Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters











Publication year range
1.
J Am Chem Soc ; 146(21): 14765-14775, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38752294

ABSTRACT

Ultrafast N2 fixation reactions are quite challenging. Currently used methods for N2 fixation are limited, and strong dinitrogen bonds usually need to be activated via extreme temperature or pressure or by the use of an energy-consuming process with sophisticated catalysts. Herein, we report a novel laser-based chemical method for N2 fixation under ambient conditions without catalysts, this method is called laser bubbling in liquids (LBL), and it directly activates N2 in water (H2O) and efficiently converts N2 into valuable NH3 (max: 4.2 mmol h-1) and NO3- (0.17 mmol h-1). Remarkably, the highest yields of NH3 and NO3- are 4 orders of magnitude greater than the best values for electrocatalysis reported to date. Notably, we further validate the experimental mechanism by using optical emission spectroscopy to detect the production of intermediate plasma and by employing isotope tracing. We also establish that an extremely high-temperature environment far from thermodynamic equilibrium inside a laser-induced bubble and the kinetic process of rapid quenching of bubbles is crucial for N2 activation and fixation to generate NH3 and NOx via LBL. Based on these results, it is shown that LBL is a simple, safe, efficient, green, and sustainable technology that enables the rapid conversion of the renewable feedstocks H2O and N2 to NH3 and NO3-, facilitating new prospects for chemical N2 fixation.

2.
Chem Sci ; 15(14): 5376-5384, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38577367

ABSTRACT

Distonic radical cations (DRCs) with spatially separated charge and radical sites are expected to show both radical and cationic reactivity at different sites within one molecule. However, such "dual" reactivity has rarely been observed in the condensed phase. Herein we report the isolation of crystalline 1λ2,3λ2-1-phosphonia-3-phosphinyl-cyclohex-4-enes 2a,b˙+, which can be considered delocalized DRCs and were completely characterized by crystallographic, spectroscopic, and computational methods. These DRCs contain a radical and cationic site with seven and six valence electrons, respectively, which are both stabilized via conjugation, yet remain spatially separated. They exhibit reactivity that differs from that of conventional radical cations (CRCs); specifically they show sequential radical and cationic reactivity at separated sites within one molecule in solution.

3.
Proc Natl Acad Sci U S A ; 121(9): e2319286121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38394244

ABSTRACT

Hydrogen (H2) and hydrogen peroxide (H2O2) play crucial roles as energy carriers and raw materials for industrial production. However, the current techniques for H2 and H2O2 production rely on complex catalysts and involve multiple intermediate steps. In this study, we present a straightforward, environmentally friendly, and highly efficient laser-induced conversion method for overall water splitting to simultaneously generate H2 and H2O2 at ambient conditions without any catalysts. The laser direct overall water splitting approach achieves an impressive light-to-hydrogen energy conversion efficiency of 2.1%, with H2 production rates of 2.2 mmol/h and H2O2 production rates of 65 µM/h in a limited reaction area (1 mm2) within a short real reaction time (0.36 ms/h). Furthermore, we elucidate the underlying physics and chemistry behind the laser-induced water splitting to produce H2 and H2O2. The laser-induced cavitation bubbles create an optimal microenvironment for water-splitting reactions because of the transient high temperatures (104 K) surpassing the chemical barrier required. Additionally, their rapid cooling rate (1010 K/s) hinders reverse reactions and facilitates H2O2 retention. Finally, upon bubble collapse, H2 is released while H2O2 remains dissolved in the water. Moreover, a preliminary amplification experiment demonstrates the potential industrial applications of this laser chemistry. These findings highlight that laser-based production of H2 and H2O2 from water holds promise as a straightforward, environmentally friendly, and efficient approach on an industrial scale beyond conventional chemical catalysis.

