Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Stem Cells ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982795

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis is a chronic progressive interstitial lung disease characterized by alveolar epithelial cell (AEC) injury and fibroblast activation. Inadequate autophagy in AECs may result from the activation of several signaling pathways following AEC injury, with glycoproteins serving as key receptor proteins. The core fucosylation (CF) modification in glycoproteins is crucial. Mesenchymal stem cells derived from bone marrow (BMSCs) have the ability to regenerate damaged tissue and treat pulmonary fibrosis (PF). This study aimed to elucidate the relationship and mechanism of interaction between BMSCs, CF modification, and autophagy in PF. METHODS: C57BL/6 male mice, alveolar epithelial cell-specific FUT8 conditional knockout (CKO) mice, and MLE12 cells were administered bleomycin (BLM), FUT8 siRNA, and mouse BMSCs, respectively. Experimental techniques including tissue staining, western blotting, immunofluorescence, autophagic flux detection, and flow cytometry were utilized in this study. RESULTS: First, we found that autophagy was inhibited while FUT8 expression was elevated in PF mice and BLM-induced AEC injury models. Subsequently, CKO mice and MLE12 cells transfected with FUT8 siRNA were employed to demonstrate that inhibition of CF modification induces autophagy in AECs and mitigates PF. Finally, mouse BMSCs were utilized to demonstrate that they alleviate the detrimental autophagy of AECs by inhibiting CF modification and decreasing PF. CONCLUSIONS: Suppression of CF modification enhanced the suppression of AEC autophagy and reduced PF in mice. Additionally, through the prevention of CF modification, BMSCs can assist AECs deficient in autophagy and partially alleviate PF.

2.
Animals (Basel) ; 14(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38998045

ABSTRACT

The aim of this study was to explore alterations in plasma metabolites among mares afflicted with endometritis. Mares were divided into two groups, namely, the equine endometritis group (n = 8) and the healthy control group (n = 8), which included four pregnant and four non-pregnant mares, using a combination of clinical assessment and laboratory confirmation. Plasma samples from both groups of mares were analyzed through untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics. A total of 28 differentially abundant metabolites were identified by screening and identifying differentially abundant metabolites and analyzing the pathway enrichment of differentially. Ten metabolites were identified as potential biomarkers for the diagnosis of endometritis in mares. Among them, seven exhibited a decrease in the endometritis groups, including hexadecanedioic acid, oleoyl ethanolamide (OEA), [fahydroxy(18:0)]12_13-dihydroxy-9z-octa (12,13-diHOME), deoxycholic acid 3-glucuronide (DCA-3G), 2-oxindole, and (+/-)9-HPODE, and 13(S)-HOTRE. On the other hand, three metabolites, adenosine 5'-monophosphate (AMP), 5-hydroxy-dl-tryptophan (5-HTP), and l-formylkynurenine, demonstrated an increase. These substances primarily participate in the metabolism of tryptophan and linolenic acid, as well as fat and energy. In conclusion, metabolomics revealed differentially abundant metabolite changes in patients with mare endometritis. These specific metabolites can be used as potential biomarkers for the non-invasive diagnosis of mare endometritis.

3.
BMC Cancer ; 24(1): 773, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937694

ABSTRACT

OBJECTIVE: Ubiquitin-specific peptidase 10 (USP10), a typical de-ubiquitinase, has been found to play a double-edged role in human cancers. Previously, we reported that the expression of USP10 was negatively correlated with the depth of gastric wall invasion, lymph node metastasis, and prognosis in gastric cancer (GC) patients. However, it remains unclear whether USP10 can regulate the metastasis of GC cells through its de-ubiquitination function. METHODS: In this study, proteome, ubiquitinome, and transcriptome analyses were conducted to comprehensively identify novel de-ubiquitination targets for USP10 in GC cells. Subsequently, a series of validation experiments, including in vitro cell culture studies, in vivo metastatic tumor models, and clinical sample analyses, were performed to elucidate the regulatory mechanism of USP10 and its de-ubiquitination targets in GC metastasis. RESULTS: After overexpression of USP10 in GC cells, 146 proteins, 489 ubiquitin sites, and 61 mRNAs exhibited differential expression. By integrating the results of multi-omics, we ultimately screened 9 potential substrates of USP10, including TNFRSF10B, SLC2A3, CD44, CSTF2, RPS27, TPD52, GPS1, RNF185, and MED16. Among them, TNFRSF10B was further verified as a direct de-ubiquitination target for USP10 by Co-IP and protein stabilization assays. The dysregulation of USP10 or TNFRSF10B affected the migration and invasion of GC cells in vitro and in vivo models. Molecular mechanism studies showed that USP10 inhibited the epithelial-mesenchymal transition (EMT) process by increasing the stability of TNFRSF10B protein, thereby regulating the migration and invasion of GC cells. Finally, the retrospective clinical sample studies demonstrated that the downregulation of TNFRSF10B expression was associated with poor survival among 4 of 7 GC cohorts, and the expression of TNFRSF10B protein was significantly negatively correlated with the incidence of distant metastasis, diffuse type, and poorly cohesive carcinoma. CONCLUSIONS: Our study established a high-throughput strategy for screening de-ubiquitination targets for USP10 and further confirmed that inhibiting the ubiquitination of TNFRSF10B might be a promising therapeutic strategy for GC metastasis.


