Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 204
Filter
1.
Sci Total Environ ; 939: 173606, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823704

ABSTRACT

Organic soil amendments have been widely adopted to enhance soil organic carbon (SOC) stocks in agroforestry ecosystems. However, the contrasting impacts of pyrogenic and fresh organic matter on native SOC mineralization and the underlying mechanisms mediating those processes remain poorly understood. Here, an 80-day experiment was conducted to compare the effects of maize straw and its derived biochar on native SOC mineralization within a Moso bamboo (Phyllostachys edulis) forest soil. The quantity and quality of SOC, the expression of microbial functional genes concerning soil C cycling, and the activity of associated enzymes were determined. Maize straw enhanced while its biochar decreased the emissions of native SOC-derived CO2. The addition of maize straw (cf. control) enhanced the O-alkyl C proportion, activities of ß-glucosidase (BG), cellobiohydrolase (CBH) and dehydrogenase (DH), and abundances of GH48 and cbhI genes, while lowered aromatic C proportion, RubisCO enzyme activity, and cbbL abundance; the application of biochar induced the opposite effects. In all treatments, the cumulative native SOC-derived CO2 efflux increased with enhanced O-alkyl C proportion, activities of BG, CBH, and DH, and abundances of GH48 and cbhI genes, and with decreases in aromatic C, RubisCO enzyme activity and cbbL gene abundance. The enhanced emissions of native SOC-derived CO2 by the maize straw were associated with a higher O-alkyl C proportion, activities of BG and CBH, and abundance of GH48 and cbhI genes, as well as a lower aromatic C proportion and cbbL gene abundance, while biochar induced the opposite effects. We concluded that maize straw induced positive priming, while its biochar induced negative priming within a subtropical forest soil, due to the contrasting microbial responses resulted from changes in SOC speciation and compositions. Our findings highlight that biochar application is an effective approach for enhancing soil C stocks in subtropical forests.

2.
Ecotoxicol Environ Saf ; 278: 116441, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38733805

ABSTRACT

Oxybenzone (OBZ; benzophenone-3, CAS# 131-57-7), as a new pollutant and ultraviolet absorbent, shows a significant threat to the survival of phytoplankton. This study aims to explore the acute toxic effects of OBZ on the growth of the microalga Selenastrum capricornutum, as well as the mechanisms for its damage to the primary metabolic pathways of photosynthesis and respiration. The results demonstrated that the concentrations for 50 % of maximal effect (EC50) of OBZ for S. capricornutum were 9.07 mg L-1 and 8.54 mg L-1 at 72 h and 96 h, respectively. A dosage of 4.56 mg L-1 OBZ significantly lowered the photosynthetic oxygen evolution rate of S. capricornutum in both light and dark conditions for a duration of 2 h, while it had no effect on the respiratory oxygen consumption rate under darkness. OBZ caused a significant decline in the efficiency of photosynthetic electron transport due to its damage to photosystem II (PSII), thereby decreasing the photosynthetic oxygen evolution rate. Over-accumulated H2O2 was produced under light due to the damage caused by OBZ to the donor and acceptor sides of PSII, resulting in increased peroxidation of cytomembranes and inhibition of algal respiration. OBZ's damage to photosynthesis and respiration will hinder the conversion and reuse of energy in algal cells, which is an important reason that OBZ has toxic effects on S. capricornutum. The present study indicated that OBZ has an acute toxic effect on the microalga S. capricornutum. In the two most important primary metabolic pathways in algae, photosynthesis is more sensitive to the toxicity of OBZ than respiration, especially in the dark.


Subject(s)
Benzophenones , Microalgae , Photosynthesis , Sunscreening Agents , Photosynthesis/drug effects , Benzophenones/toxicity , Microalgae/drug effects , Sunscreening Agents/toxicity , Water Pollutants, Chemical/toxicity , Hydrogen Peroxide/metabolism , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/drug effects , Ultraviolet Rays , Electron Transport/drug effects
3.
J Hazard Mater ; 472: 134494, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38703688

