Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 876: 163208, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37011695

ABSTRACT

Non-ferrous metal mining activities are known to cause ecological irreversible damage in the tailings and surrounding areas as well as heavy metal (HM) contamination. The enhancement of Chlorella-montmorillonite interaction on the remediation of HM contaminated tailings was verified from the lab to the tailings in Daye City, Hubei Province, China. The results showed a positive correlation between the quantity of montmorillonite and the transformation of Pb and Cu into residual and carbonate-binding states, which resulted in a considerable decrease in the leaching ratio. The buildup of tailings fertility throughout this process benefited from montmorillonite's ability to buffer environmental changes and store water. This further offers a required environmental foundation for the rebuilding of microbial community and the growth of herbaceous plants. The structural equation model demonstrated that the interaction between Chlorella and montmorillonite directly affected the stability of HM, and that this interaction also had an impact on the accumulation of organic carbon, total nitrogen, and available phosphorus, which improved the immobilization of Pb, Cu, Cd, and Zn. This work made the first attempt to apply Chlorella-montmorillonite composite to in-situ tailings remediation, and proposed that the combination of inorganic clay minerals and organic microorganisms was an eco-friendly, long-lasting, and efficient method for immobilizing multiple-HMs in mining areas.


Subject(s)
Chlorella , Metals, Heavy , Soil Pollutants , Bentonite , Lead , Soil Pollutants/analysis , Metals, Heavy/analysis , Soil
2.
J Hazard Mater ; 423(Pt A): 127007, 2022 02 05.
Article in English | MEDLINE | ID: mdl-34523473

ABSTRACT

In this study, Chlorella sorokiniana FK, isolated from lead-zinc tailings, was employed for Pb(II) biomineralization with or without montmorillonite (MMT) addition in soil. Batch experiment results showed that montmorillonite facilitated Pb3(CO3)2(OH)2 formation on the surface of Chlorella-MMT composite, thus increasing algal cells' tolerance to Pb(II) poisoning. Surprisingly, Pb(II) adsorbed and biomineralized by Chlorella-MMT composite was 2.69 times and 3.76 times as much as that by Chlorella alone, respectively. The montmorillonite facilitated Chlorella-induced Pb biomineralization by promoting both photosynthesis and urea hydrolysis, mainly due to more hydroxyl functional groups generated during its binding with Chlorella and its high pH buffering capacity. Moreover, the SEM-EDS analysis indicated that the biomineral particles shifted from algal cell surface to montmorillonite surface in the composite during long-term Pb-detoxification. In-situ soil Pb(II) remediation experiments with Chlorella-MMT composites further showed that Pb was immobilized as carbonate form in the short term and as residue fraction in the long term. This study made the first attempt to explore the facilitating effects of montmorillonite on metal-carbonate precipitation mediated by microalgae and to develop a green, sustainable, and effective strategy for immobilization of heavy metal in soil by combining clay minerals and microalgae.


Subject(s)
Chlorella , Soil , Bentonite , Biomineralization , Lead
3.
Environ Pollut ; 254(Pt A): 112966, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31377332

ABSTRACT

This study developed a novel Hg(II) immobilization strategy by firstly incubating algal cells in high-phosphate cultures for surface modification, followed by obtaining the P-rich biomass as adsorbents for enhanced Hg(II) removal and then charring the Hg-loaded biomass to prevent leaching of phosphate and to immobilize Hg(II). For algal surface modification, Scenedesmus obtusus XJ-15 were cultivated under different P concentrations and obtained the highest sites concentration of surface phosphoryl functional groups in 80 mg L-1 P cultures. For Hg(II) adsorption, biomass from 80 mg L-1 P cultures (B-80) achieved the highest saturated sorption capacity of 95 mg g-1 fitting to Langmuir isotherm model under the optimum pH of 5.0. For charring stabilization, the Hg-loaded B-80 was calcinated under different temperatures, and the product obtained from 300 °C charring showed the lowest Hg(II) leaching rate without P release. Moreover, FT-IR and XPS analysis indicate that the surge of surface phosphoryl functional groups dominated the enhancement of Hg(II) sorption and also Hg(II) charring immobilization. The above results suggested that the developed strategy is promising for both phosphate and mercury removal from water and for co-immobilization of P and Hg(II) to prevent leaching.


Subject(s)
Mercury/metabolism , Microalgae/metabolism , Water Pollutants, Chemical/metabolism , Adsorption , Biodegradation, Environmental , Biomass , Hydrogen-Ion Concentration , Kinetics , Mercury/analysis , Phosphates , Spectroscopy, Fourier Transform Infrared , Water , Water Pollutants, Chemical/analysis , Water Purification/methods
4.
PLoS One ; 12(10): e0186434, 2017.
Article in English | MEDLINE | ID: mdl-29045481

ABSTRACT

The effects of growth phase on the lipid content and surface properties of oleaginous microalgae Botryococcus sp. FACGB-762, Chlorella sp. XJ-445 and Desmodesmus bijugatus XJ-231 were investigated in this study. The results showed that throughout the growth phases, the lipid content of microalgae increased. The surface properties like particle size, the degree of hydrophobicity, and the total concentration of functional groups increased while net surface zeta potential decreased. The results suggested that the growth stage had significant influence not only on the lipid content but also on the surface characteristics. Moreover, the lipid content was significantly positively related to the concentration of hydroxyl functional groups in spite of algal strains or growth phases. These results provided a basis for further studies on the refinery process using oleaginous microalgae for biofuel production.


Subject(s)
Chlorella/growth & development , Lipids/chemistry , Microalgae/growth & development , Biomass , Hydrophobic and Hydrophilic Interactions , Particle Size , Potentiometry , Sample Size , Static Electricity , Surface Properties
5.
R Soc Open Sci ; 4(11): 170867, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29291079

ABSTRACT

This study developed a coagulation-flotation process for microalgae Chlorella sp. XJ-445 harvesting, which was composed of algal surface modification by combined use of Al3+ and cetyltrimethylammonium bromide (CTAB) and followed dispersed bubble flotation. Dissolved organic matter (DOM) in the medium was firstly characterized and mainly consisted of hydrophilic low molecular weight molecules. The dosage of collector (CTAB) and coagulant (Al3+) were optimized, and with the pretreatment of 40 mg Al3+ and 60 mg CTAB per 1 g dry biomass without pH adjustment, a maximum flotation recovery efficiency of 98.73% can be achieved with the presence of DOM. Algal cells characterization results showed that the combined use of CTAB and Al3+ largely enhanced the algal floc size, and exhibited higher degree of hydrophobicity, which favoured the flotation, and can be interpreted by DLVO (Derjaguin, Landau, Verwey and Overbeek) modelling. A benefit in fatty acid conversion was further found with the optimized coagulation-flotation process. It was suggested that this coagulation based flotation is a promising strategy for high-efficiency harvesting of microalgae.

SELECTION OF CITATIONS
SEARCH DETAIL
...