Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 462
Filter
1.
Microsyst Nanoeng ; 10: 67, 2024.
Article in English | MEDLINE | ID: mdl-38799403

ABSTRACT

Mismatching quality factors (Q-factors) is one of the main factors causing zero-rate output (ZRO) in degenerate (DE) Micro-Electro-Mechanical Systems (MEMS) vibratory gyroscopes. To eliminate the ZRO of the DE MEMS gyroscope, this study introduces a method for real-time identification and automatic matching of Q-factors in rate mode. By leveraging the vibration characteristics of the DE MEMS vibratory gyroscope in rate mode, dedicated online test methods are designed to determine the Q-factors for both the drive and sense modes, enabling online identification of the Q-factor mismatching. Furthermore, an automatic Q-factor matching system is designed utilizing the mechanical-thermal dissipation mechanism of the resistive damper. The effectiveness of this proposed method is validated through simulations and experiments conducted on a MEMS disk resonator gyroscope (DRG). The results show a measurement error within 4% for Q-factor identification, and automatic Q-factor matching effectively reduces the ZRO by 77%. Employing this automatic Q-factor matching method successfully reduces the ZRO that is caused by the mismatching of Q-factors in the MEMS DRG from 0.11°/s to 0.025°/s and improves the bias instability (BI) from 0.40°/s to 0.19°/s.

2.
Sci Data ; 11(1): 560, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816401

ABSTRACT

The cold-water species Ophiura sarsii, a brittle star, is a key echinoderm in the Arctic continental shelf region, highly sensitive to climate change. However, the absence of a high-quality genome has hindered a thorough understanding of its adaptive evolution. In this study, we reported the first chromosome-level genome assembly of O. sarsii. The genome assembly totalled 1.57 Gb, encompassing 19 chromosomes with a GC content of 37.11% and a scaffold N50 length of 78.03 Mb. The Benchmarking Universal Single-Copy Orthologs (BUSCO) assessment yielded a completeness estimate of 93.5% for this assembly. We predicted a total of 27,099 protein-coding genes, with 25,079 functionally annotated. The genome was comprised of 58.09% transposable elements. This chromosome-level genome of O. sarsii contributes to our understanding of the origin and evolution of marine organisms.


Subject(s)
Chromosomes , Echinodermata , Genome , Animals , Echinodermata/genetics , Molecular Sequence Annotation , Base Composition , DNA Transposable Elements
3.
Org Lett ; 26(21): 4463-4468, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38747552

ABSTRACT

(S)-1-(4-Methoxybenzyl)-1,2,3,4,5,6,7,8-octahydroisoquinoline ((S)-1-(4-methoxybenzyl)-OHIQ) is the key intermediate of the nonopioid antitussive dextromethorphan. In this study, (S)-IR61-V69Y/P123A/W179G/F182I/L212V (M4) was identified with a 766-fold improvement in catalytic efficiency compared with wide-type IR61 through enzyme engineering. M4 could completely convert 200 mM of 1-(4-methoxybenzyl)-3,4,5,6,7,8-hexahydroisoquinoline into (S)-1-(4-methoxybenzyl)-OHIQ in 77% isolated yield, with >99% enantiomeric excess and a high space-time yield of 542 g L-1 day-1, demonstrating a great potential for the synthesis of dextromethorphan intermediate in industrial applications.


Subject(s)
Dextromethorphan , Dextromethorphan/chemistry , Dextromethorphan/chemical synthesis , Molecular Structure , Oxidoreductases/metabolism , Oxidoreductases/chemistry , Imines/chemistry , Stereoisomerism , Antitussive Agents/chemistry , Antitussive Agents/chemical synthesis , Protein Engineering
4.
Front Med (Lausanne) ; 11: 1360026, 2024.
Article in English | MEDLINE | ID: mdl-38818388

