Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Article in English | MEDLINE | ID: mdl-38691205

ABSTRACT

Two-pore physiologically based pharmacokinetic (PBPK) modeling has demonstrated its potential in describing the pharmacokinetics (PK) of different-size proteins. However, all existing two-pore models lack either diverse proteins for validation or interspecies extrapolation. To fill the gap, here we have developed and optimized a translational two-pore PBPK model that can characterize plasma and tissue disposition of different-size proteins in mice, rats, monkeys, and humans. Datasets used for model development include more than 15 types of proteins: IgG (150 kDa), F(ab)2 (100 kDa), minibody (80 kDa), Fc-containing proteins (205, 200, 110, 105, 92, 84, 81, 65, or 60 kDa), albumin conjugate (85.7 kDa), albumin (67 kDa), Fab (50 kDa), diabody (50 kDa), scFv (27 kDa), dAb2 (23.5 kDa), proteins with an albumin-binding domain (26, 23.5, 22, 16, 14, or 13 kDa), nanobody (13 kDa), and other proteins (110, 65, or 60 kDa). The PBPK model incorporates: (i) molecular weight (MW)-dependent extravasation through large and small pores via diffusion and filtration, (ii) MW-dependent renal filtration, (iii) endosomal FcRn-mediated protection from catabolism for IgG and albumin-related modalities, and (iv) competition for FcRn binding from endogenous IgG and albumin. The finalized model can well characterize PK of most of these proteins, with area under the curve predicted within two-fold error. The model also provides insights into contribution of renal filtration and lysosomal degradation towards total elimination of proteins, and contribution of paracellular convection/diffusion and transcytosis towards extravasation. The PBPK model presented here represents a cross-modality, cross-species platform that can be used for development of novel biologics.

2.
Viruses ; 16(5)2024 05 08.
Article in English | MEDLINE | ID: mdl-38793626

ABSTRACT

HBV infection is challenging to cure due to the persistence of viral covalently closed circular viral DNA (cccDNA). The dedicator of cytokinesis 11 (DOCK11) is recognized as a guanine nucleotide exchange factor (GEF) for CDC42 that has been reported to be required for HBV persistence. DOCK11 is expressed in both the cytoplasm and nucleus of human hepatocytes and is functionally associated with retrograde trafficking proteins Arf-GAP with GTPase domain, ankyrin repeat, and pleckstrin homology domain-containing protein 2 (AGAP2), and ADP-ribosylation factor 1 (ARF1), together with the HBV capsid, in the trans-Golgi network (TGN). This opens an alternative retrograde trafficking route for HBV from early endosomes (EEs) to the TGN and then to the endoplasmic reticulum (ER), thereby avoiding lysosomal degradation. DOCK11 also facilitates the association of cccDNA with H3K4me3 and RNA Pol II for activating cccDNA transcription. In addition, DOCK11 plays a crucial role in the host DNA repair system, being essential for cccDNA synthesis. This function can be inhibited by 10M-D42AN, a novel DOCK11-binding peptide, leading to the suppression of HBV replication both in vitro and in vivo. Treatment with a combination of 10M-D42AN and entecavir may represent a promising therapeutic strategy for patients with chronic hepatitis B (CHB). Consequently, DOCK11 may be seen as a potential candidate molecule in the development of molecularly targeted drugs against CHB.


Subject(s)
Guanine Nucleotide Exchange Factors , Hepatitis B virus , Hepatocytes , Humans , Hepatitis B virus/physiology , Hepatitis B virus/genetics , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/genetics , Hepatocytes/virology , Hepatocytes/metabolism , Virus Internalization , Virus Replication , Hepatitis B/virology , Hepatitis B/metabolism , DNA, Viral/metabolism , DNA, Viral/genetics , Animals
3.
Mucosal Immunol ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38754839

ABSTRACT

The lymphatic system plays a vital role in the regulation of tissue fluid balance and the immune response to inflammation or infection. The effects of lymphatic endothelial cells (LECs) on the regulation of neutrophil migration have not been well studied. In three murine models: imiquimod-induced skin inflammation, S. aureus-induced skin infection, and ligature-induced periodontitis, we show that numerous neutrophils migrate from inflamed or infected tissues to the draining lymph nodes via lymphatic vessels. Moreover, inflamed or infected tissues express a high level of IL-17A and TNF-α, simultaneously with a significant increase in the release of neutrophil attractors, including CXCL1, CXCL2, CXCL3, and CXCL5. Importantly, in vitro stimulation of LECs with IL-17A plus TNF-α synergistically promoted these chemokine secretion. Mechanistically, tetra-transmembrane protein CMTM4 directly binds to IL-17RC in LECs. IL-17A plus TNF-α stimulates CXC chemokine secretion by promoting NF-κB signaling. In contrast, knockdown of CMTM4 abrogates IL-17A plus TNF-α activated NF-κB signaling pathways. Lastly, the local administration of adeno-associated virus for CMTM4 in Prox1-CreERT2 mice, mediating LEC-specific overexpression of CMTM4, promotes the drainage of neutrophils by LECs and alleviates immune pathological responses. Thus, our findings reveal the vital role of LECs-mediated neutrophil attraction and clearance at sites of inflammation or infection.

