Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Opt Express ; 32(6): 8999-9010, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571144

ABSTRACT

The transition from anisotropic to isotropic optical properties in nanostructures plays an important role in developing next-generation intelligent photonic devices. Currently, core-shell nanostructures, frequently accompanied by different growth rates, are typically characterized by anisotropic optical properties at mid-infrared wavelengths. This inherent anisotropy, however, poses formidable challenges in achieving optical isotropy. In this work, an electric field is employed to transform the optical anisotropy of the off-centered core-shell square nanowires into optical isotropy. Based on the finite difference method, the results show that by tuning the electric field reasonably, the anti-crossing behavior of energy levels can be induced to align the energy structures in both eccentric and concentric nanowires. Although the optical anisotropy is strongly dependent on the distance and direction of the core shift, we marks, to the best of our knowledge, the first demonstration that the restored electronic states can effectively neutralize the polarization sensitivity, achieving isotropic optical absorption with wavelengths longer than 10 µm. Our finding indicates that the anti-crossing behavior of energy levels can serve as a viable mechanism to achieve switchable optical isotropy.

2.
Appl Opt ; 63(3): 636-644, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38294374

ABSTRACT

For a floating display system using a prism- or bead-type retroreflector, non-retroreflected light is the key cause of the deterioration in image resolution. In the present study, a micro aperture array was used to enhance the image resolution of aerial imaging displays based on prism and bead retroreflectors. The effects of different micro aperture parameters on the divergence angle of the retroreflector were experimentally studied, and the modulation of the point spread function of different retroreflectors was also explored in detail. The experimental results showed that by properly arranging the micro aperture array, the divergence angle of the retroreflective light could be effectively reduced. Moreover, the full width at half maximum of the point spread function of the retroreflector was effectively narrowed. Finally, after the modulation of the micro aperture array, the imaging resolution was increased by 115%-150% compared to the original resolution. The proposed micro array is low cost, easy to process, and flexible and can be applied to a retroreflector-based aerial imaging system to provide high image quality.

3.
Opt Express ; 31(23): 38343-38354, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-38017942

ABSTRACT

What we believe is a new scheme for producing semidiscrete self-trapped vortices ("swirling photon droplets") in photonic crystals with competing quadratic (χ(2)) and self-defocusing cubic (χ(3)) nonlinearities is proposed. The photonic crystal is designed with a striped structure, in the form of spatially periodic modulation of the χ(2) susceptibility, which is imposed by the quasi-phase-matching technique. Unlike previous realizations of semidiscrete optical modes in composite media, built as combinations of continuous and arrayed discrete waveguides, the semidiscrete vortex "droplets" are produced here in the fully continuous medium. This work reveals that the system supports two types of semidiscrete vortex droplets, viz., onsite- and intersite-centered ones, which feature, respectively, odd and even numbers of stripes, N. Stability areas for the states with different values of N are identified in the system's parameter space. Some stability areas overlap with each other, giving rise to the multistability of states with different N. The coexisting states are mutually degenerate, featuring equal values of the Hamiltonian and propagation constant. An experimental scheme to realize the droplets is outlined, suggesting new possibilities for the long-distance transmission of nontrivial vortex beams in nonlinear media.

4.
Phys Rev E ; 108(4-1): 044210, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37978625

ABSTRACT

We study the stability and characteristics of two-dimensional circular quantum droplets (QDs) with embedded hidden vorticity (HV), i.e., opposite angular momenta in two components, formed by binary Bose-Einstein condensates (BECs) trapped in a radially periodic potential. The system is modeled by the Gross-Pitaevskii equations with the Lee-Huang-Yang terms, which represent the higher-order self-repulsion induced by quantum fluctuations around the mean-field state, and a potential which is a periodic function of the radial coordinate. Ring-shaped QDs with high winding numbers (WNs) of the HV type, which are trapped in particular circular troughs of the radial potential, are produced by means of the imaginary-time-integration method. Effects of the depth and period of the potential on these QD states are studied. The trapping capacity of individual circular troughs is identified. Stable compound states in the form of nested multiring patterns are constructed too, including ones with WNs of opposite signs. The stably coexisting ring-shaped QDs with different WNs can be used for the design of BEC-based data-storage schemes.