4.
J Am Chem Soc ; 146(7): 4864-4871, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38334947

ABSTRACT

As a good carrier of hydrogen, ammonia-water has been employed to extract hydrogen in many ways. Here, we demonstrate a simple, green, ultrafast, and highly efficient method for hydrogen extraction from ammonia-water by laser bubbling in liquids (LBL) at room temperature and ambient pressure without catalyst. A maximum apparent yield of 33.7 mmol/h and a real yield of 93.6 mol/h were realized in a small operating space, which were far higher than the yields of most hydrogen evolution reactions from ammonia-water under ambient conditions. We also established that laser-induced cavitation bubbles generated a transient high temperature, which enabled a very suitable environment for hydrogen extraction from ammonia-water. The laser used here can serve as a demonstration of potentially solar-pumped catalyst-free hydrogen extraction and other chemical synthesis. We anticipate that the LBL technique will open unprecedented opportunities to produce chemicals.

5.
J Phys Chem A ; 127(20): 4375-4387, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37183362

ABSTRACT

Lewis acid-transition metal (LA-TM) catalysts have been proven to have an advantage in catalyzing hydrogen activation. Herein, a high-dimensional structure-activity relationship study is performed for LA-TM-catalyzed hydrogen activation by density functional theory calculations. The DPB-Ni complex is taken as the representative catalyst, and the explored Lewis acid sites and transition-metal centers include B, Al, Ga and Ni, Pd, Pt, respectively. Totally, four general hydrogen activation mechanisms are systematically studied among the nine catalytic systems. The Ga-Ni system undergoes the lowest free energy of activation (11.0 kcal/mol), which is considered to be the optimal combination of the Lewis acid site and transition-metal center. Furthermore, more than 100 parameters are used to analyze the structure-activity relationship, including the physical structure, the bond order, the atom charge, and many other properties. Key parameters of important structures are dug out to show a high correlation with the activity of the LA-TM systems, including the M-H2 distance, the H-H bond length, the second-order perturbation stabilization energy of M-H2, the bond order of the LA-TM, and so on. The multivariable analysis indicates that the feature related to the basic elemental properties and the global feature codetermine the activity of the catalyst. In the LA-TM system, the combination of IpLA/IpTM (Ip, the first ionization energy, the feature related to basic elemental properties) and the chemical hardness (the global feature) can better explain the activity of the catalyst. The IpLA/IpTM reflects the difficulty of breaking the LA-TM bond, affecting the reaction site of activating hydrogen. The hardness reflects the stability and reactivity of LA-TM-RC complexes. The above two features with the addition of the LA-TM bond length (the local feature) can better reflect the activity of the LA-TM system-catalyzed H2 activation. The feature combinations and the method of multidimensional data analysis should be informative guidance for the rational design of efficient LA-TM catalysts for H2 activation.

6.
Research (Wash D C) ; 6: 0132, 2023.
Article in English | MEDLINE | ID: mdl-37228638

ABSTRACT

Methanol (CH3OH) is a liquid hydrogen (H2) source that effectively releases H2 and is convenient for transportation. Traditional thermocatalytic CH3OH reforming reaction is used to produce H2, but this process needs to undergo high reaction temperature (e.g., 200 °C) along with a catalyst and a large amount of carbon dioxide (CO2) emission. Although photocatalysis and photothermal catalysis under mild conditions are proposed to replace the traditional thermal catalysis to produce H2 from CH3OH, they still inevitably produce CO2 emissions that are detrimental to carbon neutrality. Here, we, for the first time, report an ultrafast and highly selective production of H2 without any catalysts and no CO2 emission from CH3OH by laser bubbling in liquid (LBL) at room temperature and atmospheric pressure. We demonstrate that a super high H2 yield rate of 33.41 mmol·h-1 with 94.26% selectivity is achieved upon the laser-driven process. This yield is 3 orders of magnitude higher than the best value reported for photocatalytic and photothermal catalytic H2 production from CH3OH to date. The energy conversion efficiency of laser light to H2 and CO can be up to 8.5%. We also establish that the far from thermodynamic equilibrium state with high temperature inside the laser-induced bubble and the kinetic process of rapid quenching of bubbles play crucial roles in H2 production upon LBL. Thermodynamically, the high temperature induced using laser in bubbles ensures fast and efficient release of H2 from CH3OH decomposition. Kinetically, rapidly quenching of laser-induced bubbles can inhibit reverse reaction and can keep the products in the initial stage, which guarantees high selectivity. This study presents a laser-driven ultrafast and highly selective production of H2 from CH3OH under normal conditions beyond catalytic chemistry.