ABSTRACT

Background: The extra-articular lesions of rheumatoid arthritis (RA) are reported to involve multiple organs and systems throughout the body, including the heart, kidneys, liver, and lungs. This study assessed the potential causal relationship between RA and the risk of chronic kidney diseases (CKDs) using the Mendelian randomization (MR) analysis. Method: Independent genetic instruments related to RA and CKD or CKD subtypes at the genome-wide significant level were chosen from the publicly shared summary-level data of genome-wide association studies (GWAS). Then, we obtained some single-nucleotide polymorphisms (SNPs) as instrumental variables (IVs), which are associated with RA in individuals of European origin, and had genome-wide statistical significance (p5 × 10-8). The inverse-variance weighted (IVW) method was the main analysis method in MR analysis. The other methods, such as weighted median, MR-Egger, simple mode, and weighted mode were used as supplementary sensitivity analyses. Furthermore, the levels of pleiotropy and heterogeneity were assessed using Cochran's Q test and leave-one-out analysis. Furthermore, the relevant datasets were obtained from the Open GWAS database. Results: Using the IVW method, the main method in MR analysis, the results showed that genetically determined RA was associated with higher risks of CKD [odds ratio (OR): 1.22, 95% confidence interval (CI) 1.13-1.31; p < 0.001], glomerulonephritis (OR: 1.23, 95% CI 1.15-1.31; p < 0.000), amyloidosis (OR = 1.43, 95% CI 1.10-1.88, p < 0.001), and renal failure (OR = 1.18, 95% CI 1.00-1.38, p < 0.001). Then, using multiple MR methods, it was confirmed that the associations persisted in sensitivity analyses, and no pleiotropy was detected. Conclusion: The findings revealed a causal relationship between RA and CKD, including glomerulonephritis, amyloidosis, and renal failure. Therefore, RA patients should pay more attention to monitoring their kidney function, thus providing the opportunity for earlier intervention and lower the risk of progression to CKDs.

5.
Chembiochem ; : e202400283, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715148

ABSTRACT

Bacterial infections still pose a severe threat to public health, necessitating novel tools for real-time analysis of microbial behaviors in living organisms. While genetically engineered strains with fluorescent or luminescent reporters are commonly used in tracking bacteria, their in vivo uses are often limited. Here, we report a near-infrared fluorescent D-amino acid (FDAA) probe, Cy7ADA, for in situ labeling and intravital imaging of bacterial infections in mice. Cy7ADA probe effectively labels various bacteria in vitro and pathogenic Staphylococcus aureus in mice after intraperitoneal injection. Because of Cy7's high tissue penetration and the quick excretion of free probes via urine, real-time visualization of the pathogens in a liver abscess model via intravital confocal microscopy is achieved. The biodistributions, including their intracellular localization within Kupffer cells, are revealed. Monitoring bacterial responses to antibiotics also demonstrates Cy7ADA's capability to reflect the bacterial load dynamics within the host. Furthermore, Cy7ADA facilitates three-dimensional pathogen imaging in tissuecleared liver samples, showcasing its potential for studying the biogeography of microbes in different organs. Integrating nearinfrared FDAA probes with intravital microscopy holds promise for wide applications in studying bacterial infections in vivo.

6.
Appl Environ Microbiol ; : e0206823, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38786362

ABSTRACT

Phaeodactylum tricornutum a prominent source of industrial fucoxanthin production, faces challenges in its application due to its tolerance to high-temperature environments. This study investigates the physiological responses of P. tricornutum to high-temperature stress and its impact on fucoxanthin content, with a specific focus on the role of cis-zeatin. The results reveal that high-temperature stress inhibits P. tricornutum's growth and photosynthetic activity, leading to a decrease in fucoxanthin content. Transcriptome analysis shows that high temperature suppresses the expression of genes related to photosynthesis (e.g., psbO, psbQ, and OEC) and fucoxanthin biosynthesis (e.g., PYS, PDS1, and PSD2), underscoring the negative effects of high temperature on P. tricornutum. Interestingly, genes associated with cis-zeatin biosynthesis and cytokinesis signaling pathways exhibited increased expression under high-temperature conditions, indicating a potential role of cis-zeatin signaling in response to elevated temperatures. Content measurements confirm that high temperature enhances cis-zeatin content. Furthermore, the exogenous addition of cytokinesis mimetics or inhibitors significantly affected P. tricornutum's high-temperature resistance. Overexpression of the cis-zeatin biosynthetic enzyme gene tRNA DMATase enhanced P. tricornutum's resistance to high-temperature stress, while genetic knockout of tRNA DMATase reduced its resistance to high temperatures. Therefore, this research not only uncovers a novel mechanism for high-temperature resistance in P. tricornutum but also offers a possible alga species that can withstand high temperatures for the industrial production of fucoxanthin, offering valuable insights for practical utilization.IMPORTANCEThis study delves into Phaeodactylum tricornutum's response to high-temperature stress, specifically focusing on cis-zeatin. We uncover inhibited growth, reduced fucoxanthin, and significant cis-zeatin-related gene expression under high temperatures, highlighting potential signaling mechanisms. Crucially, genetic engineering and exogenous addition experiments confirm that the change in cis-zeatin levels could influence P. tricornutum's resistance to high-temperature stress. This breakthrough deepens our understanding of microalgae adaptation to high temperatures and offers an innovative angle for industrial fucoxanthin production. This research is a pivotal step toward developing heat-resistant microalgae for industrial use.