Subject(s)
Stomach Neoplasms , Ubiquitin Thiolesterase , Ubiquitination , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Humans , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Mice , Animals , Cell Line, Tumor , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Female , Male , Neoplasm Metastasis , Gene Expression Profiling , Epithelial-Mesenchymal Transition/genetics , Prognosis , Multiomics
4.
J Cell Mol Med ; 28(12): e18469, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38899809

ABSTRACT

The alterations in DNA methylation and transcriptome in trophoblast cells under conditions of low oxygen and oxidative stress have major implications for pregnancy-related disorders. However, the exact mechanism is still not fully understood. In this study, we established models of hypoxia (H group) and oxidative stress (HR group) using HTR-8/SVneo trophoblast cells and performed combined analysis of genome-wide DNA methylation changes using reduced representation bisulphite sequencing and transcriptome expression changes using RNA sequencing. Our findings revealed that the H group exhibited a higher number of differentially methylated genes and differentially expressed genes than the HR group. In the H group, only 0.90% of all differentially expressed genes displayed simultaneous changes in DNA methylation and transcriptome expression. After the threshold was expanded, this number increased to 6.29% in the HR group. Notably, both the H group and HR group exhibited concurrent alterations in DNA methylation and transcriptome expression within Axon guidance and MAPK signalling pathway. Among the top 25 differentially methylated KEGG pathways in the promoter region, 11 pathways were commonly enriched in H group and HR group, accounting for 44.00%. Among the top 25 KEGG pathways in transcriptome with significant differences between the H group and HR group, 10 pathways were consistent, accounting for 40.00%. By integrating our previous data on DNA methylation from preeclamptic placental tissues, we identified that the ANKRD37 and PFKFB3 genes may contribute to the pathogenesis of preeclampsia through DNA methylation-mediated transcriptome expression under hypoxic conditions.


Subject(s)
Cell Hypoxia , DNA Methylation , Oxidative Stress , Transcriptome , Trophoblasts , Humans , Trophoblasts/metabolism , Oxidative Stress/genetics , Transcriptome/genetics , Cell Hypoxia/genetics , Cell Line , Female , Pregnancy , Gene Expression Profiling , Gene Expression Regulation , Phosphofructokinase-2/genetics , Phosphofructokinase-2/metabolism
5.
J AOAC Int ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733574

ABSTRACT

BACKGROUND: The identification of the geographical origin of Polygonatum cyrtonema Hua is of particular importance because the quality and market value of Polygonatum cyrtonema Hua from different production areas are highly variable due to differences in the growing environment and climatic conditions. OBJECTIVE: This study utilized near-infrared spectra (NIR) of Polygonatum cyrtonema Hua (n = 400) to develop qualitative models for effective differentiation of Polygonatum cyrtonema Hua from various regions. METHODS: The models were produced under different conditions to distinguish the origins distinctly. Ten pre-processing methods have been used to pre-process the original spectra (OS) and to select the most optimal spectral pre-processing method. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal partial least squares discriminant analysis (OPLS-DA) were employed to determine appropriate models. For simplicity, the pretreated full spectrum was calculated by different wavelength selection methods, and the four most significant variables were selected as discriminant indicator variables. RESULTS: The results show that Polygonatum cyrtonema Hua from different regions can be effectively distinguished using spectra from a series of samples analyzed by OPLS-DA. The accuracy of the OPLS-DA model is also satisfactory, with a good differentiation rate. CONCLUSION: The study findings indicate the feasibility of using spectroscopy in combination with multivariate analysis to identify the geographical origins of Polygonatum cyrtonema Hua. HIGHLIGHTS: The utilization of near-infrared spectroscopy combined with chemometrics exhibits high efficacy in discerning the provenance of herbal medicines and foods, thereby facilitating quality assurance measures.

6.
Risk Anal ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38590007

ABSTRACT

The policy actions of countries reflect adaptive responses of local components within the system to the dynamic global risk landscape. These responses can generate interactions and synergy effects on alleviating the evolution of global risks. Adopting a network perspective, the study proposes a theoretical framework that connects three structural characteristics of policy synergy, namely, synergy scale, alignment intensity, and timing synchronization. Focusing on the Covid-19 pandemic as a typical global risk context, the study finds that policy synergy with a larger scale, stronger alignment intensity, and more synchronized timing has a positive impact on mitigating global risks. The effect of alignment intensity is particularly pronounced when polycentric governance involves 20 countries facing severe risks, whereas the effect of timing synchronization is more significant when the multicenter group comprises more countries. Building upon the concept of an efficient scale of polycentric governance in various dimensions, this study develops a policy synergy index model. Through multiple empirical analyses, this study validates the causal relationship between policy synergy and the future evolution of global pandemic risk. Policymakers can leverage the dynamic changes in the policy synergy to predict future risk situations and implement well-rounded and appropriate policy actions, thereby enhancing the efficacy of the synergy effect of multi-country policy actions for risk governance.