4.
Arch Endocrinol Metab ; 68: e230195, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38530959

ABSTRACT

Objective: The study aims to explore the relationship between lipoprotein lipase (LPL) variants and hyperlipidemic acute pancreatitis (HLAP) in the southeastern Chinese population. Subjects and methods: In total, 80 participants were involved in this study (54 patients with HLAP and 26 controls). All coding regions and intron-exon boundaries of the LPL gene were sequenced. The correlations between variants and phenotypes were also analysed. Results: The rate of rare LPL variants in the HLAP group is 14.81% (8 of 54), higher than in controls. Among the detected four variants (rs3735959, rs371282890, rs761886494 and rs761265900), the most common variant was rs371282890. Further analysis demonstrated that subjects with rs371282890 "GC" genotype had a 2.843-fold higher risk for HLAP (odds ratio [OR]: 2.843, 95% confidence interval [CI]: 1.119-7.225, p = 0.028) than subjects with the "CC" genotype. After adjusting for sex, the association remained significant (adjusted OR: 3.083, 95% CI: 1.208-7.869, p = 0.018). Subjects with rs371282890 "GC" genotype also exhibited significantly elevated total cholesterol, triglyceride and non-high-density lipoprotein cholesterol levels in all the participants and the HLAP group (p < 0.05). Conclusion: Detecting rare variants in LPL might be valuable for identifying higher-risk patients with HLAP and guiding future individualised therapeutic strategies.


Subject(s)
Pancreatitis , Humans , Acute Disease , China/epidemiology , Genotype , Lipoprotein Lipase/genetics , Pancreatitis/diagnosis , Pancreatitis/genetics , Triglycerides
5.
Int J Mol Sci ; 25(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38256056

ABSTRACT

Hepatocellular carcinoma (HCC) is a highly lethal malignant neoplasm, and the involvement of bone morphogenetic protein 9 (BMP9) has been implicated in the pathogenesis of liver diseases and HCC. Our goal was to investigate the role of BMP9 signaling in regulating N6-methyladenosine (m6A) methylation and cell cycle progression, and evaluate the therapeutic potential of BMP receptor inhibitors for HCC treatment. We observed that elevated levels of BMP9 expression in tumor tissues or serum samples from HCC patients were associated with a poorer prognosis. Through in vitro experiments utilizing the m6A dot blotting assay, we ascertained that BMP9 reduced the global RNA m6A methylation level in Huh7 and Hep3B cells, thereby facilitating their cell cycle progression. This effect was mediated by an increase in the expression of the inhibitor of DNA-binding protein 1 (ID1). Additionally, using methylated RNA immunoprecipitation qPCR(MeRIP-qPCR), we showed that the BMP9-ID1 pathway promoted CyclinD1 expression by decreasing the m6A methylation level in the 5' UTR of mRNA. This occurred through the upregulation of the fat mass and obesity-associated protein (FTO) in Huh7 and Hep3B cells. In our in vivo mouse xenograft models, we demonstrated that blocking the BMP receptor with LDN-212854 effectively suppressed HCC growth and induced global RNA m6A methylation. Overall, our findings indicate that the BMP9-ID1 pathway promotes HCC cell proliferation by down-regulating the m6A methylation level in the 5' UTR of CyclinD1 mRNA. Targeting the BMP9-ID1 pathway holds promise as a potential therapeutic strategy for treating HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Humans , Mice , 5' Untranslated Regions , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Bone Morphogenetic Protein Receptors , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Proliferation , Growth Differentiation Factor 2/genetics , Inhibitor of Differentiation Protein 1 , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism
6.
J Safety Res ; 87: 27-37, 2023 12.
Article in English | MEDLINE | ID: mdl-38081701