5.
Genes (Basel) ; 14(9)2023 08 31.
Article in English | MEDLINE | ID: mdl-37761883

ABSTRACT

Curcuma alismatifolia (Zingiberaceae) is an ornamental species with high economic value due to its recent rise in popularity among floriculturists. Cultivars within this species have mixed genetic backgrounds from multiple hybridization events and can be difficult to distinguish via morphological and histological methods alone. Given the need to improve identification resources, we carried out the first systematic study using plastomic data wherein genomic evolution and phylogenetic relationships from 56 accessions of C. alismatifolia were analyzed. The newly assembled plastomes were highly conserved and ranged from 162,139 bp to 164,111 bp, including 79 genes that code for proteins, 30 tRNA genes, and 4 rRNA genes. The A/T motif was the most common of SSRs in the assembled genomes. The Ka/Ks values of most genes were less than 1, and only two genes had Ka/Ks values above 1, which were rps15 (1.15), and ndhl (1.13) with petA equal to 1. The sequence divergence between different varieties of C. alismatifolia was large, and the percentage of variation in coding regions was lower than that in the non-coding regions. Such data will improve cultivar identification, marker assisted breeding, and preservation of germplasm resources.


Subject(s)
Curcuma , Zingiberaceae , Curcuma/genetics , Phylogeny , Plant Breeding , Flowers
6.
J Phys Chem Lett ; 14(18): 4233-4240, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37126526

ABSTRACT

Singlet fission (SF) presents an attractive solution to overcome the Shockley-Queisser limit of single-junction solar cells. The conversion from an initial singlet state to final triplet is mediated by the correlated triplet pair state 1(T1T1). Despite significant advancement on 1(T1T1) properties and its role in SF, a comprehensive understanding of the energetic landscape during SF is still unclear. Here, we study an unconventional SF system with excited-state aromaticity, i.e., cyano-substituted dipyrrolonaphtheridinedione derivative (DPND-CN), using time-resolved spectroscopy as a function of the temperature. We demonstrate that the population transfer from S1 to 1(T1T1) is driven by a time-dependent exothermicity resulting from the coherent coupling between electronic and spin degrees of freedom. This is followed by thermal-activated dissociation of 1(T1T1) to yield free triplets. Our results provide some new insight into the SF mechanism, which may guide the development of new efficient and stable SF materials for practical applications.

7.
Phys Rev Lett ; 130(15): 157203, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37115876

ABSTRACT

We report solutions for stable compound solitons in a three-dimensional quasi-phase-matched photonic crystal with the quadratic (χ^{(2)}) nonlinearity. The photonic crystal is introduced with a checkerboard structure, which can be realized by means of the available technology. The solitons are built as four-peak vortex modes of two types, rhombuses and squares (intersite- and onsite-centered self-trapped states, respectively). Their stability areas are identified in the system's parametric space (rhombuses occupy an essentially broader stability domain), while all bright vortex solitons are subject to strong azimuthal instability in uniform χ^{(2)} media. Possibilities for experimental realization of the solitons are outlined.

8.
BMC Plant Biol ; 23(1): 212, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37088810

ABSTRACT

BACKGROUND: Tartary buckwheat (Fagopyrum tataricum) is an important food and medicine crop plant, which has been cultivated for 4000 years. A nuclear genome has been generated for this species, while an intraspecific pan-plastome has yet to be produced. As such a detailed understanding of the maternal genealogy of Tartary buckwheat has not been thoroughly investigated. RESULTS: In this study, we de novo assembled 513 complete plastomes of Fagopyrum and compared with 8 complete plastomes of Fagopyrum downloaded from the NCBI database to construct a pan-plastome for F. tartaricum and resolve genomic variation. The complete plastomes of the 513 newly assembled Fagopyrum plastome sizes ranged from 159,253 bp to 159,576 bp with total GC contents ranged from 37.76 to 37.97%. These plastomes all maintained the typical quadripartite structure, consisting of a pair of inverted repeat regions (IRA and IRB) separated by a large single copy region (LSC) and a small single copy region (SSC). Although the structure and gene content of the Fagopyrum plastomes are conserved, numerous nucleotide variations were detected from which population structure could be resolved. The nucleotide variants were most abundant in the non-coding regions of the genome and of those the intergenic regions had the most. Mutational hotspots were primarily found in the LSC regions. The complete 521 Fagopyrum plastomes were divided into five genetic clusters, among which 509 Tartary buckwheat plastomes were divided into three genetic clusters (Ft-I/Ft-II/Ft-III). The genetic diversity in the Tartary buckwheat genetic clusters was the greatest in Ft-III, and the genetic distance between Ft-I and Ft-II was the largest. Based on the results of population structure and genetic diversity analysis, Ft-III was further subdivided into three subgroups Ft-IIIa, Ft-IIIb, and Ft-IIIc. Divergence time estimation indicated that the genera Fagopyrum and Rheum (rhubarb) shared a common ancestor about 48 million years ago (mya) and that intraspecies divergence in Tartary buckwheat began around 0.42 mya. CONCLUSIONS: The resolution of pan-plastome diversity in Tartary buckwheat provides an important resource for future projects such as marker-assisted breeding and germplasm preservation.