7.
Article in English | MEDLINE | ID: mdl-38647686

ABSTRACT

PURPOSE: We performed this systematic review and meta-analysis to explore the impact of preoperative sarcopenia on postoperative complication risks after head and neck cancer (HNC) surgery. METHODS: We identified eligible studies by searching Ovid-MEDLINE, Ovid-Embase, EBM Reviews-Cochrane Central Register of Controlled Trials, Web of Science Core Collection, and Scopus. This systematic review was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidance. RESULTS: Twenty-one studies with a total of 3480 patients met our inclusion criteria. The presence of sarcopenia significantly increased the incidence of overall postoperative complications (OR = 1.72, 95% CI 1.23, 2.41; P = 0.002; I2 = 59%). Subgroup analyses showed a higher risk of postoperative complications in the populations in which sarcopenia was diagnosed with low L3-skeletal muscle index (L3-SMI) or low cross-sectional area of the rectus femoris, but not in the group that sarcopenia was diagnosed with low C3-SMI. Preoperative sarcopenia also substantially increased the risk of severe postoperative complications (OR = 2.26), pharyngocutaneous fistulas (OR = 2.15), free flap-related complications (OR = 1.63), and surgical site infections (OR = 1.84). We also found a tendency toward a higher incidence of wound complications and 30-day mortality in patients with sarcopenia. CONCLUSION: Preoperative sarcopenia is a negative prognostic indicator for postoperative complications in patients with HNC after surgery. To reduce the incidence of postoperative complications and improve poor prognosis, further attention needs to be paid to the evaluation and management of preoperative sarcopenia.

8.
Int J Mol Sci ; 25(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38473826

ABSTRACT

Zearalenone (ZEA) is a common non-steroidal estrogenic mycotoxin found in a range of animal feeds and poses a serious threat to the reproductive health of farm animals and humans. However, the mechanism underlying ZEA-induced reproductive toxicity in sheep remains unknown. Granulosa cells are crucial for egg maturation and the fertility of female sheep. In this study, we aimed to examine the impact of different ZEA concentrations on sheep follicular granulosa cells and to elucidate the potential molecular mechanism underlying ZEA-induced toxicity using transcriptome sequencing and molecular biological approaches. Treating primary sheep follicular granulosa cells with different concentrations of ZEA promoted the overproduction of reactive oxygen species (ROS), increased lipid peroxidation products, led to cellular oxidative stress, decreased antioxidant enzyme activities, and induced cell apoptosis. Using transcriptome approaches, 1395 differentially expressed genes were obtained from sheep follicular granulosa cells cultured in vitro after ZEA treatment. Among them, heme oxygenase-1 (HMOX1) was involved in 11 biological processes. The protein interaction network indicated interactions between HMOX1 and oxidative and apoptotic proteins. In addition, N-acetylcysteine pretreatment effectively reduced the ZEA-induced increase in the expression of HMOX1 and Caspase3 by eliminating ROS. Hence, we suggest that HMOX1 is a key differential gene involved in the regulation of ZEA-induced oxidative stress and apoptosis in follicular granulosa cells. These findings provide novel insights into the prevention and control of mycotoxins in livestock.


Subject(s)
Mycotoxins , Zearalenone , Humans , Female , Animals , Sheep , Zearalenone/metabolism , Reactive Oxygen Species/metabolism , Heme Oxygenase-1/metabolism , Oxidative Stress , Granulosa Cells/metabolism , Antioxidants/pharmacology , Mycotoxins/metabolism , Apoptosis
9.
CNS Neurosci Ther ; 30(2): e14380, 2024 02.
Article in English | MEDLINE | ID: mdl-37515314

ABSTRACT

AIMS: Cell death, except for cuproptosis, in gliomas has been extensively studied, providing novel targets for immunotherapy by reshaping the tumor immune microenvironment through multiple mechanisms. This study aimed to explore the effect of cuproptosis on the immune microenvironment and its predictive power in prognosis and immunotherapy response. METHODS: Eight glioma cohorts were included in this study. We employed the unsupervised clustering algorithm to identify novel cuproptosis clusters and described their immune microenvironmental characteristics, mutation landscape, and altered signaling pathways. We verified the correlation among FDX1, SLC31A1, and macrophage infiltration in 56 glioma tissues. Next, based on multicenter cohorts and 10 machine learning algorithms, we constructed an artificial intelligence-driven cuproptosis-related signature named CuproScore. RESULTS: Our findings suggested that glioma patients with high levels of cuproptosis had a worse prognosis owing to immunosuppression caused by unique immune escape mechanisms. Meanwhile, we experimentally validated the positive association between cuproptosis and macrophages and its tumor-promoting mechanism in vitro. Furthermore, our CuproScore exhibited powerful and robust prognostic predictive ability. It was also capable of predicting response to immunotherapy and chemotherapy drug sensitivity. CONCLUSIONS: Cuproptosis facilitates immune activation but promotes immune escape. The CuproScore could predict prognosis and immunotherapy response in gliomas.