7.
Front Chem ; 10: 897828, 2022.
Article in English | MEDLINE | ID: mdl-35620652

ABSTRACT

To understand the unprecedented difference between 6-endo and 5-exo selectivity in hypervalent iodine (III) promoted fluorocyclization of unsaturated carboxylic acids or alcohols by difluoroiodotoluene, density functional theory (DFT) studies have been performed to systematically compare both the previous proposed "fluorination first and cyclization later" mechanism and the alternative "cyclization first and fluorination later" mechanism. Our results revealed that the selectivity is mechanism-dependent. The unsaturated alcohol prefers the fluorination first and the 6-endo-tet cyclization later pathway, leading to the experimentally observed 6-endo ether product. In contrast, the unsaturated carboxylic acid plausibly undergoes the 5-exo-trig cyclization first and the fluorination later to the experimentally observed 5-exo lactone product. The pK a property of the functional group of the substrate is found to play a key role in determining the reaction mechanism. The provided insights into the mechanism-dependent selectivity should help advance the development of fluorocyclization reactions with hypervalent iodine reagents.

8.
Chem Asian J ; 16(20): 3124-3128, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34529352

ABSTRACT

The first implementation of a molybdenum complex with an easily accessible bis-N-heterocyclic carbene ligand to catalyze ß-alkylation of secondary alcohols via borrowing-hydrogen (BH) strategy using alcohols as alkylating agents is reported. Remarkably high activity, excellent selectivity, and broad substrate scope compatibility with advantages of catalyst usage low to 0.5 mol%, a catalytic amount of NaOH as the base, and H2 O as the by-product are demonstrated in this green and step-economical protocol. Mechanistic studies indicate a plausible outer-sphere mechanism in which the alcohol dehydrogenation is the rate-determining step.

9.
Chem Asian J ; 16(21): 3427-3436, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34463040

ABSTRACT

Bifunctional transition metal complexes are of particular interest in metal-ligand cooperative activation of small molecules. As a novel type of bifunctional catalyst, Lewis acid transition metal (LA-TM) complexes have attracted increasing interest in hydrogen activation and storage. To advance the catalyst design, herein the metal effect of LA-TM complexes on the hydrogen activation has been systematically studied with a series of tris(phosphino)borane (TPB) complexes with V, Cr, Mn, Fe, Co, and Ni as metal centers. The metal effect not only influences the mechanism of hydrogen activation, but also notably casts a volcano plot for the activity. TPB complexes of V, Cr, Mn, Fe, and Co tend to activate H2 through a stepwise mechanism, while TPB-Ni prefers a synergetic mechanism for H2 activation. More importantly, the metal effect significantly influences the activity of H2 activation and the formation of the LA-H-TM bridging hydride. The trend of changes in the LA-H-TM structures, the second-order perturbation stabilization energies, and the Laplacian bond orders, along with different metals (from V to Ni), are all interestingly constitute volcano plots for the performance of TPB-TM complexes catalyzed H2 activation. TPB-Mn and TPB-Fe are found to be the optimal catalysts among the discussed TPB-TM complexes. The volcano plots disclosed for the metal effects should be informative and instructive for homogeneous and heterogeneous LA-TM catalysts development.