Subject(s)
Fagopyrum , Fagopyrum/genetics , Gene Expression Profiling , Plant Breeding , Mutation , Nucleotides , Phylogeny
9.
Phys Rev E ; 106(1-1): 014201, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35974589

ABSTRACT

We elaborate a scheme of trapping-expulsion management (TEM), in the form of the quadratic potential periodically switching between confinement and expulsion, as a means of stabilization of two-dimensional dynamical states against the backdrop of the critical collapse driven by the cubic self-attraction with strength g. The TEM scheme may be implemented, as spatially or temporally periodic modulations, in optics or BEC, respectively. The consideration is carried out by dint of numerical simulations and variational approximation (VA). In terms of the VA, the dynamics amounts to a nonlinear Ermakov equation, which, in turn, is tantamount to a linear Mathieu equation. Stability boundaries are found as functions of g and parameters of the periodic modulation of the trapping potential. Below the usual collapse threshold, which is known, in the numerical form, as gg_{c}^{(num)}, the collapse threshold is found with the help of full numerical simulations. The relative increase of g_{c} above g_{c}^{(num)} is ≈1.5%. It is a meaningful result, even if its size is small, because the collapse threshold is a universal constant which is difficult to change.

10.
Hortic Res ; 9: uhac103, 2022.
Article in English | MEDLINE | ID: mdl-35795384

ABSTRACT

Grafting, which joins a scion from a cultivar with the stem of a rootstock from a grapevine wild relative, is commonly used in viticulture. Grafting has crucial effects on various phenotypes of the cultivar, including its phenology, biotic and abiotic resistance, berry metabolome, and coloration, but the underlying genetics and regulatory mechanisms are largely unexplored. In this study, we investigated the phenotypic, metabolomic, and transcriptomic profiles at three developmental stages (45, 75, and 105 days after flowering) of the Crimson Seedless cultivar (Vitis vinifera) grafted onto four rootstocks (three heterografts, CS/101-14, CS/SO4, and CS/110R and one self-graft, CS/CS) with own-rooted graft-free Crimson Seedless (CS) as the control. All the heterografts had a significant effect on berry reddening as early as ~45 days after flowering. The grafting of rootstocks promoted anthocyanin biosynthesis and accumulation in grape berries. The metabolomic features showed that cyanidin 3-O-glucoside, delphinidin 3-O-glucoside, malvidin 3-O-glucoside, peonidin 3-O-glucoside, and petunidin 3-O-glucoside were the pigments responsible for the purplish-red peel color. Transcriptomic analyses revealed that anthocyanin biosynthesis-related genes, from upstream (phenylalanine ammonia-lyase) to downstream (anthocyanidin 3-O-glucosyltransferase and anthocyanidin synthase), were upregulated with the accumulation of anthocyanins in the heterografted plants. At the same time, all these genes were also highly expressed and more anthocyanin was accumulated in self-grafted CS/CS samples compared with own-rooted graft-free CS samples, suggesting that self-grafting may also have promoted berry reddening in grapevine. Our results reveal global transcriptomic and metabolomic features in berry color regulation under different grafting conditions that may be useful for improving berry quality in viticulture.