Subject(s)
Artificial Intelligence , Glioma , Humans , Immunotherapy , Glioma/therapy , Machine Learning , Prognosis , Apoptosis , Copper , Tumor Microenvironment
10.
Int Immunopharmacol ; 125(Pt A): 111106, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37925951

ABSTRACT

BACKGROUND AND PURPOSE: Neuroinflammation is an important mechanism underlying brain injury caused by subarachnoid hemorrhage (SAH). C-C chemokine receptor type 1 (CCR1)-mediated inflammation is involved in the pathology of many central nervous system diseases. Herein, we investigated whether inhibition of CCR1 alleviated neuroinflammation after experimental SAH and aimed to elucidate the mechanisms of its potential protective effects. METHODS: To analyze SAH transcriptome data R studio was used, and a mouse model of SAH was established using endovascular perforations. In this model, the selective CCR1 antagonist Met-RANTES (Met-R) and the CCR1 agonist recombinant CCL5 (rCCL5) were administered 1 h after SAH induction. To investigate the possible downstream mechanisms of CCR1, the JAK2 inhibitor AG490 and the JAK2 activator coumermycin A1 (C-A1) were administered 1 h after SAH induction. Furthermore, post-SAH evaluation, including SAH grading, neurological function tests, Western blot, the terminal deoxynucleotidyl transferase dUTP nick end labeling assay, and Fluoro-Jade B and fluorescent immunohistochemical staining were performed. Cerebrospinal fluid (CSF) samples were detected by ELISA. RESULTS: CCL5 and CCR1 expression levels increased significantly following SAH. Met-R significantly improved neurological deficits in mice, decreased apoptosis and degeneration of ipsilateral cerebral cortex neurons, reduced infiltrating neutrophils, and promoted microglial activation after SAH induction. Furthermore, Met-R inhibited the expression of p-JAK2, p-STAT3, interleukin-1ß, and tumor necrosis factor-α. However, the protective effects of Met-R were abolished by C-A1 treatment. Furthermore, rCCL5 injection aggravated neurological dysfunction and increased the expression of p-JAK2, p-STAT3, interleukin-1ß, and tumor necrosis factor-α in SAH mice, all of which were reversed by the administration of AG490. Finally, the levels of CCL5 and CCR1 were elevate in the CSF of SAH patient and high level of CCL5 and CCR1 levels were associated with poor outcome. CONCLUSION: The present results suggested that inhibition of CCR1 attenuates neuroinflammation after SAH via the JAK2/STAT3 signaling pathway, which may provide a new target for the treatment of SAH.


Subject(s)
Receptors, Chemokine , Subarachnoid Hemorrhage , Animals , Mice , Apoptosis , Interleukin-1beta/metabolism , Janus Kinase 2/metabolism , Neuroinflammatory Diseases , Receptors, CCR1/metabolism , Receptors, Chemokine/metabolism , Signal Transduction , STAT3 Transcription Factor/metabolism , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/drug therapy , Subarachnoid Hemorrhage/metabolism , Tumor Necrosis Factor-alpha/metabolism
11.
Int Wound J ; 21(3): e14521, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37997562

ABSTRACT

This research sought to delineate risk factors associated with surgical site infections (SSIs) post-total knee arthroplasty (post-TKA) in elderly osteoarthritis patients, aiming to enhance post-surgical outcomes. A retrospective examination was conducted on a cohort of 650 elderly patients who underwent unilateral TKA between January 2018 and August 2022. Data procurement was from the hospital's Electronic Health Record, and a comprehensive statistical evaluation was performed using IBM SPSS Statistics version 24.0. Both univariate and multivariate techniques assessed a spectrum of risk determinants such as age, body mass index (BMI), coexisting medical conditions and surgical variables. The univariate examination spotlighted age, BMI, diabetes prevalence, chronic corticosteroid consumption and American Society of Anesthesiologists (ASA) physical status classification as notable predictors of SSIs. The multivariate logistic regression pinpointed age, BMI, history of smoking and diabetes diagnosis as salient risk attributors for post-TKA infections. Concurrently, parameters like ASA classification, surgical duration and intraoperative haemorrhage further enriched the risk landscape. Geriatric patients undergoing TKA for knee osteoarthritis manifest a tangible infection susceptibility post-surgery. Precision interventions concentrating on amendable risk components, including meticulous preoperative evaluations and strategic postoperative care, are imperative to attenuate SSI incidence, thereby amplifying surgical efficacy and optimizing patient recuperation trajectories.