ABSTRACT

INTRODUCTION: Walking with anterior loads is common in industrial scenarios, but as exoskeletons are increasingly used in work environments to alleviate musculoskeletal disorders (MSDs), this new "human-robot" system composed of the human body and exoskeleton may be associated with new risks and harm that warrant further investigation. Therefore, this study will discuss the effect of a wearable chair on the gait, balance, and discomfort of new users with different weights of anterior loads during level walking. METHOD: Twenty-two healthy subjects (sex balanced) participated in the experiment. Each exposure comprised one of two exoskeleton states (with/without) and four load conditions: No carried load, carrying an empty box (0.3 kg), 5%Body Weight (BW), and 10%BW. The order of exoskeleton states and load conditions was randomly assigned. Using an eight-camera motion capture system to record the entire movement. And the subjective discomfort and perceived balance after each exposure were recorded on an 11-point numeric rating scale, respectively. Using SPSS 26.0 software (IBM Inc., Chicago) to conduct statistical analyses. RESULTS: Level walking with a wearable chair in different load conditions significantly affected gait parameters (like cadence) and gait balance. The perceived balance decreased with the exoskeleton, consistent with objective results. For subjective discomfort, wearing the exoskeleton significantly impacted global discomfort. Also, it increased the local discomfort of the shoulders, waist, thighs, shanks, and feet/ankles. CONCLUSIONS: For new users, the risk of losing balance or falling may be increased when wearing an exoskeleton for non-target task behaviors (level walking/anterior load), and caution is recommended when the anterior load exceeds 5% BW. PRACTICAL APPLICATION: The proposed strategy for assessing human gait, balance, and discomfort in wearable chairs may be applied during the iterative design of the product. These controls will help develop training programs and implementation guidelines for this exoskeleton type.


Subject(s)
Exoskeleton Device , Gait , Pain , Postural Balance , Walking , Humans , Exoskeleton Device/adverse effects , Gait/physiology , Movement/physiology , Pain/etiology , Pain/physiopathology , Postural Balance/physiology , Walking/physiology , Wearable Electronic Devices , Healthy Volunteers
7.
Genet Test Mol Biomarkers ; 27(9): 284-289, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37768328

ABSTRACT

Background: Apolipoprotein A5 (APOA5) is involved in serum triglyceride (TG) regulation. Several studies have reported that the rs651821 locus in the APOA5 gene is associated with serum TG levels in the Chinese population. However, no research has been performed regarding the association between the variants of rs651821 and the risk of hyperlipidemic acute pancreatitis (HLAP). Methods: A case-control study was conducted and is reported following the STROBE guidelines. We enrolled a total of 88 participants in this study (60 HLAP patients and 28 controls). APOA5 was genotyped using PCR and Sanger sequencing. Logistic regression models were conducted to calculate odds ratios and a 95% confidence interval. Results: The genotype distribution of the rs651821 alleles in both groups follow the Hardy-Weinberg distribution. The frequency of the "C" allele in rs651821 was increased in HLAP patients compared to controls. In the recessive model, subjects with the "CC" genotype had an 8.217-fold higher risk for HLAP (OR = 8.217, 95% CI: 1.023-66.01, p = 0.046) than subjects with the "TC+TT" genotypes. After adjusting for sex, the association remained significant (OR = 9.898, 95% CI: 1.176-83.344, p = 0.035). Additionally, the "CC" genotype was related to an increased TG/apolipoprotein B (APOB) ratio and fasting plasma glucose (FPG) levels. Conclusions: Our findings suggest that the C allele of rs651821 in APOA5 increases the risk of HLAP in persons from Southeastern China.


Subject(s)
Apolipoproteins A , Pancreatitis , Humans , Apolipoprotein A-V/genetics , Apolipoproteins A/genetics , Genetic Predisposition to Disease/genetics , Case-Control Studies , Acute Disease , Polymorphism, Single Nucleotide/genetics , Pancreatitis/genetics , Genotype , China , Gene Frequency/genetics , Triglycerides
8.
Hepatol Commun ; 7(9)2023 09 01.
Article in English | MEDLINE | ID: mdl-37655967

ABSTRACT

BACKGROUND: HBV infection causes chronic liver disease and leads to the development of HCC. To identify host factors that support the HBV life cycle, we previously established the HC1 cell line that maintains HBV infection and identified host genes required for HBV persistence. METHODS: The present study focused on endothelial lipase (LIPG), which binds to heparan sulfate proteoglycans (HSPGs) in the cell membrane. RESULTS: We found HBV infection was impaired in humanized liver chimeric mouse-derived hepatocytes that were transduced with lentivirus expressing short hairpin RNA against LIPG. Long-term suppression of LIPG combined with entecavir further suppressed HBV replication. LIPG was shown to be involved in HBV attachment to the cell surface by using 2 sodium taurocholate cotransporting peptide (NTCP)-expressing cell lines, and the direct interaction of LIPG and HBV large surface protein was revealed. Heparin and heparinase almost completely suppressed the LIPG-induced increase of HBV attachment, indicating that LIPG accelerated HBV attachment to HSPGs followed by HBV entry through NTCP. Surprisingly, the attachment of a fluorescently labeled NTCP-binding preS1 probe to NTCP-expressing cells was not impaired by heparin, suggesting the HSPG-independent attachment of the preS1 probe to NTCP. Interestingly, attachment of the preS1 probe was severely impaired in LIPG knockdown or knockout cells. Inhibitors of the lipase activity of LIPG similarly impaired the attachment of the preS1 probe to NTCP-expressing cells. CONCLUSIONS: LIPG participates in HBV infection by upregulating HBV attachment to the cell membrane by means of 2 possible mechanisms: increasing HBV attachment to HSPGs or facilitating HSPG-dependent or HSPG-independent HBV attachment to NTCP by its lipase activity.