10.
J Am Chem Soc ; 143(36): 14703-14711, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34463096

ABSTRACT

Catalytic oxidative functionalization of alkynes has emerged as an effective method in synthetic chemistry in recent decades. However, enantioselective transformations via metal carbene intermediates are quite rare due to the lack of robust chiral catalysts, especially in the intermolecular versions. Herein, we report the first asymmetric three-component reaction of commercially available alkynes with nitrones and alcohols, which affords α-alkoxy-ß-amino-ketones in good yields with high to excellent enantioselectivity using combined catalysis by an achiral gold complex and a chiral spiro phosphoric acid (CPA). Mechanistically, this atom-economic reaction involves a catalytic alkyne oxidation/ylide formation/Mannich-type addition sequence that uses nitrone as the oxidant and the leaving fragment imine as the electrophile, providing a novel method for multi-functionalization of commercially available terminal alkynes.

11.
Org Biomol Chem ; 19(15): 3451-3461, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33899900

ABSTRACT

Metal hydride complexes are key intermediates for N-alkylation of amines with alcohols by the borrowing hydrogen/hydrogen autotransfer (BH/HA) strategy. Reactivity tuning of metal hydride complexes could adjust the dehydrogenation of alcohols and the hydrogenation of imines. Herein we report ruthenium(ii) complexes with hetero-bidentate N-heterocyclic carbene (NHC)-phosphine ligands, which realize smart pathway selection in the N-alkylated reaction via reactivity tuning of [Ru-H] species by hetero-bidentate ligands. In particular, complex 6cb with a phenyl wingtip group and BArF- counter anion, is shown to be one of the most efficient pre-catalysts for this transformation (temperature is as low as 70 °C, neat conditions and catalyst loading is as low as 0.25 mol%). A large variety of (hetero)aromatic amines and primary alcohols were efficiently converted into mono-N-alkylated amines in good to excellent isolated yields. Notably, aliphatic amines, challenging methanol and diamines could also be transformed into the desired products. Detailed control experiments and density functional theory (DFT) calculations provide insights to understand the mechanism and the smart pathway selection via [Ru-H] species in this process.

12.
iScience ; 24(4): 102263, 2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33796847

ABSTRACT

In this study, the concept of biomass-based direct air capture is proposed, and the aminoguanidine CO2 chemical sorbent 2,5-furan-bis(iminoguanidine) (FuBIG) was designed, synthesized, and elucidated for the physicochemical properties in the process of CO2 capture and release. Results showed that the aqueous solution of FuBIG could readily capture CO2 from ambient air and provided an insoluble tetrahydrated carbonate salt FuBIGH2(CO3) (H2O)4 with a second order kinetics. Hydrogen binding modes of iminoguanidine cations with carbonate ions and water were identified by single-crystal X-ray diffraction analysis. Equilibrium constant (K) and the enthalpies (ΔH) for CO2 absorption/release were obtained by thermodynamic and kinetic analysis (K7 = 5.97 × 104, ΔH7 = -116.1 kJ/mol, ΔH8 = 209.31 kJ/mol), and the CO2-release process was conformed to the geometrical phase-boundary model (1-(1-α)1/3 = kt). It was found that the FuBIGH2(CO3) (H2O)4 can release CO2 spontaneously in DMSO without heating. Zebrafish models revealed a favorable biocompatibility of FuBIG.