ABSTRACT

Enteric virus concentration in large-volume water samples is crucial for detection and essential for assessing water safety. Certain dissolution and suspension components can affect the enrichment process. In this study, tangential flow ultrafiltration (TFUF) was used as an enrichment method for recovering enteric virus in water samples. Interestingly, the bacteriophage MS2 recovery in reclaimed water and the reclaimed water without particles were higher than that in ultrapure water. The simulated reclaimed water experiments showed that humic acid (HA) (92.16% ± 4.32%) and tryptophan (Try) (81.50 ± 7.71%) enhanced MS2 recovery, while the presence of kaolin (Kaolin) inhibited MS2 recovery with an efficiency of 63.13% ± 11.17%. Furthermore, Atomic force microscopy (AFM) revealed that the MS2-HA cluster and the MS2-Try cluster had larger roughness values on the membrane surface, making it difficult to be eluted, whereas MS2-Kaolin cluster had compact surfaces making it difficult to be eluted. Additionally, the MS2-HA cluster is bound to the membrane by single hydrogen bond with SO, whereas both the MS2-Try cluster and the MS2-Kaolin cluster are bound to the membrane by two hydrogen bonds, making eluting MS2 challenging. These findings have potential implications for validating standardized methods for virus enrichment in water samples.


Subject(s)
Humic Substances , Kaolin , Levivirus , Ultrafiltration , Ultrafiltration/methods , Levivirus/isolation & purification , Humic Substances/analysis , Kaolin/chemistry , Tryptophan/chemistry , Water Microbiology , Water Purification/methods
4.
Article in English | MEDLINE | ID: mdl-38568051

ABSTRACT

Two novel Gram-stain-negative, aerobic, non-motile and rod-shaped bacteria, designated as WL0004T and XHP0148T, were isolated from seawater samples collected from the coastal areas of Nantong and Lianyungang, PR China, respectively. Both strains were found to grow at 10-42 °C (optimum, 37 °C) and with 2.0-5.0 % (w/v) NaCl (optimum, 3.0 %). Strain WL0004T grew at pH 6.0-9.0 (optimum, pH 7.0-8.0), while XHP0148T grew at pH 6.0-10.0 (optimum, pH 7.0-8.0). The major cellular fatty acids (>10 %) of both strains included summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c). In addition, strain WL0004T contained 11-methyl C18 : 1 ω7c and strain XHP0148T contained C12 : 0 3-OH. The respiratory quinone of both strains was ubiquinone-10. The G+C content of genomic DNA of strains WL0004T and XHP0148T were 62.5 and 63.0 mol%, respectively. Strains WL0004T and XHP0148T showed the highest 16S rRNA gene sequence similarity to Ruegeria pomeroyi DSS-3T (99.4 and 99.0 %, respectively), and the 16S rRNA gene-based phylogenetic analysis indicated that the two strains were closely related to members of the genus Ruegeria. The average nucleotide identity and digital DNA-DNA hybridization values among the two strains and type strains of the genus Ruegeria were all below 95 and 70 %, respectively, and the phylogenetic tree reconstructed from the bac120 gene set indicated that the two strains are distinct from each other and the members of the genus Ruegeria. Based on this phenotypic and genotypic characterization, strains WL0004T (=MCCC 1K07523T=JCM 35565T=GDMCC 1.3083T) and XHP0148T (=MCCC 1K07543T=JCM 35569T=GDMCC 1.3089T) should be recognized as representing two novel species of the genus Ruegeria and the names Ruegeria marisflavi sp. nov. and Ruegeria aquimaris sp. nov. are proposed, respectively.


Subject(s)
Fatty Acids , Seawater , Base Composition , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques
5.
Plants (Basel) ; 13(7)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38611529