12.
Toxins (Basel) ; 15(10)2023 10 17.
Article in English | MEDLINE | ID: mdl-37888648

ABSTRACT

Zearalenone (ZEN), a non-steroidal estrogenic fungal toxin widely present in forage, food, and their ingredients, poses a serious threat to animal and human reproductive health. ZEN also threatens ovine, a major source of human food and breeding stock. However, the mechanisms underlying the impact of ZEN on the in vitro maturation (IVM) of ovine oocytes remain unclear. This study aimed to elucidate these mechanisms using the Smart-seq2 technology. A total of 146 differentially expressed genes were obtained, using Smart-seq2, from sheep oocytes cultured in vitro after ZEN treatment. ZEN treatment inhibited RUNX2 and SPP1 expression in the PI3K signaling pathway, leading to the downregulation of THBS1 and ultimately the downregulation of TNFAIP6; ZEN can also decrease TNFAIP6 by reducing PTPRC and ITGAM. Both inhibit in vitro maturation of ovine oocytes and proliferation of cumulus cells by downregulating TNFAIP6. These findings provide data and a theoretical basis for elucidating ZEN's toxicity mechanisms, screening therapeutic drugs, and reducing ZEN-related losses in the ovine industry.


Subject(s)
Estrogens, Non-Steroidal , Zearalenone , Female , Animals , Sheep , Humans , Zearalenone/toxicity , Zearalenone/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Oocytes/physiology , Estrogens, Non-Steroidal/toxicity , Cumulus Cells/metabolism , Cell Adhesion Molecules/metabolism
13.
Animals (Basel) ; 13(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37570258

ABSTRACT

Bovine endometritis is characterized by reduced milk production and high rates of infertility. Prior research has indicated that melatonin may possess anti-inflammatory and antioxidant properties that can counteract the progression of inflammatory diseases. In this research, we attempted to elucidate the protective effects of melatonin on LPS-induced endometritis. The results obtained from enzyme-linked immunosorbent assay (ELISA) and quantitative real-time PCR (qRT-PCR) revealed that melatonin effectively reduced the production and release of pro-inflammatory cytokines in an LPS-induced bovine endometrial epithelial cell line (BEND cells). Furthermore, western blotting demonstrated that melatonin treatment reduced the expression levels of the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome-related proteins, including NLRP3, activated caspase-1, and cleaved IL-1ß. Importantly, we further demonstrated that the anti-inflammatory effect of melatonin on BEND cells was related to autophagy by western blotting. Moreover, we used western blotting to detect autophagy-related proteins, MitoSOX to detect mitochondrial reactive oxygen species production (mtROS), and mitochondrial membrane potential (MMP) assay to detect mitochondrial membrane potential. The administration of melatonin demonstrated a significant enhancement in autophagy within BEND cells, leading to the effective elimination of impaired mitochondria. This process resulted in a reduction in the generation of reactive oxygen species within the mitochondria, restoration of mitochondrial membrane potential, and inhibition of the NLRP3 inflammasome activation. Moreover, in a mouse model of LPS-induced endometritis, melatonin treatment repressed the expression of pro-inflammatory cytokines by ELISA and qRT-PCR, alleviated pathological changes by hematoxylin-eosin staining (H&E), and inhibited myeloperoxidase (MPO) activity. In conclusion, our study showed that melatonin inhibited the activation of the NLRP3 inflammasome in BEND cells through autophagy, which may provide a novel therapeutic strategy for bovine endometritis.

14.
Front Neurosci ; 17: 1206793, 2023.
Article in English | MEDLINE | ID: mdl-37483355

ABSTRACT

Background: Matrix metalloproteinases (MMPs) are important players in the complex pathophysiology of ischemic stroke (IS). Recent studies have shown that tremendous progress has been made in the research of MMPs in IS. However, a comprehensive bibliometric analysis is lacking in this research field. This study aimed to introduce the research status as well as hotspots and explore the field of MMPs in IS from a bibliometric perspective. Methods: This study collected 1,441 records related to MMPs in IS from 1979 to 2022 in the web of science core collection (WoSCC) database, among them the first paper was published in 1992. CiteSpace, VOSviewer, and R package "bibliometrix" software were used to analyze the publication type, author, institution, country, keywords, and other relevant data in detail, and made descriptive statistics to provide new ideas for future clinical and scientific research. Results: The change in the number of publications related to MMPs in IS can be divided into three stages: the first stage was from 1992 to 2012, when the number of publications increased steadily; the second stage was from 2013 to 2017, when the number of publications was relatively stable; the third stage was from 2018 to 2022, when the number of publications began to decline. The United States and China, contributing more than 64% of publications, were the main drivers for research in this field. Universities in the United States were the most active institutions and contributed the most publications. STROKE is the most popular journal in this field with the largest publications as well as the most co-cited journal. Rosenberg GA was the most prolific writer and has the most citations. "Clinical," "Medical," "Neurology," "Immunology" and "Biochemistry molecular biology" were the main research areas of MMPs in IS. "Molecular regulation," "Metalloproteinase-9 concentration," "Clinical translation" and "Cerebral ischemia-reperfusion" are the primary keywords clusters in this field. Conclusion: This is the first bibliometric study that comprehensively mapped out the knowledge structure and development trends in the research field of MMPs in IS in recent 30 years, which will provide a reference for scholars studying this field.