13.
Inorg Chem ; 60(2): 908-918, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33393292

ABSTRACT

The postcoordinated interligand-coupling strategy provides a useful and complementary protocol for synthesizing polydentate ligands. Herein, diastereoselective photoreactions of Λ-[Ir(pq)2(d-AA)] (Λ-d) and Λ-[Ir(pq)2(l-AA)] (Λ-l, where pq is 2-phenylquinoline and AA is an amino acid) are reported in the presence of O2 under mild conditions. Diastereomer Λ-d is dehydrogenatively oxidized into an imino acid complex, while diastereomer Λ-l mainly occurs via interligand C-N cross-dehydrogenative coupling between quinoline at the C8 position and AA ligands at room temperature, affording Λ-[Ir(pq)(l-pq-AA)]. Furthermore, the photoreaction of diastereomer Λ-l is temperature-dependent. Mechanistic experiments reveal the ligand-radical intermediates may be involved in the reaction. Density functional theory calculations were used to eluciate the origin of diastereoselectivity and temperature dependence. This will provide a new protocol for the amination of quinoline at the C8 position via the postcoordinated interligand C-N cross-coupling strategy under mild conditions.

14.
Dalton Trans ; 50(3): 954-959, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33351021

ABSTRACT

The carbodiphosphorane-based iridium pincer complex (2) is demonstrated to rearrange in chlorinated organic solvents under cleavage of a P-C-bond to give a chelating phosphine ylide ligand. A detailed mechanistic investigation reveals that these types of donor groups are prone for P-C-bond cleavage in the coordination sphere of transition metal hydrido complexes. Finally, complex 2 is demonstrated to be an efficient hydrogen-borrowing catalyst.

15.
Chemistry ; 25(60): 13785-13798, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31390099

ABSTRACT

As a new type of bifunctional catalyst, the Lewis acid transition-metal (LA-TM) catalysts have been widely applied for hydrogen activation. This study presents a mechanistic framework to understand the LA-TM-catalyzed H2 activation through DFT studies. The mer(trans)-homolytic cleavage, the fac(cis)-homolytic cleavage, the synergetic heterolytic cleavage, and the dissociative heterolytic cleavage should be taken as general mechanisms for the field of LA-TM catalysis. Four typical LA-TM catalysts, the Z-type κ4 -L3 B-Rh complex tri(azaindolyl)borane-Rh, the X-type κ3 -L2 B-Co complex bis-phosphino-boryl (PBP)-Co, the η2 -BC-type κ3 -L2 B-Pd complex diphosphine-borane (DPB)-Pd, and the Z-type κ2 -LB-Pt complex (boryl)iminomethane (BIM)-Pt are selected as representative models to systematically illustrate their mechanistic features and explore the influencing factors on mechanistic variations. Our results indicate that the tri(azaindolyl)borane-Rh catalyst favors the synergetic heterolytic mechanism; the PBP-Co catalyst prefers the mer(trans)-homolytic mechanism; the DPB-Pd catalyst operates through the fac(cis)-homolytic mechanism, whereas the BIM-Pt catalyst tends to undergo the dissociative heterolytic mechanism. The mechanistic variations are determined by the coordination geometry, the LA-TM bonding nature, the electronic structure of the TM center, and the flexibility or steric effect of the LA ligands. The presented mechanistic framework should provide helpful guidelines for LA-TM catalyst design and reaction developments.

16.
Chem Commun (Camb) ; 55(44): 6213-6216, 2019 May 28.
Article in English | MEDLINE | ID: mdl-31073582

ABSTRACT

The first example of room temperature non-noble metal homogeneous system catalyzed selective N-alkylation of anilines with alcohols by a bis-NHC manganese complex is presented. This system was applied to a large range of alcohols and anilines, including biologically relevant motifs and challenging methanol. Experimental and computational studies suggest an outer-sphere mechanism for this NHC-Mn system.