Subject(s)
Hepatitis B , Lipase , Animals , Mice , Heparan Sulfate Proteoglycans/genetics , Heparin , Hepatitis B/genetics , Hepatitis B virus , Lipase/genetics
9.
JAMA Dermatol ; 159(10): 1059-1067, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37585188

ABSTRACT

Importance: There are limited prognostic statistics and data available on survival outcomes for patients with mycosis fungoides (MF) in Asia. Objective: To determine the prognostic factors and survival outcomes of patients with MF among a cohort in China. Design, Setting, and Participants: This was a retrospective cohort study of patients with MF who received treatment at a tertiary referral center for skin lymphoma (Peking University First Hospital, Beijing, China) from August 1, 2009, to August 31, 2021. Data were analyzed from September 1, 2021, to December 31, 2022. Main Outcomes and Measures: Overall survival (OS), disease-specific survival (DSS), and progression-free survival (PFS); for prognostic factors, hazard ratios (HRs), and adjusted HRs (aHRs; adjusted for sex, age, and overall TNMB [tumor, node, metastasis, blood] stage) determined using the Cox proportional hazards model. Results: The study cohort comprised 461 patients with MF (median [range] age at diagnosis, 46 [5-87] years; 275 [59.7%] men and 186 [40.3%] women; 461 [100%] Chinese). The overall 5-year rate was 82.2% for OS, 83.5% for DSS, and 79.6% for PFS. Stage-specific 5-year OS rates were 95.7% for stage IA, 93.2% for IB, 95.7% for IIA, 70.1% for IIB, 55.3% for III, and 23.6% for IV. Compared with a UK cohort, our Chinese cohort had a younger median age at diagnosis (46 years vs 54 years) and a more favorable 5-year OS (82.2% vs 75.0%); however, after adjusting for age, the discrepancy in the 5-year OS rate was diminished (77.3% vs 76.4%). Cox models revealed that unfavorable predictors of OS, PFS, and DSS, respectively, were: age older than 60 years (aHR [95% CI], 2.25 [1.28-3.96]; 2.09 [1.16-3.76]; 2.27 [1.39-3.72]); advanced TNMB stage; advanced overall stage; large-cell transformation (aHR [95% CI], 2.16 [1.17-3.99]; 2.29 [1.21-4.33]; 2.21 [1.26-3.86]); and elevated lactate dehydrogenase levels (aHR [95% CI], 3.92 [1.64-9.36]; 4.77 [1.86-12.22]; 5.05 [2.23-11.42]). Biological sex and plaque lesion type were not associated with prognosis among this study cohort. Conclusion and Relevance: The findings of this retrospective cohort study of patients with MF in China suggest that Asian patients are diagnosed at a younger age and have a higher 5-year OS compared with patients of other races in studies in other countries (predominantly White). Prognostic factors were similar to those of previous studies, except for patient sex and plaque lesion type.


Subject(s)
Mycosis Fungoides , Sezary Syndrome , Skin Neoplasms , Male , Humans , Female , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Prognosis , Sezary Syndrome/pathology , Retrospective Studies , Neoplasm Staging , Disease Progression , Mycosis Fungoides/diagnosis , Skin Neoplasms/pathology , China/epidemiology
10.
J Periodontal Res ; 58(5): 864-873, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37424315

ABSTRACT

Periodontitis is a chronic, inflammatory, and destructive disease caused by the imbalance of host immune response and dental biofilm, and has strong epidemiological and pathogenesis correlations with systemic diseases. The immune response in periodontitis involves both innate and adaptive immunity, with numerous immune cells and inflammatory pathways participating in a complex network of interactions. In the past decade, the concept of "trained immunity" has emerged, which highlights the memory characteristics of innate immunity, thus opening up a new avenue of research. There is growing interest in exploring the role of trained immunity in chronic inflammatory and metabolic diseases such as atherosclerosis and diabetes mellitus. Evidence suggests that trained immunity may also regulate the onset and progression of periodontitis, serving as a bridge between periodontitis-related comorbidities. In this review, we summarize concepts related to trained immunity and its development. Furthermore, we present current evidence that endorses the notion of trained immunity in periodontitis and analyze possible roles it may assume regarding periodontitis-associated inflammatory reactions from a cellular perspective. Finally, we discuss various clinical therapeutic strategies for periodontitis and its associated comorbidities that target trained immunity. We hope that more researchers will pay attention to this emerging concept, thereby providing deeper insights into this novel field.