15.
Mol Neurobiol ; 60(9): 5117-5136, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37258724

ABSTRACT

The most frequent type of stroke, known as ischemic stroke (IS), is a significant global public health issue. The pathological process of IS and post-IS episodes has not yet been fully explored, but neuroinflammation has been identified as one of the key processes. Biomarkers are objective indicators used to assess normal or pathological processes, evaluate responses to treatment, and predict outcomes, and some biomarkers can also be used as therapeutic targets. After IS, various molecules are produced by different cell types, such as microglia, astrocytes, infiltrating leukocytes, endothelial cells, and damaged neurons, that participate in the neuroinflammatory response within the ischemic brain region. These molecules may either promote or inhibit neuroinflammation and may be released into extracellular spaces, including cerebrospinal fluid (CSF) and blood, due to reasons such as BBB damage. These neuroinflammatory molecules should be valued as biomarkers to monitor whether their expression levels in the blood, CSF, and brain correlate with the diagnosis and prognosis of IS patients or whether they have potential as therapeutic targets. In addition, although some molecules do not directly participate in the process of neuroinflammation, they have been reported to have potential diagnostic or therapeutic value against post-IS neuroinflammation, and these molecules will also be listed. In this review, we summarize the neuroinflammatory biomarkers in the brain, CSF, and blood after an IS episode and the potential value of these biomarkers for the diagnosis, treatment, and prognosis of IS patients.


Subject(s)
Ischemic Stroke , Stroke , Humans , Ischemic Stroke/metabolism , Neuroinflammatory Diseases , Endothelial Cells/metabolism , Brain/metabolism , Stroke/pathology , Biomarkers/metabolism
16.
Clin Transl Gastroenterol ; 14(6): e00588, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37019683

ABSTRACT

INTRODUCTION: Conflicting results exist on the association between proton-pump inhibitor (PPI) and nonsteroidal anti-inflammatory drug (NSAID)-related small-bowel damage. The aim of this study was to determine whether PPIs increased the risk of NSAID-related small-bowel damage by meta-analysis. METHODS: A systematic electronic search in PubMed, Embase, and Web of Science was conducted from the time the database was created until March 31, 2022, for studies reporting associations between PPI use and outcomes, including the endoscopy-verified prevalence of small-bowel injury, mean number of small-bowel injuries per patient, change in hemoglobin level, and risk of small-bowel bleeding in subjects taking NSAIDs. Meta-analytical calculations for odds ratio (OR) and mean difference (MD) were performed with the random-effects model and interpreted with 95% confidence intervals (CIs). RESULTS: Fourteen studies comprising 1996 subjects were included. Pooled analysis demonstrated that concomitant use of PPIs significantly increased the prevalence and number of endoscopy-verified small-bowel injuries (prevalence: OR = 3.00; 95% CI: 1.74-5.16; number: MD = 2.30; 95% CI: 0.61-3.99) and decreased hemoglobin levels (MD = -0.50 g/dL; 95% CI: 0.88 to -0.12) in NSAID users but did not change the risk of small-bowel bleeding (OR = 1.24; 95% CI: 0.80-1.92). Subgroup analysis demonstrated that PPIs significantly increased the prevalence of small-bowel injury in subjects taking nonselective NSAIDs (OR = 7.05; 95% CI: 4.70-10.59, 4 studies, I 2 = 0) and COX-2 inhibitors (OR = 4.00; 95% CI: 1.18-13.60, 1 study, no calculated I 2 ) when compared with COX-2 inhibitors alone. DISCUSSION: PPIs increased the risk of NSAID-related small-bowel damage, and the clinical significance of higher prevalence of small-bowel injuries should be studied in the future.