ABSTRACT

Ecological niche partitioning is crucial in reducing interspecific competition, fostering species coexistence, and preserving biodiversity. Our research, conducted in a hybrid mixed oak forest in Yushan, Jiangsu, China, focuses on Quercus acutissima, Q. variabilis, Q. fabri, and Q. serrata var. brevipetiolata. Using Point Pattern Analysis, we investigated the spatial relationships and ecological trait autocorrelation, including total carbon (TC), nitrogen (TN), phosphorus (TP), potassium (TK), and breast height diameter (DBH). Our findings show aggregated distribution patterns within the oak populations. The Inhomogeneous Poisson Point model highlights the impact of environmental heterogeneity on Q. variabilis, leading to distinct distribution patterns, while other species showed wider dispersion. This study reveals aggregated interspecific interactions, with a notable dispersal pattern between Q. acutissima and Q. variabilis. We observed significant variability in nutrient elements, indicating distinct nutrient dynamics and uptake processes. The variations in total carbon (TC), nitrogen (TN), phosphorus (TP), and potassium (TK) suggest distinct nutrient dynamics, with TK showing the highest variability. Despite variations in TC, TK, and TP, the species did not form distinct classes, suggesting overlapping nutritional strategies and environmental adaptations. Furthermore, spatial autocorrelation analysis indicates strong positive correlations for DBH, TC, and TP, whereas TK and TN correlations are non-significant. The results suggest habitat filtering as a key driver in intraspecific relationships, with a finer spatial scale of ecological niche division through TC and TP, which is crucial for maintaining coexistence among these oak species.

6.
Toxicon ; 241: 107675, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432611

ABSTRACT

Gastric cancer (GC) is a common, life-threatening malignancy that contributes to the global burden of cancer-related mortality, as conventional therapeutic modalities show limited effects on GC. Hence, it is critical to develop novel agents for GC therapy. Morusin, a typical prenylated flavonoid, possesses antitumor effects against various cancers. The present study aimed to demonstrate the inhibitory effect and mechanism of morusin on the stemness characteristics of human GC in vitro under hypoxia and to explore the potential molecular mechanisms. The effects of morusin on cell proliferation and cancer stem cell-like properties of the human GC cell lines SNU-1 and AGS were assessed by MTT assay, colony formation test, qRT-PCR, flow cytometry analysis, and sphere formation test under hypoxia or normoxia condition through in vitro assays. The potential molecular mechanisms underlying the effects of morusin on the stem-cell-like properties of human GC cells in vitro were investigated by qRT-PCR, western blotting assay, and immunofluorescence assay by evaluating the nuclear translocation and expression level of hypoxia-inducible factor-1α (HIF-1α). The results showed that morusin exerted growth inhibitory effects on SNU-1 and AGS cells under hypoxia in vitro. Moreover, the proportions of CD44+/CD24- cells and the sphere formation ability of SNU-1 and AGS reduced in a dose-dependent manner following morusin treatment. The expression levels of stem cell-related genes, namely Nanog, OCT4, SOX2, and HIF-1α, gradually decreased, and the nuclear translocation of the HIF-1α protein was apparently attenuated. HIF-1α overexpression partially reversed the abovementioned effects of morusin. Taken together, morusin could restrain stemness characteristics of GC cells by inhibiting HIF-1α accumulation and nuclear translocation and could serve as a promising compound for GC treatment.


Subject(s)
Flavonoids , Stomach Neoplasms , Humans , Cell Line, Tumor , Cell Proliferation , Flavonoids/pharmacology , Hypoxia/metabolism , Hypoxia/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Tumor Microenvironment/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
7.
J Phycol ; 60(2): 517-527, 2024 04.
Article in English | MEDLINE | ID: mdl-38451781

ABSTRACT

The microalga Chlorella pyrenoidosa is cultivated extensively for its constituents, which are of significant economic worth. Large-scale growth of C. pyrenoidosa in outdoor environments is subject to various stressors such as elevated temperature. The purpose of this study was to assess the protective effects of exogenous 24-epibrassinolide (EBL) on C. pyrenoidosa under high-temperature conditions. Compared to a temperature of 30°C, increasing the temperature to 43°C reduced the enzymatic capacity for carbon assimilation and resulted in the buildup of reactive oxygen species (ROS), thus reducing photosynthesis and proliferation. It was observed that exogenous EBL protected C. pyrenoidosa cells against high temperatures, with an optimal EBL concentration of 100 nM, resulting in enhanced capacity for photosynthetic carbon assimilation with a notable reduction in the imbalance between the absorption of light and energy used under high-temperature conditions. The addition of 100 nM EBL resulted in a 25.4% increase in cell density when exposed to elevated temperatures for 7 days. In addition, exogenous EBL reduced ROS production and increased the activities of critical antioxidant enzymes. This, in turn, mitigated heat-induced oxidative damage, resulting in advantageous outcomes in terms of cellular development and maintenance.


