Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Schizophr Bull ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38811350

ABSTRACT

BACKGROUND AND HYPOTHESIS: This study investigated the role of the medial prefrontal cortex (mPFC)-basolateral amygdala (BLA) pathway in schizophrenia (SCZ)-related cognitive impairments using various techniques. STUDY DESIGN: This study utilized clinical scales, magnetic resonance imaging, single-cell RNA sequencing, and optogenetics to investigate the mPFC-BLA pathway in SCZ patients. In the mouse model, 6-week-old methylazoxymethanol acetate-induced mice demonstrated significant cognitive deficits, which were addressed through stereotaxic injections of an adeno-associated viral vector to unveil the neural connection between the mPFC and BLA. STUDY RESULTS: Significant disparities in brain volume and neural activity, particularly in the dorsolateral prefrontal cortex (DLPFC) and BLA regions, were found between SCZ patients and healthy controls. Additionally, we observed correlations indicating that reduced volumes of the DLPFC and BLA were associated with lower cognitive function scores. Activation of the mPFC-BLA pathway notably improved cognitive performance in the SCZ model mice, with the targeting of excitatory or inhibitory neurons alone failing to replicate this effect. Single-cell transcriptomic profiling revealed gene expression differences in excitatory and inhibitory neurons in the BLA of SCZ model mice. Notably, genes differentially expressed in the BLA of these model mice were also found in the blood exosomes of SCZ patients. CONCLUSIONS: Our research provides a comprehensive understanding of the role of the PFC-BLA pathway in SCZ, underscoring its significance in cognitive impairment and offering novel diagnostic and therapeutic avenues. Additionally, our research highlights the potential of blood exosomal mRNAs as noninvasive biomarkers for SCZ diagnosis, underscoring the clinical feasibility and utility of this method.

2.
Mol Neurobiol ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753130

ABSTRACT

Schizophrenia (SCZ) is a complex, severe psychotic disorder that is highly persistent. Patients often cannot control their emotions and have delusions of victimization, world-weariness, and even suicide. Therefore, safer and more effective drugs are urgently needed. Rannasangpei (RNSP) from "the four medicine tantras" was used as a neuroprotective agent. The objective of this study was to investigate the effect and mechanism of RNSP on MK-801-induced SCZ in mice. Fifty C57BL/6J mice were randomly divided into a normal group, a model group, an RNSP group, a crocin (CRO) group, and an olanzapine (OLA) group, except for the normal group. The remaining mice were used to establish the MK-801-induced SCZ model. Changes in positive symptoms and cognitive impairment in mice before and after drug intervention were assessed by using the prepulse inhibition (PPI) test, Y-maze test (YMT), and open-field test (OFT). Intragastric administration of RNSP alleviated the symptoms of SCZ in SCZ mice, as demonstrated by the PPI, YMT, and OFT results. Compared with the model group, the first-line antipsychotic olanzapine reversed the anxiety-like phenotypes, hypermotility, and PPI deficits in the SCZ model mice. Further analysis revealed that RNSP reduced oxidative stress in SCZ model mice, as evidenced by increased superoxide dismutase (SOD) levels and decreased malondialdehyde (MDA) levels in the hippocampus, cortex, and blood of SCZ model mice. In our study, RNSP treatment restored the expression of brain-derived neurotrophic factor (BDNF), dopamine D2 receptor, p-Trkb, Akt/p-Akt, and doublecortin and inhibited the expression of IBA1 and Bax in the hippocampus of SCZ model mice. The polymerase chain reaction data indicated that RNSP treatment increased the expression of Bcl-2 and TGF-ß and decreased the expression of Bax, IL-1ß, and TNF-α in the brains of the model mice. Our results are the first to show that RNSP reverses SCZ-like behaviors in rodents (both positive symptoms and cognitive deficits) by reducing oxidative stress and activating the BDNF-TrkB/Akt pathway, suggesting that RNSP is a novel approach for treating SCZ.

3.
Eur J Pharmacol ; 974: 176512, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38493912

ABSTRACT

BACKGROUND: A novel compound Cytisine-N-methylene-(5,7,4'-trihydroxy)- isoflavone (LY01) found in the Sophora alopecuroides L is a neuroprotective agent. However, the effect and potential mechanism of LY01 treatment for ischemic stroke (IS) have not been fully elucidated. AIM OF THE STUDY: The aim of this study is to demonstrate whether LY01 can rescue ischemic stroke-induced brain injury and oxygen-glucose deprivation/reperfusion (OGD/R). RESULTS: Our results show that intragastric administration of LY01 improves ischemic stroke behaviors in mice, as demonstrated by neurological score, infarct volume, cerebral water content, rotarod test for activity. Compared with the model group, the ginkgo biloba extract (EGb) and LY01 reversed the neurological score, infarct volume, cerebral water content, rotarod test in model mice. Further analysis showed that the LY01 rescued oxidative stress in the model mice, which was reflected in the increased levels of catalase, superoxide dismutase, total antioxidant capacity and decreased levels of malondialdehyde in the serum of the model mice. Moreover, the expression of the brain-derived neurotrophic factor brain-derived neurotrophic factor (BDNF), phosphorylated protein kinase B (p-Akt), Bax, Bcl-2, (p)-tropomysin related kinase B (p-Trkb) was restored and the expression of Bax, glial fibrillary acidic protein (GFAP) in the brains of the model mice was inhibited through LY01 treatment. In the polymerase chain reaction (PCR) data, after giving LY01, the expression in the brains of model mice was that, IL-10 increased and IL-1ß, Bax, Bcl-2 decreased. Furthermore, the results indicated that LY01 improved cell viability, reactive oxygen species content, and mitochondrial membrane potential dissipation induced by OGD/R in primary culture of rat cortical neurons. Bax and caspase-3 activity was upregulated compared to the before after treatment with LY01. CONCLUSIONS: Our study suggests that LY01 reversed ischemic stroke by reducing oxidative stress and activating the BDNF-TrkB/Akt pathway and exerted a neuroprotective action against OGD/R injury via attenuation, a novel approach was suggested to treat ischemic stroke. Our observations justify the traditional use of LY01 for a treatment of IS in nervous system.