Subject(s)
Intestinal Diseases , Proton Pump Inhibitors , Humans , Proton Pump Inhibitors/adverse effects , Cyclooxygenase 2 Inhibitors , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Intestinal Diseases/chemically induced , Intestinal Diseases/epidemiology , Gastrointestinal Hemorrhage/chemically induced , Gastrointestinal Hemorrhage/epidemiology , Hemoglobins
17.
CNS Neurosci Ther ; 29(10): 2940-2954, 2023 10.
Article in English | MEDLINE | ID: mdl-37088947

ABSTRACT

BACKGROUND: Ischemic stroke is a leading cause of permanent disability and death globally. The nucleotide-biding oligomaerization domain (NOD)-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a multi-protein complex that plays a role in ischemic stroke. Recently, research on the role of NLRP3 in ischemic stroke has developed rapidly worldwide. However, there is no bibliometric analysis of NLRP3 in ischemic stroke to date. AIM: Through bibliometric analysis, the aim of this study was to assess the current state of research on NLRP3 in the field of ischemic stroke research worldwide over the past 12 years and to identify important results, major research areas, and emerging trends. METHODS: Publications related to NLRP3 in ischemic stroke from January 1, 2011 to December 31, 2022 were obtained from the Web of Science Core Collection (WoSCC). We used HistCite, VOSviewer, CiteSpace, and Bibliometrix for bibliometric analysis and visualization. The Total Global Citation Score (TGCS) was employed to assess the impact of publications. RESULTS: We found that research of NLRP3 in ischemic stroke developed rapidly starting in 2011. 601 relevant studies have been published in 245 journals over the past 12 years. Journal of Neuroinflammation and International Immunopharmacology were the most productive journals and Journal of Neuroinflammation was the most cited journal. Additionally, Stroke and Journal of Cerebral Blood Flow & Metabolism were the most co-cited journal. The most productive country was China (records = 430) and the most productive university was the Zhejiang University (records = 24). Arumugam TV (TGCS = 949) was the most cited author in this field. NLRP3 inflammasome activation, nf-κb, oxidative stress, and inflammation were the knowledge bases for the research in this field. CONCLUSION: This study is a scientometric study utilizing quantitative and qualitative methods to comprehensively review the publications on NLRP3 in ischemic stroke. This information provides a reference for scholars to further study NLRP3 in ischemic stroke.


Subject(s)
Ischemic Stroke , Stroke , Humans , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Neuroinflammatory Diseases
18.
Immunology ; 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36988516

ABSTRACT

IL-17A-producing group 3 innate lymphoid cells (ILC3s) have been found to participate in the development of various phenotypes of asthma, however, little is known about how ILC3s mediate neutrophilic airway inflammation. Elevated IL-1ß has been reported in neutrophilic asthma (NA) and IL-1ß receptor is highly expressed on lung ILC3s. Therefore, we hypothesize that IL-1ß aggravates neutrophilic airway inflammation via provoking IL-17A-producing ILC3s. We sought to determine the pathological roles of the IL-1ß-ILC3-IL-17A axis in neutrophilic airway inflammation. Lung ILC subsets were measured in eosinophilic asthma (ovalbumin [OVA]/Alum) and NA (OVA/lipopolysaccharides [LPS]) murine models. Rag2-/- (lacking adaptive immunity), RORc-/- (lacking transcription factor RORγt), Rag2-/- RORc-/- (lacking adaptive immunity and ILC3s), and ILCs depletion mice were used to verify the roles of ILC3s in neutrophilic airway inflammation by measurement of CXCL-1, IL-17A, IL-22 and neutrophil counts in bronchoalveolar lavage fluid (BALF), detection of Muc5ac in lung tissues, and quantification of IL-17A-producing ILC3s after treatment of anti-IL-17A or recombinant IL-1ß (rIL-1ß) and its monoclonal antibody. NLRP3, Caspase 1 and their induction of IL-1ß were detected in lung tissues of OVA/LPS-induced mice. The OVA/LPS model was characterized by an enrichment of airway neutrophilia, lung RORγt+ ILC3s and Th17 cytokines (IL-17A and IL-22) and neutrophilic chemokine C-X-C motif (chemokine) ligand 1 (CXCL-1), compared to the phenotypic features of airway eosinophilia, GATA3+ ILC2s and type-2 cytokines in OVA/Alum model. The concentration of CXCL-1 and neutrophil counts in BALF were decreased by anti-IL-17A. RORγt deficiency led to a decrease in IL-17A and CXCL-1 levels and neutrophil counts in BALF. ILC depletion in Rag2-/- mice ameliorated OVA/LPS-induced IL-17A, IL-22, CXCL-1 and airway neutrophil counts. IL-17A-producing ILCs and BALF neutrophil counts were significantly lower in Rag2-/- RORc-/- mice than those in Rag2-/- mice. IL-1ß was highly expressed in BALF and bronchial epithelial cells (BECs) in OVA/LPS model, and administration of rIL-1ß substantially aggravated airway inflammation and promoted upregulation of RORγt+ and IL-17A-producing lung ILC3s, which were reversed by anti-IL-1ß. NLRP3 and Caspase 1 expressions were enhanced by OVA/LPS, and their inhibitors abolished the OVA/LPS-induced IL-1ß in BECs. ILC3s play a pathogenic role in the pathogenesis of NA, which is triggered by IL-1ß via promoting IL-17A production of lung ILC3s.