Subject(s)
Brassinosteroids , Chlorella , Steroids, Heterocyclic , Temperature , Reactive Oxygen Species , Photosynthesis , Oxidative Stress , Cell Proliferation , Carbon
8.
Article in English | MEDLINE | ID: mdl-38437071

ABSTRACT

This paper presents a low-power frequency-domain functional near-infrared spectroscopy (FD-fNIRS) readout circuit for the absolute value measurement of tissue optical characteristics. The paper proposes a mixer-first analog front-end (AFE) structure and a 1-bit Σ-Δ phase-to-digital converter (PDC) to reduce the required circuit bandwidth and the laser modulation frequency, thereby saving power while maintaining high resolution. The proposed chip achieves sub-0.01° phase resolution and consumes 6.8 mW of power. Nine optical solid phantoms are produced to evaluate the chip. Compared to a self-built high-precision measurement platform that combines a network analyzer with an avalanche photodiode (APD) module, the maximum measuring errors of the absorption coefficient and reduced scattering coefficient are 10.6% and 12.3%, respectively.

9.
Heliyon ; 10(4): e26229, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38420423

ABSTRACT

Infrared ship detection is of great significance due to its broad applicability in maritime surveillance, traffic safety and security. Multiple infrared sensors with different spectral sensitivity provide enhanced sensing capabilities, facilitating ship detection in complex environments. Nevertheless, current researches lack discussion and exploration of infrared imagers in different spectral ranges for marine objects detection. Furthermore, for unmanned marine vehicles (UMVs), e.g., unmanned surface vehicles (USVs) and unmanned ship (USs), detection and perception are usually performed in embedded devices with limited memory and computation resource, which makes traditional convolutional neural network (CNN)-based detection methods struggle to leverage their advantages. Aimed at the task of sea surface object detection on USVs, this paper provides lightweight CNNs with high inference speed that can be deployed on embedded devices. It also discusses the advantages and disadvantages of using different sensors in marine object detection, providing a reference for the perception and decision-making modules of USVs. The proposed method can detect ships in short-wave infrared (SWIR), long-wave infrared (LWIR) and fused images with high-performance and high-inference speed on an embedded device. Specifically, the backbone is built from bottleneck depth-separable convolution with residuals. Generating redundant feature maps by using cheap linear operation in neck and head networks. The learning and representation capacities of the network are promoted by introducing the channel and spatial attention, redesigning the sizes of anchor boxes. Comparative experiments are conducted on the infrared ship dataset that we have released which contains SWIR, LWIR and the fused images. The results indicate that the proposed method can achieve high accuracy but with fewer parameters, and the inference speed is nearly 60 frames per second (FPS) on an embedded device.

10.
IEEE Trans Biomed Circuits Syst ; 18(1): 89-99, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37607145

ABSTRACT

Electrical Impedance Tomography (EIT) systems have shown great promise in many fields such as real-time wearable healthcare imaging, but their fixed number of electrodes and placement locations limit the system's flexibility and adaptability for further advancement. In this article, we propose a flexible and reconfigurable EIT system (Flexi-EIT) based on digital active electrode (DAE) architecture to address these limitations. By integrating a reconfigurable number of up to 32 replaceable DAEs into the flexible printed circuit (FPC) based wearable electrode belt, we can enable rapid, reliable, and easy placement while maintaining high device flexibility and reliability. We also explore hardware-software co-optimization image reconstruction solutions to balance the size and accuracy of the model, the power consumption, and the real-time latency. Each DAE is designed using commercial chips and fabricated on a printed circuit board (PCB) measuring 13.1 mm × 24.4 mm and weighing 2 grams. In current excitation mode, it can provide programmable sinusoidal current signal output with frequencies up to 100 kHz and amplitudes up to 1 mA p-p that meets IEC 60601-1 standard. In voltage acquisition mode, it can pre-amplify, filter, and digitize the external response voltage signal, improving the robustness of the system while avoiding the need for subsequent analog signal processing circuits. Measured results on a mesh phantom demonstrate that the Flexi-EIT system can be easily configured with different numbers of DAEs and scan patterns to provide EIT measurement frames at 38 fps and real-time EIT images with at least 5 fps, showing the potential to be deployed in a variety of application scenarios and providing the optimal balance of system performance and hardware resource usage solutions.