7.
Acta Pharm Sin B ; 14(5): 2097-2118, 2024 May.
Article in English | MEDLINE | ID: mdl-38799640

ABSTRACT

Choline acetyltransferase (ChAT)-positive neurons in neural stem cell (NSC) niches can evoke adult neurogenesis (AN) and restore impaired brain function after injury, such as acute ischemic stroke (AIS). However, the relevant mechanism by which ChAT+ neurons develop in NSC niches is poorly understood. Our RNA-seq analysis revealed that dimethylarginine dimethylaminohydrolase 1 (DDAH1), a hydrolase for asymmetric NG,NG-dimethylarginine (ADMA), regulated genes responsible for the synthesis and transportation of acetylcholine (ACh) (Chat, Slc5a7 and Slc18a3) after stroke insult. The dual-luciferase reporter assay further suggested that DDAH1 controlled the activity of ChAT, possibly through hypoxia-inducible factor 1α (HIF-1α). KC7F2, an inhibitor of HIF-1α, abolished DDAH1-induced ChAT expression and suppressed neurogenesis. As expected, DDAH1 was clinically elevated in the blood of AIS patients and was positively correlated with AIS severity. By comparing the results among Ddah1 general knockout (KO) mice, transgenic (TG) mice and wild-type (WT) mice, we discovered that DDAH1 upregulated the proliferation and neural differentiation of NSCs in the subgranular zone (SGZ) under ischemic insult. As a result, DDAH1 may promote cognitive and motor function recovery against stroke impairment, while these neuroprotective effects are dramatically suppressed by NSC conditional knockout of Ddah1 in mice.

8.
Foods ; 13(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38790885

ABSTRACT

Volatile active ingredients in biopolymer nanofibers are prone to burst and uncontrolled release. In this study, we used electrospinning and crosslinking to design a new sustained-release active packaging containing zein and eugenol (EU). Vapor-phase glutaraldehyde (GTA) was used as the crosslinker. Characterization of the crosslinked zein nanofibers was conducted via scanning electron microscopy (SEM), mechanical properties, water resistance, and Fourier transform infrared (FT-IR) spectroscopy. It was observed that crosslinked zein nanofibers did not lose their fiber shape, but the diameter of the fibers increased. By increasing the crosslink time, the mechanical properties and water resistance of the crosslinked zein nanofibers were greatly improved. The FT-IR results demonstrated the formation of chemical bonds between free amino groups in zein molecules and aldehyde groups in GTA molecules. EU was added to the zein nanofibers, and the corresponding release behavior in PBS was investigated using the dialysis membrane method. With an increase in crosslink time, the release rate of EU from crosslinked zein nanofibers decreased. This study demonstrates the potential of crosslinking by GTA vapors on the controlled release of the zein encapsulation structure containing EU. Such sustainable-release nanofibers have promising potential for the design of fortified foods or as active and smart food packaging.