Subject(s)
Alkaloids , Brain-Derived Neurotrophic Factor , Ischemic Stroke , Neuroprotective Agents , Oxidative Stress , Proto-Oncogene Proteins c-akt , Receptor, trkB , Signal Transduction , Animals , Oxidative Stress/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Mice , Male , Ischemic Stroke/drug therapy , Ischemic Stroke/metabolism , Ischemic Stroke/complications , Ischemic Stroke/pathology , Signal Transduction/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Alkaloids/pharmacology , Alkaloids/therapeutic use , Receptor, trkB/metabolism , Isoflavones/pharmacology , Isoflavones/therapeutic use , Quinolizines/pharmacology , Quinolizines/therapeutic use , Azocines/pharmacology , Disease Models, Animal , Brain/drug effects , Brain/metabolism , Brain/pathology , Quinolizidine Alkaloids
4.
Front Public Health ; 11: 1198987, 2023.
Article in English | MEDLINE | ID: mdl-37920591

ABSTRACT

Background: New reports suggest that anti-inflammatory drugs are widely used to treat respiratory tract infections caused by SARS-CoV-2. Anti-inflammatory drugs were the most frequently used treatment for the COVID-19-related cytokine storm in China. However, the efficacy of anti-inflammatory drugs has yet to be systematically analyzed, and clinicians are often uncertain which class of anti-inflammatory drug is the most effective in treating patients with respiratory tract infections caused by SARS-CoV-2, especially those with severe disease. Methods: From 1 October 2022, relevant studies were searched in the PubMed, Embase, Medline, Cochrane Library, and Web of Science databases. A total of 16,268 publications were retrieved and collated according to inclusion and exclusion criteria, and sensitivity analyses were performed using STATA 14 software. Publication bias was assessed using funnel plots and Egger's test. Study quality was assessed using the PEDro scale, and the combined advantage ratio was expressed as a 95% confidence interval (CI). In total, 19 randomized controlled trials were included in the study. STATA 14 software was used for all random effects model analyses, and the results are expressed as relative risk ratios (RR) with 95% CI. Results: Quantitative analyses were performed on 14,514 patients from 19 relevant randomized controlled clinical trials. Pooled estimates (RR = 0.59, 95% CI 0.44-0.80) revealed that the use of anti-inflammatory drugs resulted in a significant reduction in mortality in patients with respiratory tract infection caused by SARS-CoV-2 compared with controls, and methylprednisolone (RR = 0.14, 95% CI 0.03-0.56) was more effective than other anti-inflammatory drugs. Anti-inflammatory drugs were effective in reducing mortality in critically ill patients (RR = 0.67, 95% CI 0.45-0.98) compared with non-critically ill patients (RR = 0.50, 95% CI 0.34-0.76); however, more clinical evidence is needed to confirm these findings. Conclusion: The use of anti-inflammatory drugs in patients with respiratory infections caused by SARS-CoV-2 reduces patient mortality, especially in severe cases. In individual studies, methylprednisolone was more effective than other drugs.


Subject(s)
COVID-19 , Respiratory Tract Infections , Humans , SARS-CoV-2 , Anti-Inflammatory Agents/therapeutic use , Methylprednisolone
5.
J Clin Immunol ; 43(8): 2011-2021, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37695435

ABSTRACT

Autosomal recessive tyrosine kinase 2 (TYK2) deficiency is characterized by susceptibility to mycobacterial and viral infections. Here, we report a 4-year-old female with severe respiratory viral infections, EBV-driven Burkitt-like lymphoma, and infection with the neurotropic Jamestown Canyon virus. A novel, homozygous c.745C > T (p.R249*) variant was found in TYK2. The deleterious effects of the TYK2 lesion were confirmed by immunoblotting; by evaluating functional responses to IFN-α/ß, IL-10, and IL-23; and by assessing its scaffolding effect on the cell surface expression of cytokine receptor subunits. The effects of the mutation could not be pharmacologically circumvented in vitro, suggesting that alternative modalities, such as hematopoietic stem cell transplantation or gene therapy, may be needed. We characterize the first patient from Canada with a novel homozygous mutation in TYK2.