11.
Opt Lett ; 47(14): 3411-3414, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35838692

ABSTRACT

The Fano effect arising from the interference between two dissipation channels of the radiation continuum enables tuning of the photon statistics. Understanding the role of the Fano effect and exploiting it to achieve strong photon correlations are of both fundamental and applied significance. We present an analytical description of Fano-enhanced photon correlations based on cavity quantum electrodynamics to show that the Fano effect in atom-cavity systems can improve the degree of antibunching by over four orders of magnitude. The enhancement factors and the optimal conditions are explicitly given, and found to relate to the Fano parameter q. Remarkably, the Fano enhancement manifests robustness against the decoherence processes and can survive in the weak coupling regime. We expect our work to provide insight to tuning the photon statistics through the Fano effect, which offers a new, to the best of our knowledge, route to enhance the photon correlations, as well as the possibility of generating nonclassical light in a wider diversity of systems without the need of a strong light-matter interaction.

12.
Brief Bioinform ; 23(4)2022 07 18.
Article in English | MEDLINE | ID: mdl-35698834

ABSTRACT

Accurate prediction of open reading frames (ORFs) is important for studying and using genome sequences. Ribosomes move along mRNA strands with a step of three nucleotides and datasets carrying this information can be used to predict ORFs. The ribosome-protected footprints (RPFs) feature a significant 3-nt periodicity on mRNAs and are powerful in predicting translating ORFs, including small ORFs (sORFs), but the application of RPFs is limited because they are too short to be accurately mapped in complex genomes. In this study, we found a significant 3-nt periodicity in the datasets of populational genomic variants in coding sequences, in which the nucleotide diversity increases every three nucleotides. We suggest that this feature can be used to predict ORFs and develop the Python package 'OrfPP', which recovers ~83% of the annotated ORFs in the tested genomes on average, independent of the population sizes and the complexity of the genomes. The novel ORFs, including sORFs, identified from single-nucleotide polymorphisms are supported by protein mass spectrometry evidence comparable to that of the annotated ORFs. The application of OrfPP to tetraploid cotton and hexaploid wheat genomes successfully identified 76.17% and 87.43% of the annotated ORFs in the genomes, respectively, as well as 4704 sORFs, including 1182 upstream and 2110 downstream ORFs in cotton and 5025 sORFs, including 232 upstream and 234 downstream ORFs in wheat. Overall, we propose an alternative and supplementary approach for ORF prediction that can extend the studies of sORFs to more complex genomes.


Subject(s)
Ribosomes , Genome , Open Reading Frames , Ribosomes/genetics , Ribosomes/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Polymorphism, Single Nucleotide
13.
PLoS One ; 16(11): e0258962, 2021.
Article in English | MEDLINE | ID: mdl-34793463

ABSTRACT

BACKGROUND: Tibial Pilon fractures are severe fractures accompanied by soft tissue injury. Although open reduction and internal fixation (ORIF) are effective in treating Pilon fractures, there is a controversy over time to surgery due to reported postoperative complications. However, there is no systematic review evaluating the difference of postoperative complications between early and delayed ORIF for treating pilon fractures. METHODS: Relevant literature written in English will be searched through PubMed, Cochrane Library, Embase, MEDLINE, and Web of Science. The study aims to compare the effects and complications of early and delayed ORIF for treating fresh pilon fractures in adult patients. The primary outcome will be infection rate, fracture union time, nonunion and malunion rate. And the secondary outcome will be metalwork removal, amputation, and ankle function grade. Two reviewers will independently assess the eligibility of the studies according to the pre-defined inclusion and exclusion criteria. A meta-analysis for the available data will be conducted using Revman 5.3. To measure effect size, odds ratios (ORs) and mean difference will be used for dichotomous and continuous data, respectively. Statistical heterogeneity will be explored. And a random-effects model or a fixed-effects will be used in pooled data on the basis of the existence or absence of heterogeneity. Subgroup analysis will be conducted to identify sources of heterogeneity and sensitivity analysis to test the results' robustness. We will assess the risk of bias by four different quality assessment tools according to the study design. Publication bias will be evaluated by funnel plot. The study data will be stored in the Open Science Framework website. PROSPERO REGISTRATION NUMBER: CRD42020207465.