10.
Inorg Chem ; 63(20): 9265-9274, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38724113

ABSTRACT

Creating affordable electrocatalysts and understanding the real-time catalytic process of the urea oxidation reaction (UOR) are crucial for advancing urea-based technologies. Herein, a Cu-Ni based selenide electrocatalyst (CuSey/NiSex/NF) was created using a hydrothermal technique and selenization treatment, featuring a heterogeneous interface rich in Cu2-xSe, Cu3Se2, Ni3Se4, and NiSe2. This catalyst demonstrated outstanding urea electrooxidation performance, achieving 10 mA cm-2 with just 1.31 V and sustaining stability for 96 h. Through in-situ Raman spectroscopy and ex-situ characterizations, it is discovered that NiOOH is formed through surface reconstruction in the UOR process, with high-valence Ni serving as the key site for effective urea oxidation. Moreover, the electrochemical analysis revealed that CuSey had dual effects. An analysis of XPS and electrochemical tests revealed that electron transfer from CuSey to NiSex within the CuSey/NiSex/NF heterostructure enhanced the UOR kinetics of the catalyst. Additionally, according to the in-situ Raman spectroscopy findings, the existence of CuSey facilitates a easier and faster surface reconstruction of NiSex, leading to the creation of additional active sites for urea oxidation. More significantly, this work provides an excellent "precatalyst" for highly efficient UOR, along with an in-depth understanding of the mechanism behind the structural changes in electrocatalysts and the discovery of their true active sites.

11.
Hum Resour Health ; 22(1): 31, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802822

ABSTRACT

BACKGROUND: The Chinese government has formulated a series of policies and strengthened training of general practitioners (GPs) to support their role as "gatekeepers" of residents' health. This study aimed to explore the core competencies of Chinese GPs and develop a competency framework in line with China's actual conditions, which can provide a more scientific basis for the education, training, and evaluation of GPs. METHODS: Literature analysis and behaviour event interviews were conducted to build the competency dictionary and the initial version of the competency model. Two rounds of Delphi were performed to gain consensus on the final model. The questionnaire survey was carried out in 10 provinces (municipalities, autonomous regions) of China, and GPs were invited to score the importance of each competency item. The total sample was randomly divided into two groups. One group was for exploratory factor analysis (EFA), and the other was for confirmatory factor analysis (CFA) to examine the scale's reliability and validity. RESULTS: The dictionary of general practitioners' competency including 107 competency items was constructed. After two rounds of Delphi, a consensus was reached on 60 competencies in 6 domains. A total of 1917 valid questionnaires were obtained in the nationwide survey. The average importance score of all second-level indicators is 4.53 ± 0.45. The Cronbach's α coefficient is 0.984. The results of the five factors extracted by EFA showing the 68.16% cumulative explained variance variation is considered to be consistent with the six dimensions obtained by Delphi after thorough discussion. The model fitness indexes obtained by CFA were acceptable (χ2/df = 4.909, CFI = 0.869, NFI = 0.841, RMSEA = 0.065). The values of the composite reliability (CR) of the six dimensions were all greater than 0.7 (0.943, 0.927, 0.937, 0.927, 0.943, 0.950), and the average of variance extracted (AVE) were all greater than 0.5 (0.562, 0.613, 0.649, 0.563, 0.626, 0.635). The results showed that the model has good reliability and validity. CONCLUSION: A competency model for GPs suited to China has been developed, which may offer guidance for future training and medical licensing examinations of GPs.


Subject(s)
Clinical Competence , Delphi Technique , General Practitioners , Humans , Clinical Competence/standards , China , Surveys and Questionnaires , Male , Female , Reproducibility of Results , Adult , Middle Aged , Factor Analysis, Statistical , Consensus
12.
J Pharm Anal ; 14(5): 100911, 2024 May.
Article in English | MEDLINE | ID: mdl-38807706

ABSTRACT

The "gut-skin" axis has been proved and is considered as a novel therapy for the prevention of skin aging. The antioxidant efficacy of oligomannonic acid (MAOS) make it an intriguing target for use to improve skin aging. The present study further explored whereby MAOS-mediated gut-skin axis balance prevented skin aging in mice. The data indicated the skin aging phenotypes, oxidative stress, skin mitochondrial dysfunction, and intestinal dysbiosis (especially the butyrate and HIF-1α levels decreased) in aging mice. Similarly, fecal microbiota transplantation (FMT) from aging mice rebuild the aging-like phenotypes. Further, we demonstrated MAOS-mediated colonic butyrate-HIF-1α axis homeostasis promoted the entry of butyrate into the skin, upregulated mitophagy level and ultimately improving skin aging via HDAC3/PHD/HIF-1α/mitophagy loop in skin of mice. Overall, our study offered a better insights of the effectiveness of alginate oligosaccharides (AOS), promised to become a personalized targeted therapeutic agents, on gut-skin axis disorder inducing skin aging.