Subject(s)
Encephalitis, Viral , Lymphoma , Virus Diseases , Female , Humans , Child, Preschool , Herpesvirus 4, Human , TYK2 Kinase/genetics , Mutation/genetics
6.
Front Pharmacol ; 14: 1207075, 2023.
Article in English | MEDLINE | ID: mdl-37693907

ABSTRACT

Background: Stroke survivors are at significantly increased risk of cognitive impairment, which affects patients' independence of activities of daily living (ADLs), social engagement, and neurological function deficit. Many studies have been done to evaluate the efficacy and safety of post-stroke cognitive impairment (PSCI) treatment, and due to the largely inconsistent clinical data, there is a need to summarize and analyze the published clinical research data in this area. Objective: An umbrella review was performed to evaluate the efficacy and safety of PSCI therapies. Methods: Three independent authors searched for meta-analyses and systematic reviews on PubMed, the Cochrane Library, and the Web of Science to address this issue. We examined ADL and Barthel index (BI), Montreal Cognitive Assessment (MoCA), neurological function deficit as efficacy endpoints, and the incidence of adverse events as safety profiles. Results: In all, 312 studies from 19 eligible publications were included in the umbrella review. The results showed that angiotensin-converting enzyme inhibitors (ACEI) and N-methyl-D-aspartate (NMDA) antagonists, cell therapies, acupuncture, and EGB76 can improve the MoCA and ADL, and the adverse effects were mild for the treatment of PSCI. Moreover, Vinpocetine, Oxiracetam, Citicoline, thrombolytic therapy, Actovegin, DL-3-n-Butylphthalide, and Nimodipine showed adverse events or low article quality in patients with PSCI. However, the research evidence is not exact and further research is needed. Conclusion: Our study demonstrated that ACEI inhibitors (Donepezil) and NMDA antagonists (Memantine), EGB761, and acupuncture are the ADL and BI, MoCA, and neurological function deficit medication/therapy, respectively, for patients with PSCI. Clinical Trial Registration: https://inplasy.com/inplasy-2022-11-0139/; Identifier: INPLASY2022110139.

7.
Anal Methods ; 15(20): 2528-2535, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37191157

ABSTRACT

In the present work, an electrochemical sensor based on reduced graphene oxide/ß-cyclodextrin/silver nanoparticle/polyoxometalate (RGO-CD-AgNP-POM) was developed for the simultaneous detection of uric acid (UA) and L-tyrosine (L-Tyr). First, an RGO-CD-AgNP-POM nanocomposite was synthesized via a simple photoreduction method and characterized by transmission electron microscopy (TEM), energy dispersive X-ray imaging (EDS), scanning electron microscopy (SEM), and thermal gravimetric analysis (TGA). As an electrode material, RGO-CD-AgNP-POM showed wide linear ranges (0.5-500 µM for UA, and 1-400 µM for L-Tyr) and relatively low detection limits (0.11 µM for UA, and 0.23 µM for L-Tyr). In addition, the combination of supramolecular recognition from CD and excellent electrochemical performances from RGO, AgNPs and POM was expected to enhance the sensing performances toward UA and L-Tyr in real samples with favorable recovery ranges (99%-104%). This nanocomposite provides a new platform for developing the family of electrode materials.


Subject(s)
Metal Nanoparticles , Nanocomposites , beta-Cyclodextrins , Uric Acid/analysis , Uric Acid/chemistry , Silver/chemistry , Metal Nanoparticles/chemistry , Tyrosine , Dopamine/analysis , Nanocomposites/chemistry
8.
J Ethnopharmacol ; 309: 116364, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-36921910

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Sanwei DouKou decoction (SDKD) is a traditional Chinese medicine (TCM) prescription derived from the Tibetan medical book "Si Bu Yi Dian" and is clinically used for the treatment of Alzheimer's disease (AD). However, the potential mechanism of SDKD treatment for AD remains elusive. AIM OF THE STUDY: This study aims to explore the potential mechanism by which SDKD alleviates AD. MATERIALS AND METHODS: Extracts of SDKD were identified with Gas chromatograph-mass spectrometer (GC-MS). 5 × FAD mice were treated with SDKD for 8 weeks. The efficacy of SDKD against AD was evaluated by in-vivo experiments. Morris water maze and contextual fear conditioning tests were used to detect the learning and memory ability of mice. Hematoxylin-eosin staining (H&E) staining was used to observe the pathological changes of brain tissue. Immunohistochemistry was used to detect the positive expression of Nestin in hippocampus. In in-vitro experiments, the Cell Counting Kit 8 (CCK-8) technique was used to detect cell viability, the proliferation of neural stem cells was detected by immunofluorescence staining, the intracellular protein expression was detected by Western Blot. RESULTS: The results of this study suggested that SDKD may ameliorate AD. SDKD significantly shortened the escape latency of mice in the Morris water maze experiment, increased the number of times the mice crossed the target quadrant, and prolonged freezing time in the contextual fear memory experiment. SDKD also improved neuronal pathology in the hippocampus, decreased neuronal loss, and increased Nestin protein levels. Furthermore, in in-vitro experiments, SDKD could significantly increase Neural stem cells (NSCs) viability, promoted NSCs proliferation, and also effectively activated the Wnt/ß-catenin signalling pathway, increased Wnt family member 3A (Wnt3a), ß-catenin and CyclinD1 protein levels, activated the NSCs proliferation pathways in AD model mouse brain tissue. CONCLUSIONS: The present study demonstrated that sanwei doukou decoction can ameliorate AD by increasing endogenous neural stem cells proliferation through the Wnt/ß-catenin signalling pathway. Our observations justify the traditional use of SDKD for a treatment of AD in nervous system.