Subject(s)
Periodontitis , Humans , Inflammation , Immunity, Innate , Trained Immunity
11.
BMC Med Educ ; 23(1): 315, 2023 May 06.
Article in English | MEDLINE | ID: mdl-37149587

ABSTRACT

INTRODUCTION: Clinical practice of dentistry entails the use of indirect vision using a dental mirror. The Mirrosistant is a device that helps dental students become proficient with use of indirect vision mirror operation. This study aimed to explore the role of the Mirrosistant on students' performance with the virtual simulation dental training system. MATERIALS AND METHODS: A total of 72 dental students were equally assigned to the Control group and the Experimental group. Subsequently, Mirrosistant was used to conduct a series of mirror training exercises in the Experimental group. The training consisted of tracing the edge and filling in the blank of the prescribed shape, as well as preparing the specified figure on raw eggs using indirect vision via Mirrosistant. Next, both groups were examined using the SIMODONT system, a virtual reality dental trainer, for mirror operation. In addition, a five-point Likert scale questionnaire was used to assess student feedback by using Mirrosistant. RESULTS: The mirror operation examination conducted by the SIMODONT system revealed that mirror training using Mirrosistant had statistically improved students' performances (score: 80.42 ± 6.43 vs. 69.89 ± 15.98, P = 0.0005) and shorten their performance time of mirror operation (time of seconds: 243.28 ± 132.83 vs. 328.53 ± 111.89, P = 0.0013). Furthermore, the questionnaire survey indicated that the participants had positive attitudes toward the mirror training using Mirrosistant. Most students believed that the mirror training device could improve their perceptions of direction and distance, as well as their sensations of dental operation and dental fulcrum. CONCLUSION: Mirror training using Mirrosistant can enhance dental students' mirror perceptual and operational skills on virtual simulation dental training system.


Subject(s)
Simulation Training , Virtual Reality , Humans , Students, Dental , User-Computer Interface , Clinical Competence , Computer Simulation
12.
Viruses ; 15(5)2023 05 16.
Article in English | MEDLINE | ID: mdl-37243264

ABSTRACT

Infection with hepatitis B virus (HBV) cannot be cured completely because of the persistence of covalently closed circular DNA (cccDNA). We previously found that the host gene dedicator of cytokinesis 11 (DOCK11) was required for HBV persistence. In this study, we further investigated the mechanism that links DOCK11 to other host genes in the regulation of cccDNA transcription. cccDNA levels were determined by quantitative real-time polymerase chain reaction (qPCR) and fluorescence in situ hybridization (FISH) in stable HBV-producing cell lines and HBV-infected PXB-cells®. Interactions between DOCK11 and other host genes were identified by super-resolution microscopy, immunoblotting, and chromatin immunoprecipitation. FISH facilitated the subcellular localization of key HBV nucleic acids. Interestingly, although DOCK11 partially colocalized with histone proteins, such as H3K4me3 and H3K27me3, and nonhistone proteins, such as RNA Pol II, it played limited roles in histone modification and RNA transcription. DOCK11 was functionally involved in regulating the subnuclear distribution of host factors and/or cccDNA, resulting in an increase in cccDNA closely located to H3K4me3 and RNA Pol II for activating cccDNA transcription. Thus, it was suggested that the association of cccDNA-bound Pol II and H3K4me3 required the assistance of DOCK11. DOCK11 facilitated the association of cccDNA with H3K4me3 and RNA Pol II.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Humans , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , In Situ Hybridization, Fluorescence , Microscopy , Virus Replication/genetics , DNA, Viral/genetics , DNA, Viral/metabolism , Hepatitis B virus/physiology , DNA, Circular/genetics , DNA, Circular/metabolism , Hepatitis B/genetics
13.
J Pharm Sci ; 112(8): 2276-2284, 2023 08.
Article in English | MEDLINE | ID: mdl-37062415