Subject(s)
Fracture Fixation, Internal , Open Fracture Reduction , Soft Tissue Injuries , Tibial Fractures , Humans , Ankle Fractures/physiopathology , Ankle Fractures/surgery , Fracture Fixation, Internal/methods , Open Fracture Reduction/methods , Postoperative Complications/physiopathology , Postoperative Complications/therapy , Soft Tissue Injuries/physiopathology , Soft Tissue Injuries/surgery , Tibial Fractures/physiopathology , Tibial Fractures/surgery , Treatment Outcome , Systematic Reviews as Topic , Meta-Analysis as Topic
14.
Appl Opt ; 60(24): 7069-7079, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34612990

ABSTRACT

An illumination design problem can be transformed into an optimal mass transport problem based on ray mapping. To construct a freeform surface that best fits the normal field, an efficient numerical method is put forward in this paper. In this method, the normal vectors are constructed by two adjacent orthogonal tangent vectors at each point, and then the normal vectors are substituted into Snell's law to obtain nonlinear equations describing the surface coordinates. Finally, the continuous and accurate freeform surface can be obtained by solving these nonlinear equations. The simulation results show that the proposed method not only provides lower relative standard deviation, but also significantly reduces the normal deviation more than the traditional one. It can be seen from the comparison results that different numerical integrations of a non-integrable normal field calculated by optimal mass transport can lead to different results, and the proposed method is more feasible than the traditional one, especially in the off-axis case. The simulation results of the illumination effect of some complex patterns also show that the freeform surface constructed by this method can restore the target pattern efficiently and control the normal vector error in a low range.

15.
Nat Commun ; 12(1): 4902, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34385461

ABSTRACT

Efficient and precise base editors (BEs) for C-to-G transversion are highly desirable. However, the sequence context affecting editing outcome largely remains unclear. Here we report engineered C-to-G BEs of high efficiency and fidelity, with the sequence context predictable via machine-learning methods. By changing the species origin and relative position of uracil-DNA glycosylase and deaminase, together with codon optimization, we obtain optimized C-to-G BEs (OPTI-CGBEs) for efficient C-to-G transversion. The motif preference of OPTI-CGBEs for editing 100 endogenous sites is determined in HEK293T cells. Using a sgRNA library comprising 41,388 sequences, we develop a deep-learning model that accurately predicts the OPTI-CGBE editing outcome for targeted sites with specific sequence context. These OPTI-CGBEs are further shown to be capable of efficient base editing in mouse embryos for generating Tyr-edited offspring. Thus, these engineered CGBEs are useful for efficient and precise base editing, with outcome predictable based on sequence context of targeted sites.


Subject(s)
CRISPR-Cas Systems , Cytidine Deaminase/metabolism , Gene Editing/methods , Machine Learning , Uracil-DNA Glycosidase/metabolism , Animals , Base Sequence , Binding Sites/genetics , Caenorhabditis elegans/genetics , Codon/genetics , Cytidine Deaminase/genetics , Escherichia coli/genetics , Female , Gene Library , HEK293 Cells , Humans , Mice , Reproducibility of Results , Uracil-DNA Glycosidase/genetics
16.
Opt Express ; 29(14): 21820-21832, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34265961

ABSTRACT

When the quasi-phase matching (QPM) parameters of the χ(2) nonlinear crystal rotate along a closed path, geometric phase will be generated in the signal and idler waves that participate in the nonlinear frequency conversion. In this paper, we study two rotation schemes, full-wedge rotation and half-wedge rotation, of the QPM parameters in the process of fully nonlinear three-wave mixing. These two schemes can effectively suppress the uncertainty in creating the geometric phase in the nonlinear frequency conversion process when the intensity of the pump is depleted. The finding of this paper provides an avenue toward constant control of the geometric phase in nonlinear optics applications and quantum information processing.