Subject(s)
Alzheimer Disease , Neural Stem Cells , Mice , Animals , Alzheimer Disease/pathology , beta Catenin/metabolism , Neurons/metabolism , Wnt Signaling Pathway , Hippocampus , Cell Proliferation
9.
Front Pharmacol ; 13: 924747, 2022.
Article in English | MEDLINE | ID: mdl-35935837

ABSTRACT

Background: Ischemic stroke is a leading cause of morbidity and mortality in neurological diseases. Numerous studies have evaluated the efficacy and safety of ischemic stroke therapies, but clinical data were largely inconsistent. Therefore, it is necessary to summarize and analyze the published clinical research data in the field. Objective: We aimed to perform an umbrella review to evaluate the efficacy and safety of ischemic stroke therapies. Methods: We conducted a search for meta-analyses and systematic reviews on PubMed, the Cochrane Library, and the Web of Science to address this issue. We examined neurological function deficit and cognitive function scores, quality of life, and activities of daily living as efficacy endpoints and the incidence of adverse events as safety profiles. Results: Forty-three eligible studies including 377 studies were included in the umbrella review. The results showed that thrombolytic therapy (tPA; alteplase, tenecteplase, and desmoteplase), mechanical thrombectomy (MTE), edaravone with tPA, stem cell-based therapies, stent retrievers, acupuncture with Western medicines, autologous bone marrow stromal cells, antiplatelet agents (aspirin, clopidogrel, and tirofiban), statins, and Western medicines with blood-activating and stasis-dispelling herbs (NaoShuanTong capsule, Ginkgo biloba, Tongqiao Huoxue Decoction, Xuesaitong injection) can improve the neurological deficits and activities of daily living, and the adverse effects were mild for the treatment of ischemic stroke. Moreover, ligustrazine, safflower yellow, statins, albumin, colchicine, MLC601, salvianolic acids, and DL-3-n-butylphthalide showed serious adverse events, intracranial hemorrhage, or mortality in ischemic stroke patients. Conclusion: Our study demonstrated that tPA, edaravone and tPA, tPA and MTE, acupuncture and Western medicines, and blood-activating and stasis-dispelling herbs with Western medicines are the optimum neurological function and activities of daily living medication for patients with ischemic stroke. Systematic Review Registration: https://inplasy.com/, identifier [INPLASY202250145].

10.
Lancet Healthy Longev ; 3(3): e166-e175, 2022 03.
Article in English | MEDLINE | ID: mdl-35224524

ABSTRACT

BACKGROUND: The use of COVID-19 vaccines has been prioritised to protect the most vulnerable-notably, older people. Because of fluctuations in vaccine availability, strategies such as delayed second dose and heterologous prime-boost have been used. However, the effectiveness of these strategies in frail, older people are unknown. We aimed to assess the antigenicity of mRNA-based COVID-19 vaccines in frail, older people in a real-world setting, with a rationed interval dosing of 16 weeks between the prime and boost doses. METHODS: This prospective observational cohort study was done across 12 long-term care facilities of the Montréal Centre-Sud - Integrated University Health and Social Services Centre in Montréal, Québec, Canada. Under a rationing strategy mandated by the provincial government, adults aged 65 years and older residing in long-term care facilities in Québec, Canada, with or without previously documented SARS-CoV-2 infection, were administered homologous or heterologous mRNA vaccines, with an extended 16-week interval between doses. All older residents in participating long-term care facilities who received two vaccine doses were eligible for inclusion in this study. Participants were enrolled from Dec 31, 2020, to Feb 16, 2021, and data were collected up to June 9, 2021. Clinical data and blood samples were serially collected from participants at the following timepoints: at baseline, before the first dose; 4 weeks after the first dose; 6-10 weeks after the first dose; 16 weeks after the first dose, up to 2 days before administration of the second dose; and 4 weeks after the second dose. Sera were tested for SARS-CoV-2-specific IgG antibodies (to the trimeric spike protein, the receptor-binding domain [RBD] of the spike protein, and the nucleocapsid protein) by automated chemiluminescent ELISA. Two cohorts were used in this study: a discovery cohort, for which blood samples were collected before administration of the first vaccine dose and longitudinally thereafter; and a confirmatory cohort, for which blood samples were only collected from 4 weeks after the prime dose. Analyses were done in the discovery cohort, with validation in the confirmatory cohort, when applicable. FINDINGS: The total study sample consisted of 185 participants. 65 participants received two doses of mRNA-1273 (Spikevax; Moderna), 36 received two doses of BNT162b2 (Comirnaty; Pfizer-BioNTech), and 84 received mRNA-1273 followed by BNT162b2. In the discovery cohort, after a significant increase in anti-RBD and anti-spike IgG concentrations 4 weeks after the prime dose (from 4·86 log binding antibody units [BAU]/mL to 8·53 log BAU/mL for anti-RBD IgG and from 5·21 log BAU/mL to 8·05 log BAU/mL for anti-spike IgG), there was a significant decline in anti-RBD and anti-spike IgG concentrations until the boost dose (7·10 log BAU/mL for anti-RBD IgG and 7·60 log BAU/mL for anti-spike IgG), followed by an increase 4 weeks later for both vaccines (9·58 log BAU/mL for anti-RBD IgG and 9·23 log BAU/mL for anti-spike IgG). SARS-CoV-2-naive individuals showed lower antibody responses than previously infected individuals at all timepoints tested up to 16 weeks after the prime dose, but achieved similar antibody responses to previously infected participants by 4 weeks after the second dose. Individuals primed with the BNT162b2 vaccine showed a larger decrease in mean anti-RBD and anti-spike IgG concentrations with a 16-week interval between doses (from 8·12 log BAU/mL to 4·25 log BAU/mL for anti-RBD IgG responses and from 8·18 log BAU/mL to 6·66 log BAU/mL for anti-spike IgG responses) than did those who received the mRNA-1273 vaccine (two doses of mRNA-1273: from 8·06 log BAU/mL to 7·49 log BAU/mL for anti-RBD IgG responses and from 6·82 log BAU/mL to 7·56 log BAU/mL for anti-spike IgG responses; mRNA-1273 followed by BNT162b2: from 8·83 log BAU/mL to 7·95 log BAU/mL for anti-RBD IgG responses and from 8·50 log BAU/mL to 7·97 log BAU/mL for anti-spike IgG responses). No differences in antibody responses 4 weeks after the second dose were noted between the two vaccines, in either homologous or heterologous combinations. INTERPRETATION: Interim results of this ongoing longitudinal study show that among frail, older people, previous SARS-CoV-2 infection and the type of mRNA vaccine influenced antibody responses when used with a 16-week interval between doses. In these cohorts of frail, older individuals with a similar age and comorbidity distribution, we found that serological responses were similar and clinically equivalent between the discovery and confirmatory cohorts. Homologous and heterologous use of mRNA vaccines was not associated with significant differences in antibody responses 4 weeks following the second dose, supporting their interchangeability. FUNDING: Public Health Agency of Canada, Vaccine Surveillance Reference Group; and the COVID-19 Immunity Task Force. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Subject(s)
COVID-19 Vaccines , COVID-19 , 2019-nCoV Vaccine mRNA-1273 , Aged , BNT162 Vaccine , Frail Elderly , Humans , Immunoglobulin G , Longitudinal Studies , Prospective Studies , RNA, Messenger , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination , Vaccines, Synthetic , mRNA Vaccines
11.
J Ethnopharmacol ; 267: 113503, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33091488