13.
Int J Rheum Dis ; 27(5): e15151, 2024 May.
Article in English | MEDLINE | ID: mdl-38720573

ABSTRACT

BACKGROUND: Observational studies have found an association between autoimmune liver disease (AILD) and Sjögren's syndrome (SS). However, the causal relationship between the two remains unknown. Clinical guidelines indicate that the coexistence of AILD with other autoimmune diseases may impact prognosis and quality of life; hence, early recognition and management of extrahepatic autoimmune diseases is particularly crucial. Against this backdrop, this study aimed to utilize Mendelian randomization (MR) methods to investigate the potential causal relationship between AILD and SS. METHODS: We extracted summary statistics on AILD and SS from publicly available genome-wide association studies (GWAS) databases to identify appropriate instrumental variables (IVs). The inverse-variance weighted (IVW) method was utilized as the primary approach, with the weighted median (WM) method and MR-Egger method employed as supplementary methods to evaluate the potential causal relationship between the two conditions. Sensitivity analyses, including Cochran's Q test, MR-polynomial residuals and outliers (MR-PRESSO), MR-Egger intercept test, and the leave-one-out test, were performed to assess the stability of the results. RESULTS: The MR study results indicate a significant causal relationship between PBC and PSC with the risk of SS in the European population (IVW: odds ratio [OR] = 1.155, 95% confidence interval [CI]: 1.092-1.222, p < .001; IVW: OR = 1.162, 95% CI: 1.051-1.284, p = .003). A series of sensitivity analyses have confirmed the reliability of the results. CONCLUSIONS: Our study indicates that the presence of both PBC and PSC increases the susceptibility to SS. However, no reliable causal relationship was found between SS and the risk of PBC or PSC. These findings contribute to elucidating the potential pathogenic mechanisms of the disease and are of significant importance for the management of patients with PBC and PSC.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Mendelian Randomization Analysis , Sjogren's Syndrome , Humans , Sjogren's Syndrome/genetics , Sjogren's Syndrome/diagnosis , Sjogren's Syndrome/epidemiology , Risk Factors , Risk Assessment , Autoimmune Diseases/genetics , Autoimmune Diseases/epidemiology , Autoimmune Diseases/diagnosis , Phenotype , Liver Cirrhosis, Biliary/genetics , Liver Cirrhosis, Biliary/epidemiology , Liver Cirrhosis, Biliary/diagnosis
14.
Head Neck ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695445

ABSTRACT

BACKGROUND: The purpose of this study was to provide further insights into whether age and/or sex are associated with prognosis in oral tongue squamous cell carcinoma. METHODS: This was a retrospective cohort study utilizing hospital registry data from 2006 to 2016 obtained from the National Cancer Database. Identified patients were divided into various cohorts based on age, sex, and staging. A descriptive analysis was performed using chi-square tests and overall survival rates were estimated using Kaplan-Meier method. RESULTS: A total of 17 642 patients were included in the study. The 5-year overall survival rates were 82.0% (95% CI: 79.8%-84.0%) in younger patients versus 67.5% (95% CI: 66.7%-68.3%, p-value <0.0001) older patients. The median overall survival for females was 143.4 months (95% CI: 133.2-NA) versus 129.8 (95% CI: 125.4-138.7, p-value <0.0001) in males. CONCLUSIONS: Our analysis suggests that younger age and female sex are both predictors of improved survival in oral tongue squamous cell carcinoma.

15.
BMC Genomics ; 25(1): 373, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627659

ABSTRACT

The common dolphin (Delphinus delphis) is widely distributed worldwide and well adapted to various habitats. Animal genomes store clues about their pasts, and can reveal the genes underlying their evolutionary success. Here, we report the first high-quality chromosome-level genome of D. delphis. The assembled genome size was 2.56 Gb with a contig N50 of 63.85 Mb. Phylogenetically, D. delphis was close to Tursiops truncatus and T. aduncus. The genome of D. delphis exhibited 428 expanded and 1,885 contracted gene families, and 120 genes were identified as positively selected. The expansion of the HSP70 gene family suggested that D. delphis has a powerful system for buffering stress, which might be associated with its broad adaptability, longevity, and detoxification capacity. The expanded IFN-α and IFN-ω gene families, as well as the positively selected genes encoding tripartite motif-containing protein 25, peptidyl-prolyl cis-trans isomerase NIMA-interacting 1, and p38 MAP kinase, were all involved in pathways for antiviral, anti-inflammatory, and antineoplastic mechanisms. The genome data also revealed dramatic fluctuations in the effective population size during the Pleistocene. Overall, the high-quality genome assembly and annotation represent significant molecular resources for ecological and evolutionary studies of Delphinus and help support their sustainable treatment and conservation.