Subject(s)
Software , Tomography , Electric Impedance , Reproducibility of Results , Electrodes
11.
Plant J ; 117(1): 145-160, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37837261

ABSTRACT

When interspecific gene flow is common, species relationships are more accurately represented by a phylogenetic network than by a bifurcating tree. This study aimed to uncover the role of introgression in the evolution of Osmanthus, the only genus of the subtribe Oleinae (Oleaceae) with its distribution center in East Asia. We built species trees, detected introgression, and constructed networks using multiple kinds of sequencing data (whole genome resequencing, transcriptome sequencing, and Sanger sequencing of nrDNA) combined with concatenation and coalescence approaches. Then, based on well-understood species relationships, historical biogeographic analyses and diversification rate estimates were employed to reveal the history of Osmanthus. Osmanthus originated in mid-Miocene Europe and dispersed to the eastern Tibetan Plateau in the late Miocene. Thereafter, it continued to spread eastwards. Phylogenetic conflict is common within the 'Core Osmanthus' clade and is seen at both early and late stages of diversification, leading to hypotheses of net-like species relationships. Incomplete lineage sorting proved ineffective in explaining phylogenetic conflicts and thus supported introgression as the main cause of conflicts. This study elucidates the diversification history of a relict genus in the subtropical regions of eastern Asia and reveals that introgression had profound effects on its evolutionary history.


Subject(s)
Genome , Phylogeny , Sequence Analysis, DNA , Europe
12.
Arch Med Sci ; 19(6): 1811-1821, 2023.
Article in English | MEDLINE | ID: mdl-38058733

ABSTRACT

Introduction: The estimation of global burden of neck pain is lacking. To estimate the trends and burden of neck pain by sex, age, region, and sociodemographic index (SDI). Material and methods: The incidence and disability-adjusted life years (DALY) data for neck pain were extracted from the Global Burden of Disease 2019 database. The estimated annual percent change (EAPC) and 95% confidence intervals (CIs) were used to assess the trends in age-standardized incidence and DALY rates from 1990 to 2019. Results: From 1990 to 2019, the global age-standardized incidence rate and age-standardized DALY rate indicated downward trends, with EAPCs of -0.06 and -0.09, respectively. The EAPCs of the age-standardized incidence rate and age-standardized DALY rate were negatively correlated with the SDI in 2019, respectively. The age-standardized incidence rates and age-standardized DALY rates in regions with a high SDI indicated a downward trend, including in high-income North America, Australia, and New Zealand. In 2019, the Philippines and high-income North America had the highest age-standardized incidence and age-standardized DALY rates. From 1990 to 2019, the areas which increased most rapidly in the age-standardized incidence rate and age-standardized DALY rate were in tropical Latin America (EAPCs of 0.53 and 0.60, respectively). Brazil had the most rapid increase in the age-standardized incidence rate and age-standardized DALY rate (EAPCs of 0.55 and 0.61, respectively). Conclusions: The age-standardized incidence rate and age-standardized DALY rate of neck pain decreased globally from 1990 to 2019. However, there were significant differences concerning sex, age, and regional distributions. Therefore, targeted prevention interventions and risk factor control measures should be reasonably allocated.

13.
J Agric Food Chem ; 71(51): 20549-20562, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38099742

ABSTRACT

Straw-related carbon (C) dynamics are central for C accrual in agro-ecosystems and should be assessed by investigating their decomposition and soil organic carbon (SOC) priming effects. Our understanding of biotic and abiotic mechanisms underpinning these two C processes, however, is still not sufficiently profound. Soils that had received organic and mineral fertilizers for 26 years were sampled for a 28 day incubation experiment to assess 13C-labeled straw decomposition and SOC priming effects. On the basis of analyzing physicochemical properties, fungal taxonomic (MiSeq sequencing) and functional (metagenomics) guilds, we quantified the contributions of biotic and abiotic attributes to straw decomposition and SOC priming. Here, we propose two distinct mechanisms underlying straw decomposition and SOC priming in agriculture soils: (i) accelerated straw mineralization in manure-treated soils was mainly driven by biotic forces, while (ii) larger SOC priming in NPK-amended soils was through abiotic regulation.