ABSTRACT

ETHNOPHARMACOLOGY RELEVANCE: Escin is a natural mixture of triterpene saponins extracted from the seeds of Aesculus wilsonii Rehd. And has been reported to possess the therapeutic effects against neuropathic pain (NP). However, the underlying mechanisms remain unclear. AIM OF THE STUDY: The present study aimed to investigate the therapeutic effects and explore the underlying mechanisms of escin on rats of NP induced by chronic constriction injury (CCI) of sciatic nerve. MATERIALS AND METHODS: Rats were treated with escin (7, 14, and 28 mg/kg, i. g.) daily from the third day after the surgery (day 0) for consecutive 14 days. Regular behavior and thermal threshold were measured on days 0, 3, 5, 7, 10 and 14. Investigations into mechanisms involved measurement of inflammatory factors and biochemical factors in dorsal root ganglion (DRG). Inflammatory pain responses and nerve injuries were induced by the CCI model. Tonic pain model and acute inflammatory model induced by formalin or carrageenan were established to evaluated the pharmacological effects of escin on acute inflammatory pain. Corresponding behaviors were monitored and relevant gene expression such as c-fos, mu opioid receptor (MOR) and KCNK1 were detected by qRT-PCR. Investigate the neuroprotective effects of escin on PC12 cell injury induced by lipopolysaccharide (LPS). Cell morphology was observed under inverted microscope and neuroprotective effect of escin on cell activity was assessed by MTT assay. RESULTS: Escin could widen thermal threshold, downregulate the concentration of inflammatory factors like tumor necrosis factor (TNF)-α and interleukin (IL)-1ß, suppress the gene expression of toll-like receptor 4 (TLR4), nuclear factor κB (NF-κB), decrease the level of glial fibrillary acidic protein (GFAP) and nerve growth factor (NGF) remarkably. In addition, escin significantly lowered the duration of licking, numbers of flinches and increase in paw edema, showing great therapeutic effects on inflammatory pain responses. Moreover, the activity of injured PC12 cells was significantly improved after escin administrated. CONCLUSION: Escin exerted the ameliorative effects on NP induced by CCI which may be related to downregulating the release of pro-inflammatory cytokines, suppressing TLR-4/NF-κB signal pathway, thereafter decreasing the level of GFAP and NGF.


Subject(s)
Analgesics/pharmacology , Escin/pharmacology , Ganglia, Spinal/drug effects , Pain Threshold/drug effects , Sciatic Neuropathy/drug therapy , Sciatica/prevention & control , Animals , Behavior, Animal/drug effects , Cytokines/metabolism , Disease Models, Animal , Ganglia, Spinal/metabolism , Ganglia, Spinal/physiopathology , Glial Fibrillary Acidic Protein/metabolism , Inflammation Mediators/metabolism , Male , Mice , NF-kappa B/genetics , NF-kappa B/metabolism , Nerve Growth Factor/metabolism , PC12 Cells , Rats , Rats, Sprague-Dawley , Sciatic Neuropathy/complications , Sciatica/etiology , Sciatica/metabolism , Sciatica/physiopathology , Signal Transduction , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
12.
Front Pharmacol ; 11: 338, 2020.
Article in English | MEDLINE | ID: mdl-32265710