Subject(s)
Common Dolphins , Animals , Biological Evolution , Chromosomes/genetics , Immunity, Innate/genetics , Phylogeny
16.
Ecotoxicol Environ Saf ; 276: 116340, 2024 May.
Article in English | MEDLINE | ID: mdl-38636261

ABSTRACT

Exposure to pesticides induces oxidative stress and deleterious effects on various tissues in non-target organisms. Numerous models investigating pesticide exposure have demonstrated metabolic disturbances such as imbalances in amino acid levels within the organism. One potentially effective strategy to mitigate pesticide toxicity involves dietary intervention by supplementing exogenous amino acids and their derivates to augment the body's antioxidant capacity and mitigate pesticide-induced oxidative harm, whose mechanism including bolstering glutathione synthesis, regulating arginine-NO metabolism, mitochondria-related oxidative stress, and the open of ion channels, as well as enhancing intestinal microecology. Enhancing glutathione synthesis through supplementation of substrates N-acetylcysteine and glycine is regarded as a potent mechanism to achieve this. Selection of appropriate amino acids or their derivates for supplementation, and determining an appropriate dosage, are of the utmost importance for effective mitigation of pesticide-induced oxidative harm. More experimentation is required that involves large population samples to validate the efficacy of dietary intervention strategies, as well as to determine the effects of amino acids and their derivates on long-term and low-dose pesticide exposure. This review provides insights to guide future research aimed at preventing and alleviating pesticide toxicity through dietary intervention of amino acids and their derivates.


Subject(s)
Amino Acids , Oxidative Stress , Pesticides , Pesticides/toxicity , Oxidative Stress/drug effects , Animals , Antioxidants/pharmacology , Glutathione/metabolism , Dietary Supplements , Humans
17.
Biochem Pharmacol ; : 116219, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38643907

ABSTRACT

The pivotal roles of ATP-binding cassette (ABC) transporters in drug resistance have been widely appreciated. Here we report that marein, a natural product from Coreopsis tinctoria Nutt, is a potent chemo-sensitizer in drug resistant cancer cells overexpressing ABCG2 transporter. We demonstrate that marein can competitively inhibit efflux activity of ABCG2 protein and increase the intracellular accumulation of the chemotherapeutic drugs that belong to substrate of this transporter. We further show that marein can bind to the conserved amino acid residue F439 of ABCG2, a critical site for drug-substrate interaction. Moreover, marein can significantly sensitize the ABCG2-expressing tumor cells to chemotherapeutic drugs such as topotecan, mitoxantrone, and olaparib. This study reveals a novel role and mechanism of marein in modulating drug resistance, and may have important implications in treatment of cancers that are resistant to chemotherapeutic drugs that belong to the substrates of ABCG2 transporters.

18.
J Appl Clin Med Phys ; 25(5): e14368, 2024 May.
Article in English | MEDLINE | ID: mdl-38657114

ABSTRACT

OBJECTIVE: Alzheimer's disease, an irreversible neurological condition, demands timely diagnosis for effective clinical intervention. This study employs radiomics analysis to assess image features in default mode network cerebral perfusion imaging among individuals with cognitive impairment. METHODS: A radiomics analysis of cerebral perfusion imaging was conducted on 117 patients with cognitive impairment. They were divided into training and validation sets in a 7:3 ratio. Least Absolute Shrinkage and Selection Operator (LASSO) and Random Forest were employed to select and model image features, followed by logistic regression analysis of LASSO and Random Forest results. Diagnostic performance was assessed by calculating the area under the curve (AUC). RESULTS: In the training set, LASSO achieved AUC of 0.978, Random Forest had an AUC of 0.933. In the validation set, LASSO had AUC of 0.859, Random Forest had AUC of 0.986. By conducting Logistic Regression analysis in combination with LASSO and Random Forest, we identified a total of five radiomics features, with four related to morphology and one to textural features, originating from the medial prefrontal cortex and middle temporal gyrus. In the training set, Logistic Regression achieved AUC of 0.911, while in the validation set, it attained AUC of 0.925. CONCLUSION: The medial prefrontal cortex and middle temporal gyrus are the two brain regions within the default mode network that hold the highest significance for Alzheimer's disease diagnosis. Radiomics analysis contributes to the clinical assessment of Alzheimer's disease by delving into image data to extract deeper layers of information.