Subject(s)
Carbon , Soil , Soil/chemistry , Carbon/chemistry , Fertilizers/analysis , Ecosystem , Agriculture , Soil Microbiology
14.
Sci Rep ; 13(1): 18775, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37907561

ABSTRACT

The present study investigated the composition, abundance, and diversity of gut microbes in full-term and late-preterm infants from a medical center in eastern China. A total of 144 genomes of stool samples were captured for 16S rRNA metagenomic analyses. A high abundance of commensal intestinal bacteria was detected in these samples such as Phocaeicola vulgatus, Escherichia coli, and Faecalibacterium prausnitzii, indicating a relatively consistent diversity of gut microbes in the present full-term infants aged 38-40 weeks. However, late preterm infants (n = 50) with mandatory antimicrobials feeding exhibited lower diversity but a higher composition of opportunistic pathogens such as Enterococcus species. Centralized on the situation, we explored the regulatory effect of Clostridium butyricum as probiotics on these late preterm infants. The consumption of C. butyricum did not restore the composition of gut microbes altered by antimicrobials to normal levels, although several opportunistic pathogens decreased significantly after probiotic therapy including Staphylococcus aureus, Sphingomonas echinoides, and Pseudomonas putida. We also compared the effects of day-fed versus night-fed probiotics. Intriguingly, the nighttime feeding showed a higher proportion of C. butyricum compared with probiotic day-feeding. Finally, fecal metabolome and metabolites were analyzed in late preterm infants with (n = 20) or without probiotic therapy (n = 20). The KEGG enrichment analysis demonstrated that vitamin digestion and absorption, synaptic vesicle cycle, and biotin metabolism were significantly increased in the probiotic-treated group, while MSEA indicated that a series of metabolism were significantly enriched in probiotic-treated infants including glycerolipid, biotin, and lysine, indicating the complex effects of probiotic therapy on glutathione metabolism and nutrients digestion and absorption in late preterm infants. Overall, this study provided metagenomic and metabolomic profile of the gut microbes in full-term newborns and late preterm infants in eastern China. Further studies are needed to support and elucidate the role of probiotic feeding in late preterm infants with mandatory antimicrobial treatment.


Subject(s)
Clostridium butyricum , Gastrointestinal Microbiome , Probiotics , Humans , Infant, Newborn , Infant , Infant, Premature , Clostridium butyricum/genetics , RNA, Ribosomal, 16S/genetics , Biotin/pharmacology , East Asian People
15.
IEEE Trans Biomed Circuits Syst ; 17(6): 1257-1281, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38015673

ABSTRACT

The pulse transition features (PTFs), including pulse arrival time (PAT) and pulse transition time (PTT), hold significant importance in estimating non-invasive blood pressure (NIBP). However, the literature showcases considerable variations in terms of PTFs' correlation with blood pressure (BP), accuracy in NIBP estimation, and the comprehension of the relationship between PTFs and BP. This inconsistency is exemplified by the wide-ranging correlations reported across studies investigating the same feature. Furthermore, investigations comparing PAT and PTT have yielded conflicting outcomes. Additionally, PTFs have been derived from various bio-signals, capturing distinct characteristic points like the pulse's foot and peak. To address these inconsistencies, this study meticulously reviews a selection of such research endeavors while aligning them with the biological intricacies of blood pressure and the human cardiovascular system (CVS). Each study underwent evaluation, considering the specific signal acquisition locale and the corresponding recording procedure. Moreover, a comprehensive meta-analysis was conducted, yielding multiple conclusions that could significantly enhance the design and accuracy of NIBP systems. Grounded in these dual aspects, the study systematically examines PTFs in correlation with the specific study conditions and the underlying factors influencing the CVS. This approach serves as a valuable resource for researchers aiming to optimize the design of BP recording experiments, bio-signal acquisition systems, and the fine-tuning of feature engineering methodologies, ultimately advancing PTF-based NIBP estimation.