ABSTRACT

BACKGROUND: Depression is a long-term complex psychiatric disorder, and its etiology remains largely unknown. Valeriana jatamansi Jones ex Roxb (V. jatamansi) is used in the clinic for the treatment of depression, but there are insufficient reports of its antidepressive mechanisms and a poor understanding of its endogenous substance-related metabolism. The objective of this study was to identify biomarkers related to depression in serum samples and evaluate the antidepressive effects of the iridoid-rich fraction of V. jatamansi (IRFV) in a chronic unpredictable mild stress (CUMS) mouse model. METHODS: Here, CUMS was used to establish a mouse model of depression. Behavioral and biochemical indicators were investigated to evaluate the pharmacodynamic effects. A comprehensive serum metabolomics study by nuclear magnetic resonance (NMR) approach was applied to investigate the pharmacological mechanism of IRFV in CUMS mouse. Subsequently, we used multivariate statistical analysis to identify metabolic markers, such as principal component analysis (PCA) and orthogonal projection to latent structure with discriminant analysis (OPLS-DA), to distinguish between the CUMS mouse and the control group. RESULTS: After IRFV treatment, the immobility time, sucrose preference, and monoamine neurotransmitter were improved. PCA scores showed clear differences in metabolism between the CUMS group and control group. The PLS-DA or OPLS-DA model exhibited 26 metabolites as biomarkers to distinguish between the CUMS mice and the control mouse. Moreover, IRFV could significantly return 21 metabolites to normal levels. CONCLUSION: The results confirmed that IRFV exerted an antidepressive effect by regulating multiple metabolic pathways, including the tricarboxylic acid cycle, the synthesis of neurotransmitters, and amino acid metabolism. These findings provide insights into the antidepressive mechanisms of IRFV.

13.
ACS Omega ; 5(51): 33433-33444, 2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33403305

ABSTRACT

Nuciferine is an aporphine alkaloid monomer that is extracted from the leaves of the lotus species Nymphaea caerulea and Nelumbo nucifera Gaertn. Nuciferine was reported to treat cerebrovascular diseases. However, the potential mechanism of the neuroprotective effects of nuciferine at the metabolomics level is still not unclear. The present research used neurological score, infarct volume, cerebral water content, and ultraperformance liquid chromatography to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS)-based serum metabolomics to elucidate the anti-ischemic stroke effect and mechanisms of nuciferine. The results showed that nuciferine significantly improved neurological deficit scores and ameliorated cerebral edema and infarction. Multivariate data analysis methods were used to examine the differences in serum endogenous metabolism between groups, and the biomarkers of nuciferine on ischemic stroke were identified. Approximately 19 metabolites and 7 metabolic pathways associated with nuciferine on treatment of stroke were found, which indicated that nuciferine exerted a positive therapeutic action on cerebral ischemic by regulating metabolism. These results provided some data support for the study of anti-stroke effect of nuciferine from the perspective of metabolomics.

14.
Planta Med ; 86(3): 172-179, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31801162

ABSTRACT

Valeriana jatamansi is widely used in Chinese folk medicine and contains iridoids as important active ingredients. The brain-gut axis describes a complex bidirectional system between the central nervous system and the gastrointestinal tract. Herein, we evaluated the antidepressant effects of total iridoids of Valeriana jatamansi (TIV) and preliminarily investigated the effects of gut microbiota on their antidepressant effects using a chronic, unpredictable mild-stress mouse model. Mice were given 5.7, 11.4, or 22.9 mg/kg TIV for 1 week. Fluoxetine (2.6 mg/kg) served as a positive control. Body weight was measured, and behavioral tests including SPT and TST were applied. Colon pathology was assessed through hematoxylin-eosin staining. Additionally, levels of serotonin (5-hydroxytryptamine, 5-HT), norepinephrine (NE), substance P (SP) and corticotropin-releasing factor (CRF) in the hippocampus and colon were measured by ELISA. In addition, 16SrRNA gene sequencing was performed to explore changes in intestinal microbiota richness and diversity. Our results demonstrated that the model group showed significant depression-like behavior, while the fluoxetine group showed improved depression-like symptoms; after administration, TIV increased body weight, sucrose solution consumption, and ameliorated depression-like behaviors. The overall cell degeneration in colons also improved. In addition, TIV modulated the levels of 5-HT, NE, SP, and CRF expression in the hippocampus and colon. The diversity and richness of gut microbes increased compared to the model group. We therefore conclude that the antidepressant effects of TIV may be related to gut flora structures and regulation of 5-HT, NE, SP, and CRF in the brain and intestine.


Subject(s)
Gastrointestinal Tract , Valerian , Animals , Antidepressive Agents , Behavior, Animal , Brain , Disease Models, Animal , Hippocampus , Intestines , Iridoids , Mice , Stress, Psychological
15.
Front Pharmacol ; 10: 989, 2019.
Article in English | MEDLINE | ID: mdl-31572179

ABSTRACT

Hypertension is one of the most common cardiovascular diseases, resulting in serious complications such as cardiovascular damage and chronic kidney disease. Tianshu capsule (TSC), composed of Chuanxiong (Ligusticum chuanxiong Hort) and Tianma (Gastrodiaelata Blume), has been widely used to treat the blood stasis type of headache and migraine in clinic. Results of previous research showed its antihypertensive effects, but the underlying mechanisms were still unclear. The purpose of this study was to evaluate the antihypertensive effect of TSC on spontaneously hypertensive rats by 1H NMR-based metabonomics and enzyme-linked immunosorbent assay (ELIAS), explore potential biomarkers and targets, and probe the potential mechanism of TSC on antihypertensive treatment. The results showed that TSC could decrease the product of oxidative stress (MDA) and enhance the activities of SOD and GSH-Px, down-regulate the expression of enzymes (LDHA, PKM2 and HK2) related to glycolysis, and perturb the levels of a series of amino acids (isoleucine, alanine, asparagine, citrate, etc.) and pathways. Multivariate statistical analyses showed remarkable changes in some endogenous metabolites after administrating TSC related to oxidative stress, amino acid metabolism and energy metabolism disturbances. Some enzymes (alanine-glyoxylate aminotransferase-2, tyrosine hydroxylase, dopa decarboxylase, etc.) related to metabolic biomarkers were predicted as the potential targets of TSC treatment on SHRs. The discoveries are helpful to understand the antihypertensive mechanism of TSC and provide theoretical evidence for its future research, development and clinical use.