19.
Int J Mol Sci ; 24(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36768240

ABSTRACT

Induced pluripotent stem cells (iPSCs) can differentiate into all types of cells and can be used in livestock for research on biological development, genetic breeding, and in vitro genetic resource conservation. The Bactrian camel is a large domestic animal that inhabits extreme environments and holds value in the treatment of various diseases and the development of the local economy. Therefore, we transferred four mouse genes (Oct4, Sox2, Klf4, and c-Myc) into Bactrian camel fetal fibroblasts (BCFFs) using retroviruses with a large host range to obtain Bactrian camel induced pluripotent stem cells (bciPSCs). They were comprehensively identified based on cell morphology, pluripotency gene and marker expression, chromosome number, transcriptome sequencing, and differentiation potential. The results showed the pluripotency of bciPSCs. However, unlike stem cells of other species, late formation of stem cell clones was observed; moreover, the immunofluorescence of SSEA1, SSEA3, and SSEA4 were positive, and teratoma formation took four months. These findings may be related to the extremely long gestation period and species specificity of Bactrian camels. By mining RNA sequence data, 85 potential unique pluripotent genes of Bactrian camels were predicted, which could be used as candidate genes for the production of bciPSC in the future. Among them, ASF1B, DTL, CDCA5, PROM1, CYTL1, NUP210, Epha3, and SYT13 are more attractive. In conclusion, we generated bciPSCs for the first time and obtained their transcriptome information, expanding the iPSC genetic information database and exploring the applicability of iPSCs in livestock. Our results can provide an experimental basis for Bactrian camel ESC establishment, developmental research, and genetic resource conservation.


Subject(s)
Induced Pluripotent Stem Cells , Animals , Mice , Camelus/genetics , Cell Differentiation/genetics , Animals, Domestic/metabolism , Lewis X Antigen/metabolism , Nuclear Pore Complex Proteins/metabolism , Cytokines/metabolism
20.
Brain Res Bull ; 193: 37-46, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36435361

ABSTRACT

BACKGROUND: The role of ferroptosis in ischemic stroke has been hotly debated recently, but the mechanism is not clearly clarified. It has been reported that the NLRP3 inflammasome is essential for the progression of ischemic stroke. Whether the ferroptosis after ischemic stroke mediated by the activation of NLRP3 inflammasome is still not reported. In this study, we investigated the effect of NLRP3 deficiency on ferroptosis following cerebral ischemia-reperfusion injury (CIRI) in vivo and in vitro. MATERIALS: In vivo, we used C57BL/6J mice and NLRP3-/- mice to establish a model of middle cerebral artery occlusion (MCAO). After 3 days of reperfusion, we assessed neurological function and then performed TTC staining to measure the infarct volume. Besides, we measured the expression of NLRP3 inflammasome-related proteins and the ferroptosis-inhibiting protein glutathione peroxidase 4 (GPX4) by western blotting (WB) and immunofluorescence (IF). Moreover, we evaluated the levels of ferroptosis-related factors (Fe2+, MDA and GSH) in the infarct area by using appropriate kits. Furthermore, we used WB to measure the expression of Kelch-like epichlorohydrin-associated protein 1 (Keap1) and nuclear factor erythroid 2-related factor 2 (Nrf2), which participate in the progression of ischemic stroke. In vitro, we knocked down NLRP3 with small interfering RNAs (siRNAs) and established an oxygen glucose deprivation/Reperfusion (OGD/R) model in BV2 cells to simulate ischemic conditions. Next, we assessed the viability of BV2 cells by the Cell Counting Kit (CCK)-8 cytotoxicity assay. Moreover, we used WB to measure the expression of NLRP3, IL-1ß, GPX4, Keap1 and Nrf2 proteins which are involved in CIRI. RESULTS: Three days after MCAO, the NLRP3-/- mice exhibited smaller cerebral infarct volumes and lower neurological deficit scores. The expression of NLRP3 inflammasome-associated proteins (IL-18 and IL-1ß) and Keap1/Nrf2 signaling pathway moleculars (Keap1 and Nrf2) in mice brain tissue and BV2 cells were inhibited by NLRP3 knockout/knockdown, while the expression of GPX4, one of the ferroptosis-related factors was increased. Furthermore, the contents of Fe2+ and MDA in the brain tissues of NLRP3-/- mice were decreased, while the content of GSH were increased significantly. CONCLUSION: Inhibition of the NLRP3 inflammasome alleviates CIRI by inhibiting ferroptosis and inflammation, possibly through a mechanism of the Keap1-Nrf2 pathway.


Subject(s)
Ferroptosis , Ischemic Stroke , Reperfusion Injury , Animals , Mice , Mice, Inbred C57BL , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Epichlorohydrin , Infarction
SELECTION OF CITATIONS
SEARCH DETAIL
...