Subject(s)
Blood Pressure Determination , Pulse Wave Analysis , Humans , Blood Pressure/physiology , Heart Rate/physiology , Pulse Wave Analysis/methods
16.
Front Nutr ; 10: 1282438, 2023.
Article in English | MEDLINE | ID: mdl-37899841

ABSTRACT

To explore the effect of different microbial strains on blueberry pomace with solid-state fermentation (SSF), three fungi strains and three lactic acid bacteria (LAB) strains were utilized to investigate with respect to polyphenol profiles, antioxidant capacities, and bioaccessibility. Different strains exhibited different capacities for metabolizing polyphenolic compounds in blueberry pomace. The contents of 10 phenolic acids and 6 flavonoids (except (+)-catechin) were increased in blueberry pomace fermented by Lactobacillus acidophilus (LA). A similar tendency was observed in blueberry pomace fermented by Aspergillus niger (AN) and Lactobacillus plantarum (LP), where the concentration of 8 phenolic acids and 5 flavonoids was enhanced, with the following exceptions: (+)-catechin, ferulic acid, vanillic acid, and quercitrin. Chlorogenic acid and quercetin were the maximum phenolic acids and flavonoids in blueberry pomace with SSF, upgraded at 22.96 and 20.16%, respectively. Contrary to the growth of phenolic acids and flavonoid compounds, all individual anthocyanins showed a decreased trend. Only in the blueberry pomace fermented by AN, all anthocyanidins exhibit a rising trend. After SSF, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenylpicrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) radical scavenging abilities were increased by up to 33.56, 59.89, and 87.82%, respectively. Moreover, the simulated gastrointestinal digestion system revealed that SSF improved the bioaccessibility of polyphenolic compounds. Compared with other strains, LA, LP, and AN showed better excellent capacities for metabolizing polyphenolic compounds, which led to a greater increase in antioxidant activity and bioaccessibility in fermented blueberry pomace.

17.
Ying Yong Sheng Tai Xue Bao ; 34(9): 2383-2390, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37899103

ABSTRACT

We investigated the effects of maize straw and its biochar application on soil organic carbon chemical composition, the abundance of carbon degradation genes (cbhI) and the composition of cbhI gene community in a Moso bamboo forest, to provide the theoretical and scientific basis for enhancing carbon sequestration. We conducted a one-year field experiment in a subtropical Moso bamboo forest with three treatments: control (0 t C·hm-2), maize straw (5 t C·hm-2), and maize straw biochar (5 t C·hm-2). Soil samples were collected at the 3rd and 12th months after the treatment. Soil organic carbon chemical composition, the abundance and community composition of cbhI gene were determined by solid-state 13C NMR, real-time fluorescence quantitative PCR, and high-throughput sequencing, respectively. The results showed that compared with the control, maize straw treatment significantly increased the content of O-alkyl C and decreased aromatic C content, while maize straw biochar treatment showed an opposite effect. Maize straw treatment significantly increased the abundance of cbhI gene and the relative abundance of Penicillium, Gaeumannomyces and Marasmius. However, maize straw biochar treatment reduced the abundance of this gene. The relative abundance of dominant cbhI in soils was positively correlated with the content of O-alkyl C and negatively correlated with the content of aromatic C. Results of redundancy analysis showed that maize straw treatment had a significant effect on the microbial community composition of cbhI gene by changing soil O-alkyl C content, while maize straw biochar affected the microbial community composition of cbhI gene by changing soil pH, organic carbon, and aromatic C content. Maize straw biochar treatment was more effective in increasing soil organic carbon stability and reducing microbial activity associated with carbon degradation in the subtropical Moso bamboo forest ecosystem compared with maize straw treatment. Therefore, the application of biochar has positive significance for maintaining soil carbon storage in subtropical forest ecosystems.