16.
Biomed Pharmacother ; 120: 109446, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31542617

ABSTRACT

BACKGROUND AND AIMS: Usnea diff ;racta Vain. (U. diffracta) belonging to the Usnea genus, is widely used as a folk medicine for the treatment of ulcer, abdominal pain, diarrhea, malaria and so on. However, the antiatherogenic effect of U. diffracta has not yet been reported. This study aims to investigate the antiatherogenic effects of the ethanol extract of U. diffracta and its mechanism. METHOD: A high fat diet and VD3 were used to establish the atherosclerotic rat model, with 0.004 g/kg/d of simvastatin as a positive control, fed with 0.7, 1.4, and 2.8 g/kg/d of Usnea ethanol extract for 21 days. The blood, liver, and aorta samples from each rat were collected after the last administration. Pharmacodynamic effects were evaluated. The inflammation related factors, the gene expressions of Toll-like receptor 5 (TLR5), myeloid differentiating factor 88 (MyD88), and nuclear factor-κB (NF-κB) were detected. RESULTS AND CONCLUSIONS: Compared with the model group, simvastatin and ethanol extract of U. diffracta can significantly reduce the serum levels of triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), Ca2+, AST, ALT, the liver contents of total cholesterol (TC), TG, AI and liver index, as well as significantly increase the contents of high-density lipoprotein cholesterol (HDL-C) both in serum and liver (p < 0.01 or p < 0.05). The serum level of ox-LDL can be significantly reduced by simvastatin, low and medium U. diffracta ethanol extract doses (p < 0.01). In addition, simvastatin and low dosage of U. diffracta ethanol extract can significantly reduce the liver content of LDL-C (p < 0.01). U. diffracta ethanol extract shows a positive antiatherogenic effect. Furthermore, the mechanism may be related to promoting the expression of serum IL-10 and inhibition of TLR5/NF-κB signaling pathway.


Subject(s)
Aorta/drug effects , Atherosclerosis/drug therapy , Drugs, Chinese Herbal/pharmacology , Liver/drug effects , Usnea/chemistry , Animals , Atherosclerosis/chemically induced , Calcium/blood , Cytokines/drug effects , Diet, High-Fat , Lipids/blood , Models, Animal , Rats , Rats, Sprague-Dawley , Simvastatin/pharmacology
17.
Biomed Pharmacother ; 104: 817-824, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29703569

ABSTRACT

Valjatrate E is an iridoid compound extracted from Valeriana jatamansi Jones herb and is the active ingredient in antitumor activity. Here, we reported its action on tumor invasion and metastasis in the human hepatocellular carcinoma HepG2, aiming at a better understanding of the potential mechanism of action of Valjatrate E. HepG2 cells were treated with Valjatrate E at different concentrations. Wound healing assay and transwell chamber assay were used to determine the effects of Valjatrate E on the migration and invasiveness of HepG2 cells, respectively. Moreover, homogeneity and heterotypic adhesion experiments evaluated the adhesion property of HepG2 cells. The molecular mechanisms by which Valjatrate E inhibited the invasion and migration of HepG2 cells were investigated by gelatin zymography experiment and western blot. Treatment with Valjatrate E inhibited the migration and invasion of HepG2 cells. It achieved this by reducing the expression of matrix metalloprotease 2 (MMP-2) and matrix metalloprotease 9 (MMP-9), by inhibition of heterogeneous adhesion ability, by blocking mitogen-activated protein kinase (MAPK) signaling via inhibiting the phosphorylation of extracellular signal-regulated kinases (p-ERK). Taken together, these findings provide new evidence that mitogen-activated protein kinase/extracellular signal regulated kinase (MAPK/ERK) signaling pathway plays an important role in promoting invasion and metastasis in HepG2 cells through p-ERK, and MAPK/ERK signaling pathway may be a therapeutic target for tumor.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , Iridoids/pharmacology , MAP Kinase Signaling System/drug effects , Matrix Metalloproteinases/metabolism , Neoplasm Invasiveness/pathology , Neoplasm Metastasis/drug therapy , p38 Mitogen-Activated Protein Kinases/metabolism , Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Hep G2 Cells , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Phosphorylation/drug effects , Plants, Medicinal/chemistry , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Valerian/chemistry
18.
Pharm Biol ; 56(1): 612-619, 2018 Dec.
Article in English | MEDLINE | ID: mdl-31070526

ABSTRACT

CONTEXT: Schisandrae chinensis fructus, the dried ripe fruit of Schisandra chinensis (Turcz.) Baill. (Magnoliaceae) has been used for thousands of years as a traditional Chinese herb, which can attenuate and prevent the development of cardiovascular events. OBJECTIVE: To evaluate the effects of the ethanol extracts from Schisandrae chinensis fructus fruit (EESC) on experimental atherosclerosis (AS) in rats. MATERIALS AND METHODS: Treatment with EESC (0.35, 0.7, 1.4 g/kg/d, i.g.) and simvastatin (4 mg/kg/d, i.g.) on AS rats for 3 weeks. Sprague-Dawley rats on normal chow and under water treatment were used as control. The content of schisandrin, schisandrin A and schisandrin B in EESC was detected by HPLC. Aortic pathology changes, serum biochemical indices and nuclear factor E2-related factor 2 (Nrf-2) and heame oxygenase-1 (HO-1) expressions were measured. RESULTS: Schisandrin, schisandrin A and schisandrin B contents were 291.8, 81.46 and 279.1 mg/g of dry weight, respectively. EESC significantly reduced the aortic plaque area (76.5, 90.5 and 73.9% reduction), regulated the levels of serum lipid (p < 0.05), enhanced the antioxidant enzyme activities (p < 0.01), reduced the malondialdehyde levels (72.5, 69.3, 67.3%), and up-regulated the Nrf-2 and HO-1 expression (p < 0.05). Furthermore, EESC reduced the levels of oxidized-LDL and endothelin-1 and thromboxane B2 but increased that of 6-keto prostaglandin F1α (p < 0.05). Acute toxicity was calculated on mice to be LD50 > 20 g/kg. CONCLUSIONS: EESC positively affects the treatment of AS in vivo and the findings will provide a reliable theoretical basis for developing novel therapeutics.