ABSTRACT

Mice are rarely used in pharmacokinetic (PK) studies of ocular therapeutics due to the small size of their eyes and challenges in drug administration, tissue collection, and analysis of drug concentrations. Therefore, ocular PK of protein therapeutics in mouse eye following intravitreal (IVT) administration is not known. Here, we have presented the first of its kind investigation, to study the PK of 4 different size non-binding protein therapeutics in mouse plasma, cornea/ICB, vitreous humor, retina, and posterior cup (including choroid) following IVT administration. Administered proteins include trastuzumab (150 kDa) and F(ab)2 (100 kDa), Fab, and scFv (27 kDa) fragments of trastuzumab. An imaging and injection apparatus suitable for performing small (50 nL) IVT injections in mice was developed, and techniques for enucleation of the eye and dissection of ocular tissues were developed. Furthermore, a sensitive enzyme-linked immunosorbent assay (ELISA) for detection of proteins in very small amounts of ocular tissues were developed. It was observed that elimination from the vitreous chamber was the primary driver of PK in the cornea/ICB, retina, posterior cup, and plasma. Trastuzumab displays first-order kinetics in the vitreous humor with a half-life of 18.8 h. F(ab)2, Fab, and ScFv show biphasic PK profiles with distribution phases becoming more rapid as molecular weight decreases, and terminal elimination becoming longer as molecular weight decreases, with terminal half-lives of 16.3, 20.6, and 48.9 h, respectively. The mean residence times of trastuzumab, F(ab)2, Fab, and scFv in the vitreous humor were 26.0, 12.2, 10.7, and 8.16 h, respectively. It was found that the mean residence time in vitreous humor doubles with an increase in molecular weight of ∼69 kDa. Interestingly, the PK of proteins measured in the un-injected eye suggest the presence of a pathway for drug transfer between the eyes, which needs to be further validated. Overall, the findings presented here pave the way for drug discovery and development studies of protein therapeutics for ophthalmic indications in mice.


Subject(s)
Antibodies, Monoclonal , Eye , Mice , Animals , Antibodies, Monoclonal/metabolism , Intravitreal Injections , Eye/metabolism , Vitreous Body/metabolism , Trastuzumab , Immunoglobulin Fragments/metabolism
14.
Cell Prolif ; 56(9): e13440, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36880296

ABSTRACT

Macrophages are multifunctional immune system cells that are essential for the mechanical stimulation-induced control of metabolism. Piezo1 is a non-selective calcium channel expressed in multifarious tissues to convey mechanical signals. Here, a cellular model of tension was used to study the effect of mechanical stretch on the phenotypic transformation of macrophages and its mechanism. An indirect co-culture system was used to explore the effect of macrophage activation on bone marrow mesenchymal stem cells (BMSCs), and a treadmill running model was used to validate the mechanism in vivo for in vitro studies. p53 was acetylated and deacetylated by macrophages as a result of mechanical strain being detected by Piezo1. This process is able to polarize macrophages towards M2 and secretes transforming growth factor-beta (TGF-ß1), which subsequently stimulates BMSCs migration, proliferation and osteogenic differentiation. Knockdown of Piezo1 inhibits the conversion of macrophages to the reparative phenotype, thereby affecting bone remodelling. Blockade of TGF-ß I, II receptors and Piezo1 significantly reduced exercise-increased bone mass in mice. In conclusion, we showed that mechanical tension causes calcium influx, p53 deacetylation, macrophage polarization towards M2 and TGF-ß1 release through Piezo1. These events support BMSC osteogenesis.


Subject(s)
Osteogenesis , Transforming Growth Factor beta1 , Mice , Animals , Transforming Growth Factor beta1/metabolism , Mechanotransduction, Cellular , Tumor Suppressor Protein p53/metabolism , Macrophages/metabolism , Cell Differentiation , Ion Channels
15.
JCI Insight ; 8(4)2023 02 22.
Article in English | MEDLINE | ID: mdl-36649072

ABSTRACT

BACKGROUNDImmune checkpoint blockade is an emerging treatment for T cell non-Hodgkin's lymphoma (T-NHL), but some patients with T-NHL have experienced hyperprogression with undetermined mechanisms upon anti-PD-1 therapy.METHODSSingle-cell RNA-Seq, whole-genome sequencing, whole-exome sequencing, and functional assays were performed on primary malignant T cells from a patient with advanced cutaneous T cell lymphoma who experienced hyperprogression upon anti-PD-1 treatment.RESULTSThe patient was enrolled in a clinical trial of anti-PD-1 therapy and experienced disease hyperprogression. Single-cell RNA-Seq revealed that PD-1 blockade elicited a remarkable activation and proliferation of the CD4+ malignant T cells, which showed functional PD-1 expression and an exhausted status. Further analyses identified somatic amplification of PRKCQ in the malignant T cells. PRKCQ encodes PKCθ; PKCθ is a key player in the T cell activation/NF-κB pathway. PRKCQ amplification led to high expressions of PKCθ and p-PKCθ (T538) on the malignant T cells, resulting in an oncogenic activation of the T cell receptor (TCR) signaling pathway. PD-1 blockade in this patient released this signaling, derepressed the proliferation of malignant T cells, and resulted in disease hyperprogression.CONCLUSIONOur study provides real-world clinical evidence that PD-1 acts as a tumor suppressor for malignant T cells with oncogenic TCR activation.TRIAL REGISTRATIONClinicalTrials.gov (NCT03809767).FUNDINGThe National Natural Science Foundation of China (81922058), the National Science Fund for Distinguished Young Scholars (T2125002), the National Science and Technology Major Project (2019YFC1315702), the National Youth Top-Notch Talent Support Program (283812), and the Peking University Clinical Medicine plus X Youth Project (PKU2019LCXQ012) supported this work.