Subject(s)
Alzheimer Disease , Perfusion Imaging , Humans , Alzheimer Disease/diagnostic imaging , Female , Male , Aged , Perfusion Imaging/methods , Image Processing, Computer-Assisted/methods , Cerebrovascular Circulation/physiology , Middle Aged , Cognitive Dysfunction/diagnostic imaging , Aged, 80 and over , Magnetic Resonance Imaging/methods , Prognosis , Radiomics
19.
J Colloid Interface Sci ; 668: 110-119, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38669988

ABSTRACT

CeO2 has been identified as a significant cocatalyst to enhance the electrocatalytic activity of transition metal phosphides (TMPs). However, the electrocatalytic mechanism by which CeO2 enhances the catalytic activity of TMP remains unclear. In this study, we have successfully developed a unique CeO2-CoP-1-4 multishell microsphere heterostructure catalyst through a simple hydrothermal and calcination process. CeO2-CoP-1-4 exhibits great potential for electrocatalytic oxygen evolution reaction (OER), requiring only an overpotential of 254 mV to achieve a current density of 10 mA cm-2. Moreover, CeO2-CoP-1-4 demonstrates excellent operating durability lasting for 55 h. The presence of CeO2 as a cocatalyst can regulate the microsphere structure of CoP, the resulting multishell microsphere structure can shorten the mass transfer distance, and improve the utilization rate of the active site. Furthermore, in situ Raman and ex situ characterizations, and DFT theoretical calculation results reveal that CeO2 can effectively regulates the electronic structure of Co species, reduces the reaction free energy of rate-limiting step, thus increase the reaction kinetic. Overall, this study provides experimental and theoretical evidence to better comprehend the mechanism and structure evolution of CeO2 in enhancing the OER performance of CoP, offering a unique design inspiration for the development of efficient hollow heterojunction electrocatalysts.

20.
Nutrients ; 16(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38674791

ABSTRACT

Sleep deprivation (SD) leads to impaired intestinal barrier function and intestinal flora disorder, especially a reduction in the abundance of the next generation of probiotic Faecalibacterium prausnitzii (F. prausnitzii). However, it remains largely unclear whether F. prausnitzii can ameliorate SD-induced intestinal barrier damage. A 72 h SD mouse model was used in this research, with or without the addition of F. prausnitzii. The findings indicated that pre-colonization with F. prausnitzii could protect against tissue damage from SD, enhance goblet cell count and MUC2 levels in the colon, boost tight-junction protein expression, decrease macrophage infiltration, suppress pro-inflammatory cytokine expression, and reduce apoptosis. We found that the presence of F. prausnitzii helped to balance the gut microbiota in SD mice by reducing harmful bacteria like Klebsiella and Staphylococcus, while increasing beneficial bacteria such as Akkermansia. Ion chromatography analysis revealed that F. prausnitzii pretreatment increased the fecal butyrate level in SD mice. Overall, these results suggested that incorporating F. prausnitzii could help reduce gut damage caused by SD, potentially by enhancing the intestinal barrier and balancing gut microflora. This provides a foundation for utilizing probiotics to protect against intestinal illnesses.


Subject(s)
Dysbiosis , Faecalibacterium prausnitzii , Gastrointestinal Microbiome , Intestinal Mucosa , Probiotics , Sleep Deprivation , Animals , Sleep Deprivation/complications , Mice , Probiotics/pharmacology , Probiotics/administration & dosage , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Male , Feces/microbiology , Mice, Inbred C57BL , Dietary Supplements , Disease Models, Animal , Mucin-2/metabolism , Butyrates/metabolism , Colon/microbiology , Colon/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...