Subject(s)
Antioxidants/therapeutic use , Atherosclerosis/drug therapy , Endothelium, Vascular/drug effects , Ethanol/therapeutic use , Fruit , Schisandra , Animals , Antioxidants/isolation & purification , Antioxidants/pharmacology , Atherosclerosis/metabolism , Atherosclerosis/pathology , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Ethanol/pharmacology , Female , Lipid Peroxidation/drug effects , Lipid Peroxidation/physiology , Male , Mice , Random Allocation , Rats , Rats, Sprague-Dawley
19.
Sci Signal ; 10(494)2017 Aug 29.
Article in English | MEDLINE | ID: mdl-28851824

ABSTRACT

Regulatory T cells (Tregs) suppress antitumor immunity by inhibiting the killing of tumor cells by antigen-specific CD8+ T cells. To better understand the mechanisms involved, we used ex vivo three-dimensional collagen-fibrin gel cultures of dissociated B16 melanoma tumors. This system recapitulated the in vivo suppression of antimelanoma immunity, rendering the dissociated tumor cells resistant to killing by cocultured activated, antigen-specific T cells. Immunosuppression was not observed when tumors excised from Treg-depleted mice were cultured in this system. Experiments with neutralizing antibodies showed that blocking transforming growth factor-ß (TGF-ß) also prevented immunosuppression. Immunosuppression depended on cell-cell contact or cellular proximity because soluble factors from the collagen-fibrin gel cultures did not inhibit tumor cell killing by T cells. Moreover, intravital, two-photon microscopy showed that tumor-specific Pmel-1 effector T cells physically interacted with tumor-resident Tregs in mice. Tregs isolated from B16 tumors alone were sufficient to suppress CD8+ T cell-mediated killing, which depended on surface-bound TGF-ß on the Tregs Immunosuppression of CD8+ T cells correlated with a decrease in the abundance of the cytolytic protein granzyme B and an increase in the cell surface amount of the immune checkpoint receptor programmed cell death protein 1 (PD-1). These findings suggest that contact between Tregs and antitumor T cells in the tumor microenvironment inhibits antimelanoma immunity in a TGF-ß-dependent manner and highlight potential ways to inhibit intratumoral Tregs therapeutically.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunosuppression Therapy , T-Lymphocytes, Regulatory/immunology , Transforming Growth Factor beta/metabolism , Tumor Microenvironment/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Communication , Cell Line, Tumor , Coculture Techniques , Female , Granzymes/metabolism , Immunity, Cellular , Mice , Mice, Inbred C57BL , Mice, Transgenic , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocytes, Regulatory/metabolism
20.
J Orthop Res ; 35(6): 1183-1194, 2017 06.
Article in English | MEDLINE | ID: mdl-26895739

ABSTRACT

Osteonecrosis of the femoral head (ONFH) is a potentially devastating complication that occurs in up to 40% of young adults receiving chronic glucocorticoid (GC) therapy. Through a validated GC therapy rat model, we have previously shown that Wistar Kyoto (WK) rats exhibit a genetic susceptibility to GC-induced ONFH compared to Sasco Fischer (F344) rats. We have undertaken this study in order to investigate differences between these two strains for their bone parameters, alpha-2-macroglobulin (A2M) circulating levels and incidence of GC-induced osteonecrosis of the femoral head. WK and F344 rats were treated either with 1.5 mg/kg/day of prednisone or placebo for 6 months. Blood was taken every month. The femoral heads were harvested for histological examination to detect ONFH and analyzed with micro-computed tomography. After 3 months of GC-therapy, plasma A2M was elevated in treated rats only. GC-treated WK rats exhibited histological evidence of early ONFH through higher rates of cellular apoptosis and empty osteocyte lacunae in the subchondral bone compared to placebos and to F344 rats. Furthermore, micro-CT analysis exhibited femoral head collapse only in GC-treated WK rats. Interestingly, GC-treated F344 rats exhibited significant micro-CT changes, but such changes were less concentrated in the articular region and were accompanied histologically with increased marrow fat. These µCT and histological findings suggest that elevated A2M serum level is not predictive and suitable as an indicative biomarker for early GC-induced ONFH in rodents. Elevated A2M levels observed during GC treatment suggests that it plays role in the host reparative response to GC-associated effects. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1183-1194, 2017.


Subject(s)
Disease Models, Animal , Femur Head Necrosis/pathology , Femur Head/pathology , alpha-Macroglobulins/analysis , Animals , Blood Glucose , Body Weight , Femur Head/diagnostic imaging , Femur Head Necrosis/blood , Femur Head Necrosis/chemically induced , Femur Head Necrosis/diagnostic imaging , Male , Prednisone , Rats, Inbred F344 , Rats, Inbred WKY , Species Specificity , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...