Subject(s)
Alcohols/chemistry , Aniline Compounds/chemistry , Heterocyclic Compounds/chemistry , Manganese/chemistry , Methane/analogs & derivatives , Alkylation , Catalysis , Methane/chemistry , Temperature
17.
J Am Chem Soc ; 141(13): 5334-5342, 2019 04 03.
Article in English | MEDLINE | ID: mdl-30852888

ABSTRACT

Optically active organoboronic acids and their derivatives are an important family of target compounds in organic chemistry, catalysis, and medicinal chemistry. Yet there are rare asymmetric catalytic examples reported for the synthesis of these compounds via atom and step economic ways. Herein, we report a chelate-directed iridium-catalyzed asymmetric C(sp2)-H borylation of aromatic C-H bonds directed by free amine groups. The success of these transformations relies on a novel family of chiral bidentate boryl ligands (L). They can be synthesized straightforwardly in three steps starting from readily available ( S, S)-1,2-diphenyl-1,2-ethanediamie (( S, S)-DPEN). The Ir-catalyzed C(sp2)-H borylation comprises two parts. The first part is desymmetrization of prochiral diarylmethylamines. In the presence of L3/Ir, a vast array of corresponding borylated products were obtained with high regioselectivity and good to excellent enantioselectivities (26 examples, up to 96% ee). The second part, kinetic resolution of racemic diarylmethylamines, was also conducted. Good selectivity values (up to 68%, 11 examples) were obtained when L8 was used. We also demonstrated the synthetic utility of the current method on gram-scale reaction for several transformations. The C-B bonds of borylated products could be converted to a variety of functionalities including C-O, C-C, C-C, C-Br, and C-P bonds. Finally, we performed DFT calculations of desymmetrization to understand its reaction pathways.

18.
J Org Chem ; 84(1): 458-462, 2019 Jan 04.
Article in English | MEDLINE | ID: mdl-30499297

ABSTRACT

Lewis/Bronsted acid activation plays a key role in hypervalent iodine reagent-mediated reactions. In addition to generally accepted cis-activation or trans-activation, this study reveals another important Lewis/Bronsted acid activation mode, the double-activation. Different from the generally proposed iodine(III)iranium SN2 mechanism, the hypervalent difluoro-iodoarene-promoted fluorocyclization of unsaturated alcohol prefers to undergo the metathesis mechanism via an iodine(III)-π intermediate.

19.
Org Lett ; 20(4): 1102-1105, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29400472

ABSTRACT

This study presents new mechanistic insights into the frustrated Lewis pairs (FLPs) catalyzed C-H activation of heteroarenes. Besides the generally accepted concerted C-H activation, a novel stepwise carbene type pathway is proposed as an alternative mechanism. The reaction mechanisms can be varied by tuning the distance between Lewis acid and Lewis base due to catalyst-substrate match. These results should expand the understanding of the structure and function of FLPs for catalyzed C-H activation.

20.
J Org Chem ; 82(6): 2914-2925, 2017 03 17.
Article in English | MEDLINE | ID: mdl-28244313

ABSTRACT

To achieve efficient palladium-catalyzed cross-coupling reaction under mild reaction conditions with the flexible steric bulk strategy, a series of Pd-PEPPSI (PEPPSI: pyridine-enhanced precatalyst preparation, stabilization, and initiation) complexes C1-C6 were synthesized and characterized, in which unsymmetric flexible steric bulk was introduced on the N-aryl of ancenaphthyl skeleton. These well-defined palladium complexes were found to be excellent precatalysts for Buchwald-Hartwig amination of aryl chlorides with amines in air. The electronic effect of the Pd-PEPPSI complexes and the effect of ancillary pyridine ligands were evaluated, among which complex C3 exhibited the most efficiency. It was demonstrated that the cross-coupling products were obtained in excellent yields in the presence of 0.5-0.1 mol % palladium loading. A wide range of aryl- and heteroaryl chlorides as well as various amines were compatible. The oxidative addition of aryl chlorides is revealed to be the rate-determining step in the catalytic cycle. The catalytic activity can be enhanced by introducing electron-donating groups to the Pd-PEPPSI complexes. This type of Pd-PEPPSI precatalyst showed the most efficiency reported to date for the challenging C-N cross-coupling reactions requiring no anhydrous and inert atmosphere protections, suggesting flexible steric bulk as a promising catalyst design strategy.

SELECTION OF CITATIONS
SEARCH DETAIL