Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 14(7): 401, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37414769

ABSTRACT

Sepsis involves endothelial cell (EC) dysfunction, which contributes to multiple organ failure. To improve therapeutic prospects, elucidating molecular mechanisms of vascular dysfunction is of the essence. ATP-citrate lyase (ACLY) directs glucose metabolic fluxes to de novo lipogenesis by generating acetyl-Co-enzyme A (acetyl-CoA), which facilitates transcriptional priming via protein acetylation. It is well illustrated that ACLY participates in promoting cancer metastasis and fatty liver diseases. Its biological functions in ECs during sepsis remain unclear. We found that plasma levels of ACLY were increased in septic patients and were positively correlated with interleukin (IL)-6, soluble E-selectin (sE-selectin), soluble vascular cell adhesion molecule 1 (sVCAM-1), and lactate levels. ACLY inhibition significantly ameliorated lipopolysaccharide challenge-induced EC proinflammatory response in vitro and organ injury in vivo. The metabolomic analysis revealed that ACLY blockade fostered ECs a quiescent status by reducing the levels of glycolytic and lipogenic metabolites. Mechanistically, ACLY promoted forkhead box O1 (FoxO1) and histone H3 acetylation, thereby increasing the transcription of c-Myc (MYC) to facilitate the expression of proinflammatory and gluco-lipogenic genes. Our findings revealed that ACLY promoted EC gluco-lipogenic metabolism and proinflammatory response through acetylation-mediated MYC transcription, suggesting ACLY as the potential therapeutic target for treating sepsis-associated EC dysfunction and organ injury.


Subject(s)
ATP Citrate (pro-S)-Lyase , Lipogenesis , Humans , ATP Citrate (pro-S)-Lyase/metabolism , Inflammation , Adenosine Triphosphate/metabolism
2.
Front Immunol ; 14: 1114129, 2023.
Article in English | MEDLINE | ID: mdl-37377971

ABSTRACT

Acute respiratory distress syndrome (ARDS) is associated with high mortality rates in patients admitted to the intensive care unit (ICU) patients with overwhelming inflammation considered to be an internal cause. The authors' previous study indicated a potential correlation between phenylalanine levels and lung injury. Phenylalanine induces inflammation by enhancing the innate immune response and the release of pro-inflammatory cytokines. Alveolar macrophages (AMs) can respond to stimuli via synthesis and release of inflammatory mediators through pyroptosis, one form of programmed cell death acting through the nucleotide-binging oligomerization domain-like receptors protein 3 (NLRP3) signaling pathway, resulting in the cleavage of caspase-1 and gasdermin D (GSDMD) and the release of interleukin (IL) -1ß and IL-18, aggravating lung inflammation and injury in ARDS. In this study, phenylalanine promoted pyroptosis of AMs, which exacerbated lung inflammation and ARDS lethality in mice. Furthermore, phenylalanine initiated the NLRP3 pathway by activating the calcium-sensing receptor (CaSR). These findings uncovered a critical mechanism of action of phenylalanine in the context of ARDS and may be a new treatment target for ARDS.


Subject(s)
Pneumonia , Respiratory Distress Syndrome , Animals , Mice , Macrophages, Alveolar/metabolism , Pyroptosis , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Receptors, Calcium-Sensing , Phenylalanine , Inflammation
3.
J Inflamm (Lond) ; 20(1): 16, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37131151

ABSTRACT

BACKGROUND: Delayed neutrophil apoptosis during sepsis may impact neutrophil organ accumulation and tissue immune homeostasis. Elucidating the mechanisms underlying neutrophil apoptosis may help identify potential therapeutic targets. Glycolysis is critical to neutrophil activities during sepsis. However, the precise mechanisms through which glycolysis regulates neutrophil physiology remain under-explored, especially those involving the non-metabolic functions of glycolytic enzymes. In the present study, the impact of programmed death ligand-1 (PD-L1) on neutrophil apoptosis was explored. The regulatory effect of the glycolytic enzyme, pyruvate kinase M2 (PKM2), whose role in septic neutrophils remains unaddressed, on neutrophil PD-L1 expression was also explored. METHODS: Peripheral blood neutrophils were isolated from patients with sepsis and healthy controls. PD-L1 and PKM2 levels were determined by flow cytometry and Western blotting, respectively. Dimethyl sulfoxide (DMSO)-differentiated HL-60 cells were stimulated with lipopolysaccharide (LPS) as an in vitro simulation of septic neutrophils. Cell apoptosis was assessed by annexin V/propidium iodide (annexin V/PI) staining, as well as determination of protein levels of cleaved caspase-3 and myeloid cell leukemia-1 (Mcl-1) by Western blotting. An in vivo model of sepsis was constructed by intraperitoneal injection of LPS (5 mg/kg) for 16 h. Pulmonary and hepatic neutrophil infiltration was assessed by flow cytometry or immunohistochemistry. RESULTS: PD-L1 level was elevated on neutrophils under septic conditions. Administration of neutralizing antibodies against PD-L1 partially reversed the inhibitory effect of LPS on neutrophil apoptosis. Neutrophil infiltration into the lung and liver was also reduced in PD-L1-/- mice 16 h after sepsis induction. PKM2 was upregulated in septic neutrophils and promoted neutrophil PD-L1 expression both in vitro and in vivo. In addition, PKM2 nuclear translocation was increased after LPS stimulation, which promoted PD-L1 expression by directly interacting with and activating signal transducer and activator of transcription 1 (STAT1). Inhibition of PKM2 activity or STAT1 activation also led to increased neutrophil apoptosis. CONCLUSION: In this study, a PKM2/STAT1-mediated upregulation of PD-L1 on neutrophils and the anti-apoptotic effect of upregulated PD-L1 on neutrophils during sepsis were identified, which may result in increased pulmonary and hepatic neutrophil accumulation. These findings suggest that PKM2 and PD-L1 could serve as potential therapeutic targets.

4.
Database (Oxford) ; 20222022 08 18.
Article in English | MEDLINE | ID: mdl-35980286

ABSTRACT

Sepsis, one of the major challenges in the intensive care unit, is characterized by complex host immune status. Improved understandings of the phenotypic changes of immune cells during sepsis and the driving molecular mechanisms are critical to the elucidation of sepsis pathogenesis. Single-cell RNA sequencing (scRNA-seq), which interprets transcriptome at a single-cell resolution, serves as a useful tool to uncover disease-related gene expression signatures of different cell populations in various diseases. It has also been applied to studies on sepsis immunopathological mechanisms. Due to the fact that most sepsis-related studies utilizing scRNA-seq have very small sample sizes and there is a lack of an scRNA-seq database for sepsis, we developed Sepsis Single-cell Whole Gene Expression Database Website (SC2sepsis) (http://www.rjh-sc2sepsis.com/), integrating scRNA-seq datasets of human peripheral blood mononuclear cells from 45 septic patients and 26 healthy controls, with a total amount of 232 226 cells. SC2sepsis is a comprehensive resource database with two major features: (i) retrieval of 1988 differentially expressed genes between pathological and healthy conditions and (ii) automatic cell-type annotation, which is expected to facilitate researchers to gain more insights into the immune dysregulation of sepsis. DATABASE URL: http://www.rjh-sc2sepsis.com/.


Subject(s)
Sepsis , Single-Cell Analysis , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Leukocytes, Mononuclear , Sepsis/genetics , Sequence Analysis, RNA , Software , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...