Subject(s)
Lymphoma, T-Cell, Cutaneous , Skin Neoplasms , Adolescent , Humans , Protein Kinase C-theta , Receptors, Antigen, T-Cell , Signal Transduction
16.
Cell Mol Gastroenterol Hepatol ; 15(3): 533-558, 2023.
Article in English | MEDLINE | ID: mdl-36270602

ABSTRACT

BACKGROUND & AIMS: Hepatitis B virus (HBV) infection is difficult to cure owing to the persistence of covalently closed circular viral DNA (cccDNA). We performed single-cell transcriptome analysis of newly established HBV-positive and HBV-negative hepatocellular carcinoma cell lines and found that dedicator of cytokinesis 11 (DOCK11) was crucially involved in HBV persistence. However, the roles of DOCK11 in the HBV lifecycle have not been clarified. METHODS: The cccDNA levels were measured by Southern blotting and real-time detection polymerase chain reaction in various hepatocytes including PXB cells by using an HBV-infected model. The retrograde trafficking route of HBV capsid was investigated by super-resolution microscopy, proximity ligation assay, and time-lapse analysis. The downstream molecules of DOCK11 and underlying mechanism were examined by liquid chromatography-tandem mass spectrometry, immunoblotting, and enzyme-linked immunosorbent assay. RESULTS: The cccDNA levels were strongly increased by DOCK11 overexpression and repressed by DOCK11 suppression. Interestingly, DOCK11 functionally associated with retrograde trafficking proteins in the trans-Golgi network (TGN), Arf-GAP with GTPase domain, ankyrin repeat, and pleckstrin homology domain-containing protein 2 (AGAP2), and ADP-ribosylation factor 1 (ARF1), together with HBV capsid, to open an alternative retrograde trafficking route for HBV from early endosomes (EEs) to the TGN and then to the endoplasmic reticulum (ER), thereby avoiding lysosomal degradation. Clinically, DOCK11 levels in liver biopsies from patients with chronic hepatitis B were significantly reduced by entecavir treatment, and this reduction correlated with HBV surface antigen levels. CONCLUSIONS: HBV uses a retrograde trafficking route via EEs-TGN-ER for infection that is facilitated by DOCK11 and serves to maintain cccDNA. Therefore, DOCK11 is a potential therapeutic target to prevent persistent HBV infection.


Subject(s)
Hepatitis B, Chronic , Hepatitis B , Humans , Hepatitis B virus/genetics , trans-Golgi Network/metabolism , Hepatitis B/metabolism , Lysosomes/metabolism
18.
Int J Mol Sci ; 23(15)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35955438

ABSTRACT

Alpha-fetoprotein (AFP) is an oncofetal protein that is elevated in a subset of hepatocellular carcinoma (HCC) with poor prognosis, but the molecular target activated in AFP-positive HCC remains elusive. Here, we demonstrated that the transcription factor forkhead box M1 (FOXM1) is upregulated in AFP-positive HCC. We found that FOXM1 expression was highly elevated in approximately 40% of HCC cases, and FOXM1-high HCC was associated with high serum AFP levels, a high frequency of microscopic portal vein invasion, and poor prognosis. A transcriptome and pathway analysis revealed the activation of the mitotic cell cycle and the inactivation of mature hepatocyte metabolism function in FOXM1-high HCC. The knockdown of FOXM1 reduced AFP expression and induced G2/M cell cycle arrest. We further identified that the proteasome inhibitor carfilzomib attenuated FOXM1 protein expression and suppressed cell proliferation in AFP-positive HCC cells. Carfilzomib in combination with vascular endothelial growth factor receptor 2 (VEGFR2) blockade significantly prolonged survival by suppressing AFP-positive HCC growth in a subcutaneous tumor xenotransplantation model. These data indicated that FOXM1 plays a pivotal role in the proliferation of AFP-positive liver cancer cells. Carfilzomib can effectively inhibit FOXM1 expression to inhibit tumor growth and could be a novel therapeutic option in patients with AFP-positive HCC who receive anti-VEGFR2 antibodies.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Forkhead Box Protein M1/genetics , Forkhead Box Protein M1/metabolism , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Proteasome Endopeptidase Complex/metabolism , Vascular Endothelial Growth Factor A/metabolism , alpha-Fetoproteins/genetics , alpha-Fetoproteins/metabolism
19.
J Bone Oncol ; 35: 100436, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35733786

