Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Cell Discov ; 10(1): 63, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862482

ABSTRACT

Conjunctival melanoma (CoM) is a potentially devastating tumor that can lead to distant metastasis. Despite various therapeutic strategies for distant metastatic CoM, the clinical outcomes remain unfavorable. Herein, we performed single-cell RNA sequencing (scRNA-seq) of 47,017 cells obtained from normal conjunctival samples (n = 3) and conjunctival melanomas (n = 7). Notably, we noticed a higher abundance of cancer-associated fibroblasts (CAFs) in tumor microenvironment (TME), correlated with enhanced angiogenic capacity and increased VEGFR expression in distal metastatic CoM. Additionally, we observed a significant decrease in the proportion of total CD8+ T cells and an increase in the proportion of naive CD8+ T cells, contributing to a relatively quiescent immunological environment in distal metastatic CoM. These findings were confirmed through the analyses of 70,303 single-cell transcriptomes of 7 individual CoM samples, as well as spatially resolved proteomes of an additional 10 samples of CoMs. Due to the increase of VEGFR-mediated angiogenesis and a less active T cell environment in distal metastatic CoMs, a clinical trial (ChiCTR2100045061) has been initiated to evaluate the efficacy of VEGFR blockade in combination with anti-PD1 therapy for patients with distant metastatic CoM, showing promising tumor-inhibitory effects. In conclusion, our study uncovered the landscape and heterogeneity of the TME during CoM tumorigenesis and progression, empowering clinical decisions in the management of distal metastatic CoM. To our knowledge, this is the initial exploration to translate scRNA-seq analysis to a clinical trial dealing with cancer, providing a novel concept by accommodating scRNA-seq data in cancer therapy.

2.
BMC Biol ; 22(1): 132, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38835016

ABSTRACT

BACKGROUND: ARID1A, a subunit of the SWI/SNF chromatin remodeling complex, is thought to play a significant role both in tumor suppression and tumor initiation, which is highly dependent upon context. Previous studies have suggested that ARID1A deficiency may contribute to cancer development. The specific mechanisms of whether ARID1A loss affects tumorigenesis by RNA editing remain unclear. RESULTS: Our findings indicate that the deficiency of ARID1A leads to an increase in RNA editing levels and alterations in RNA editing categories mediated by adenosine deaminases acting on RNA 1 (ADAR1). ADAR1 edits the CDK13 gene at two previously unidentified sites, namely Q113R and K117R. Given the crucial role of CDK13 as a cyclin-dependent kinase, we further observed that ADAR1 deficiency results in changes in the cell cycle. Importantly, the sensitivity of ARID1A-deficient tumor cells to SR-4835, a CDK12/CDK13 inhibitor, suggests a promising therapeutic approach for individuals with ARID1A-mutant tumors. Knockdown of ADAR1 restored the sensitivity of ARID1A deficient cells to SR-4835 treatment. CONCLUSIONS: ARID1A deficiency promotes RNA editing of CDK13 by regulating ADAR1.


Subject(s)
Adenosine Deaminase , Cyclin-Dependent Kinases , DNA-Binding Proteins , RNA Editing , RNA-Binding Proteins , Transcription Factors , Adenosine Deaminase/metabolism , Adenosine Deaminase/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/genetics , Cell Line, Tumor , CDC2 Protein Kinase
3.
Acta Pharm Sin B ; 14(3): 1187-1203, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38486999

ABSTRACT

Constitutive activation of GNAQ/11 is the initiative oncogenic event in uveal melanoma (UM). Direct targeting GNAQ/11 has yet to be proven feasible as they are vital for a plethora of cellular functions. In search of genetic vulnerability for UM, we found that inhibition of euchromatic histone lysine methyltransferase 2 (EHMT2) expression or activity significantly reduced the proliferation and migration capacity of cancer cells. Notably, elevated expression of EHMT2 had been validated in UM samples. Furthermore, Kaplan-Meier survival analysis indicated high EHMT2 protein level was related to poor recurrence-free survival and a more advanced T stage. Chromatin immunoprecipitation sequencing analysis and the following mechanistic investigation showed that ARHGAP29 was a downstream target of EHMT2. Its transcription was suppressed by EHMT2 in a methyltransferase-dependent pattern in GNAQ/11-mutant UM cells, leading to elevated RhoA activity. Rescuing constitutively active RhoA in UM cells lacking EHMT2 restored oncogenic phenotypes. Simultaneously blocking EHMT2 and GNAQ/11 signaling in vitro and in vivo showed a synergistic effect on UM growth, suggesting the driver role of these two key molecules. In summary, our study shows evidence for an epigenetic program of EHMT2 regulation that influences UM progression and indicates inhibiting EHMT2 and MEK/ERK simultaneously as a therapeutic strategy in GNAQ/11-mutant UM.

