation , Cells, Cultured , Electric Stimulation , Osteogenesis , Polyesters , Tissue Engineering , Tissue Scaffolds
3.
Mitochondrial DNA B Resour ; 5(3): 2049-2050, 2020 May 13.
Article in English | MEDLINE | ID: mdl-33457738

ABSTRACT

Epicauta ruficeps is widely distributed in China and some countries in Southeast Asia, and plays an important role in medicine and biological control. The complete mitochondria genome of E. ruficeps was 15,813 bp in length, with 37 genes, including 13 PCGs, 22 tRNA genes (tRNAs), and two rRNA genes (rRNAs). The positions and sequences of genes were consistent with those of known Meloidae species. The nucleotide composition was highly A + T biased, accounting for ∼65% of the whole mitogenome. The complete mitogenome of E. ruficeps would help understand Meloidae evolution.

4.
Sci Rep ; 7(1): 2906, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28588272

ABSTRACT

Eu-doped calcium aluminate was synthesized via the low-cost self-propagating combustion synthesis (SPCS) technique, whose phase constitutions were identified as Ca9Al6O18 and Ca3Al2O6. The Ca2+ ions in Ca9Al6O18 rather than Ca3Al2O6 phase were replaced by Eu3+ ions. The product exhibits the superior luminescent property and photocatalytic activity, which may find potential applications in the display devices and environment treatments.

SELECTION OF CITATIONS
SEARCH DETAIL
...