17.
Sensors (Basel) ; 21(13)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34208935

ABSTRACT

This paper proposes and implements a lightweight, "real-time" localization system (SORLA) with artificial landmarks (reflectors), which only uses LiDAR data for the laser odometer compensation in the case of high-speed or sharp-turning. Theoretically, due to the feature-matching mechanism of the LiDAR, locations of multiple reflectors and the reflector layout are not limited by geometrical relation. A series of algorithms is implemented to find and track the features of the environment, such as the reflector localization method, the motion compensation technique, and the reflector matching optimization algorithm. The reflector extraction algorithm is used to identify the reflector candidates and estimates the precise center locations of the reflectors from 2D LiDAR data. The motion compensation algorithm predicts the potential velocity, location, and angle of the robot without odometer errors. Finally, the matching optimization algorithm searches the reflector combinations for the best matching score, which ensures that the correct reflector combination could be found during the high-speed movement and fast turning. All those mechanisms guarantee the algorithm's precision and robustness in the high speed and noisy background. Our experimental results show that the SORLA algorithm has an average localization error of 6.45 mm at a speed of 0.4 m/s, and 9.87 mm at 4.2 m/s, and still works well with the angular velocity of 1.4 rad/s at a sharp turn. The recovery mechanism in the algorithm could handle the failure cases of reflector occlusion, and the long-term stability test of 72 h firmly proves the algorithm's robustness. This work shows that the strategy used in the SORLA algorithm is feasible for industry-level navigation with high precision and a promising alternative solution for SLAM.


Subject(s)
Robotics , Algorithms , Motion , Movement
18.
Materials (Basel) ; 14(12)2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34201253

ABSTRACT

Due to their high porosity, high stiffness, light weight, large surface area-to-volume ratio, and excellent thermal properties, open-cell metal foams have been applied in a wide range of sectors and industries, including the energy, transportation, aviation, biomedical, and defense industries. Understanding the flow characteristics and pressure drop of the fluid flow in open-cell metal foams is critical for applying such materials in these scenarios. However, the state-of-the-art pressure drop correlations for open-cell foams show large deviations from experimental data. In this paper, the fundamental governing equations of fluid flow through open-cell metal foams and the determination of different foam geometry structures are first presented. A variety of published models for predicting the pressure drop through open-cell metal foams are then summarized and validated against experimental data. Finally, two empirical correlations of permeability are developed and recommended based on the model of Calmidi. Moreover, Calmidi's model is proposed to calculate the Forchheimer coefficient. These three equations together allow calculating the pressure drop through open-cell metal foam as a function of porosity and pore diameter (or strut diameter) in a wide range of porosities ε = 85.7-97.8% and pore densities of 10-100 PPI. The findings of this study greatly advance our understanding of the flow characteristics through open-cell metal foam and provide important guidance for the design of open-cell metal foam materials for different engineering applications.

19.
Opt Express ; 29(5): 7288-7306, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33726233

ABSTRACT

The application of the adiabatic geometric phase (AGP) to nonlinear frequency conversion may help to develop new types of all-optical devices, which leads to all-optical modulation of the phase front of one wave by the intensity of other waves. In this paper, we develop the canonical Hamilton equation and a corresponding geometric representation for two schemes of four-wave mixing (FWM) processes (ω1 + ω2 = ω3 + ω4 and ω1 + ω2 + ω3 = ω4), which can precisely describe and calculate the AGP controlled by the quasi-phase matching technique. The AGPs of the idler (ω1) and signal (ω4) waves for these two schemes of FWM are studied systematically when the two pump waves (ω2 and ω3) are in either the undepleted or in the depleted pump cases, respectively. The analysis reveals that the proposed methods for calculating the AGP are universal in both cases. We expect that the analysis of AGP in FWM processes can be applied to all-optically shaping or encoding of ultrafast light pulse.

20.
Opt Lett ; 45(9): 2538-2541, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32356810

ABSTRACT

The self-imaging of periodic light patterns, also known as the Talbot effect, is usually limited to periods that are larger than the wavelength. Here we present, theoretically and experimentally, a method to overcome this limitation by using superoscillating light patterns. The input intensity distribution is a periodic band-limited function with relatively large periods, but it contains regions of multilobe periodic oscillations with periods that are smaller than half of the wavelength. We observe the revival of the input pattern, including the subwavelength superoscillating regions, at large distances of more than 40 times the optical wavelength. Moreover, at fractional Talbot distances, we observe even faster local oscillations, with periods of approximately one-third of the optical wavelength.

SELECTION OF CITATIONS
SEARCH DETAIL
...