ABSTRACT

Background: Circular RNA (circRNA) is a newly-discovered endogenous transcript that has been reported to participate in osteosarcoma (OS) progression. However, the underlying mechanism of circ_0051079 modulating OS development remains unclear. Methods: RNA expressions of circ_0051079, miR-625-5p and tripartite motif containing 66 (TRIM66) were detected by quantitative real-time polymerase chain reaction. Protein expression was checked by Western blot analysis. The functional effects of circ_0051079 on OS cell malignancy were investigated by cell counting kit-8, clonogenicity, transwell, tube formation and flow cytometry assays. The interactions among circ_0051079, miR-625-5p and TRIM66 were identified by dual-luciferase reporter and RNA immunoprecipitation assays. Mouse xenograft model assay was performed to elucidate the effects of circ_0051079 knockdown on tumor formation in vivo. Results: Circ_0051079 and TRIM66 expressions were significantly upregulated, but miR-625-5p was downregulated in OS tissues and cells compared with control groups. Circ_0051079 expression was significantly associated with tumor-node-metastasis stage and tumor size of OS patients. Circ_0051079 knockdown inhibited OS cell proliferation, migration and invasion, repressed angiogenesis but induced cell apoptosis, accompanied by the decreases of PCNA and Bcl-2 production and an increase of Bax production. MiR-625-5p, a target miRNA of circ_0051079, participated in regulating circ_0051079-induced effects. Also, TRIM66 was identified as a target mRNA of miR-625-5p, and partially attenuated the inhibitory effects of miR-625-5p in OS cells. Circ_0051079 modulated the Wnt/ß-catenin pathway through TRIM66 in vitro. Importantly, circ_0051079 silencing reduced TRIM66 expression by interacting with miR-625-5p. Further, circ_0051079 depletion inhibited tumor formation in vivo. Conclusion: Circ_0051079 regulated OS development by the miR-625-5p/TRIM66/Wnt/ß-catenin pathway, providing a novel therapeutic target for OS.

20.
Hepatol Commun ; 6(9): 2441-2454, 2022 09.
Article in English | MEDLINE | ID: mdl-35691027

ABSTRACT

For the development of antiviral agents to eliminate hepatitis B virus (HBV), it is essential to establish an HBV cell culture system that can easily monitor HBV infection. Here, we created a novel HBV infection monitoring system using a luminescent 11-amino acid reporter, the high-affinity subunit of nano-luciferase binary technology (HiBiT). The HiBiT-coding sequence was inserted at the N-terminus of preS1 in a 1.2-fold plasmid encoding a genotype C HBV genome. After transfection of HepG2 cells with this HiBiT-containing plasmid, the supernatant was used to prepare a recombinant cell culture-derived virus (HiBiT-HBVcc). Primary human hepatocytes (PXB) were inoculated with HiBiT-HBVcc. Following inoculation, intracellular and extracellular HiBiT activity and the levels of various HBV markers were determined. Reinfection of naive PXB cells with HiBiT-HBVcc prepared from HiBiT-HBVcc-infected PXB cells was analyzed. When PXB cells were infected with HiBiT-HBVcc at several titers, extracellular HiBiT activity was detected in a viral titer-dependent manner and was correlated with intracellular HiBiT activity. Inhibitors of HBV entry or replication suppressed extracellular HiBiT activity. Viral DNA, RNA, and proteins were detectable, including covalently closed circular DNA, by Southern blot analysis. The synthesis of relaxed-circular DNA from single-stranded DNA in HiBiT-HBV decreased to one third of that of wild-type HBV, and the infectivity of HiBiT-HBVcc decreased to one tenth of that of wild-type HBVcc. HiBiT-HBVcc prepared from PXB cells harboring HiBiT-HBV was able to infect naive PXB cells. Conclusions: Recombinant HiBiT-HBV can undergo the entire viral life cycle, thus facilitating high-throughput screening for HBV infection in vitro using supernatants. This system will be a powerful tool for developing antiviral agents.


Subject(s)
Hepatitis B virus , Hepatitis B , Animals , Antiviral Agents/pharmacology , DNA, Circular/genetics , Hepatitis B/genetics , Hepatitis B virus/genetics , Hepatocytes , Humans , Life Cycle Stages , Virus Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...