Subject(s)
Carbon , Microbiota , Carbon/analysis , Zea mays , Soil/chemistry , Charcoal/chemistry , Poaceae , Forests , Organic Chemicals
18.
Sensors (Basel) ; 23(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37688006

ABSTRACT

Flying ad hoc networks (FANETs), composed of small unmanned aerial vehicles (UAVs), possess characteristics of flexibility, cost-effectiveness, and rapid deployment, rendering them highly attractive for a wide range of civilian and military applications. FANETs are special mobile ad hoc networks (MANETs), FANETs have the characteristics of faster network topology changes and limited energy. Existing reactive routing protocols are unsuitable for the highly dynamic and limited energy of FANETs. For the lithium battery-powered UAV, flight endurance lasts from half an hour to two hours. The fast-moving UAV not only affects the packet delivery rate, average throughput, and end-to-end delay but also shortens the flight endurance. Therefore, research is urgently needed into a high-performance routing protocol with high energy efficiency. In this paper, we propose a novel routing protocol called AO-AOMDV, which utilizes arithmetic optimization (AO) to enhance the ad hoc on-demand multi-path distance vector (AOMDV) routing protocol. The AO-AOMDV utilizes a fitness function to calculate the fitness value of multiple paths and employs arithmetic optimization for selecting the optimal route for routing selection. Our experiments were conducted using NS3 with three evaluation metrics: the packet delivery ratio, network lifetime, and average end-to-end delay. We compare this algorithm to routing protocols including AOMDV and AODV. The results indicate that the proposed AO-AOMDV attained a higher packet delivery ratio, network lifetime, and lower average end-to-end delay.

19.
Cyborg Bionic Syst ; 4: 0030, 2023.
Article in English | MEDLINE | ID: mdl-37559940

ABSTRACT

Wearable body sensor nodes require massive data transmission under limited energy. However, it suffers from drastically varying channel loss, which limits its energy efficiency in practical scenarios. This paper presents a power-driven body-channel transceiver (TRX), whose power consumption can be adaptively tuned against varying channel loss. An out-band programmable gain amplifier (PGA) is proposed to save power and generate a quasi-linear correlation between PGA gain and power. By using the quasi-linear gain-power relationship, we propose an auto gain/power control technique to realize on-demand power consumption. In addition, a differential balanced transmitter is designed to eliminate base-band harmonics in on-off keying modulation and increase the power delivered by the transmitter (TX). The TX and receiver (RX) of the prototype were integrated into 1 chip and fabricated in a 55-nm complementary metal oxide semiconductor process. During the measurement, 2 chips were configured as TX and RX, respectively. Both the TX and the RX were wearable, powered by lithium batteries, and attached to the subject's hands. The prototype achieved a 5.25-Mbps data rate with 16-pJ/bit energy efficiency at a 1.5-m straight-line ground path distance. Furthermore, the proposed TRX maintained stable communication within a 1.5-m distance, while dynamically reducing power consumption.

20.
Sci Total Environ ; 899: 165557, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37478938

ABSTRACT

Plant invasions significantly alter the microbiome of the soil in terms of fungal and bacterial communities, which in turn regulates ecosystem processes and nutrient dynamics. However, it is unclear how soil microbial communities, nitrogen (N) mineralization, and their linkages respond to plant invasions over the growing season in forest ecosystems. The present study investigated the seasonal associations between the microbial composition/function and net N mineralization in evergreen broadleaf, mixed bamboo-broadleaf, and Moso bamboo (Phyllostachys edulis) forests, depicting uninvaded, moderately invaded, and heavily invaded forests, respectively. The ammonification and nitrification rates in the bamboo forest were significantly higher than those in the broadleaf and mixed bamboo-broadleaf forests during the spring season only. The forest type and seasonal variation significantly influenced the net rates of ammonification and nitrification and the abundances of bacterial apr and AOB amoA, fungal cbhI and lcc genes, as well as the microbial composition. Moreover, the partial least squares path model revealed that bamboo invasion enhanced net ammonification through increasing total N and fungal-to-bacterial ratio, and enhanced net nitrification through modifying the bacterial composition and increasing the fungal-to-bacterial ratio during spring. However, microbial parameters had no significant effect on net ammonification and nitrification during autumn. We conclude that shifts in the microbial abundance and composition following bamboo invasion facilitated soil N mineralization during spring, contributing to the rapid growth of Moso bamboo at the beginning of the growth season and its invasion into adjacent subtropical forests.


Subject(s)
Microbiota , Soil , Seasons , Nitrogen/analysis , Forests , Poaceae , Bacteria , Soil Microbiology , China
SELECTION OF CITATIONS
SEARCH DETAIL
...