4.
Acta Ophthalmol ; 102(5): e851-e861, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38420891

ABSTRACT

PURPOSE: To identify high-risk histopathologic and molecular features of local recurrence, nodal metastasis, distant metastasis (DM) and disease-specific death (DSD) in conjunctival melanoma (CoM). METHODS: Ninety patients with pathologically diagnosed CoM between 2008 and 2023 were enrolled. Immunohistochemistry staining of BRAFV600E, NRASQ61R, CD117, PD-1 and PD-L1 was performed in 65 and 45 patients, respectively. Cox regression and Kaplan-Meier survival analysis were conducted to identify risk factors for local recurrence, nodal metastasis, DM and DSD. RESULTS: Pathologically, ulceration (hazard ratio [HR]: 3.170; 95% CI: 1.312-7.659; p = 0.01) and regression (HR: 3.196; 95% CI: 1.094-9.335; p = 0.034) were risk factors for DM. Tumour thickness ≥ 4 mm (HR: 4.889; 95% CI: 1.846-12.946; p = 0.001) and regression (HR: 4.011; 95% CI: 1.464-10.991; p = 0.007) were risk factors for DSD. For patients with tumour thickness < 4 mm, the presence of ulceration indicated a higher risk of nodal metastasis (log-rank p = 0.0011), DM (log-rank p = 0.00051) and DSD (log-rank p = 0.02). Patients with regression (+)/tumour-infiltrating lymphocytes (TILs) (+) had a higher risk for DM (log-rank p = 0.011) and DSD (log-rank p = 0.0032). Molecularly, the positive rate of BRAFV600E, NRASQ61R, CD117, PD-1 and PD-L1 was 40.00% (26/65), 43.08% (28/65), 70.77% (46/65), 46.67% (21/45) and 28.89% (13/45), respectively. Positive BRAFV600E was identified as an independent risk factor for DM (HR: 2.533; 95% CI: 1.046-6.136, p = 0.039). The expression level of BRAFV600E was positively correlated with vascular invasion (p = 0.01), as well as the expression levels of PD-1 (p = 0.038) and PD-L1 (p = 0.049). CONCLUSIONS: Tumour thickness ≥ 4 mm, ulceration, the coexistence of regression and TILs, and positive BRAFV600E were risk factors for poor prognosis of CoM patients. Besides, expression level of BRAFV600E was positively correlated with the expression levels of PD-1 and PD-L1.


Subject(s)
Conjunctival Neoplasms , Melanoma , Humans , Melanoma/genetics , Melanoma/diagnosis , Melanoma/pathology , Melanoma/metabolism , Conjunctival Neoplasms/genetics , Conjunctival Neoplasms/pathology , Conjunctival Neoplasms/metabolism , Conjunctival Neoplasms/diagnosis , Male , Female , Middle Aged , Aged , Retrospective Studies , Risk Factors , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Adult , Neoplasm Recurrence, Local , Lymphatic Metastasis , Immunohistochemistry , Proto-Oncogene Proteins B-raf/genetics , Aged, 80 and over , Follow-Up Studies , Survival Rate/trends , Neoplasm Staging , Prognosis
5.
Environ Pollut ; 342: 123052, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38040187

ABSTRACT

Fungal endophytes not only tolerate and activate Cd in soil but also promote host growth, yet its Cd activation capacity and mechanism remain unrevealed. Our previous study isolated a robust endophyte Bacillus thuringiensis L1 from Coprinus comatus fruiting body with splendid Cd resistance and activation abilities under laboratory conditions. In this study, those peculiarities were investigated in the actual soil environment. L1 could significantly increase the soil bioavailable Cd content and effectively compensate for alkali-hydro nitrogen losses and microbial inhibition caused by Cd. Furthermore, L1 inoculation improved the soil's bacterial community structure and increased the relative abundance of Cd-resistant bacteria, such as Actinobacteria, Chloroflexi, Acidobacter, and Firmicutes, closely associated with the soil enzyme activity shift. The genome sequencing analysis revealed the presence of genes related to growth promotion, resistance to Cd stress, and Cd activation, which were significantly up-regulated under Cd stress. Notably, L1 mainly activates Cd in soil by secreting citric acid, succinic acid, siderophore, and soluble phosphorus substances to chelate with Cd or dissolve bounded Cd. Meanwhile, the metal-responsive transcription repressor (CadC) and the Cd-translocating protein P-type ATPase (CadA) can help the L1 to suppress the toxicity of Cd. Those results help to unveil the possible mechanism of L1 in Cd-contaminated soil remediation, providing a clear strategy for Cd bio-extraction from soil.


Subject(s)
Bacillus thuringiensis , Coprinus , Soil Pollutants , Cadmium/toxicity , Cadmium/analysis , Bacillus thuringiensis/genetics , Endophytes/metabolism , Soil/chemistry , Soil Pollutants/analysis , Biodegradation, Environmental
6.
J Hazard Mater ; 465: 133284, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38134699

ABSTRACT

The phosphate-mineralizing bacteria (PMBs) has shown great potential as a sustainable solution to support pollution remediation through its induced mineralization capacity. However, few studies have been conducted on the mechanism of cadmium (Cd) tolerance in PMBs. In this study, a PMB strain, Enterobacter sp. PMB-5, screened from Cd-contaminated rhizosphere soil, has high resistance to Cd (540 - 1220 mg/L) and solubilized phosphate (232.08 mg/L). The removal experiments showed that the strain PMB-5 removed 71.69-98.24% and 34.83-76.36% of Cd with and without biomineralization, respectively. The characterization result of SEM, EDS, TEM, XPS and XRD revealed that PMB-5 induced Cd to form amorphous phosphate precipitation through biomineralization and adopted different survival strategies, including biomineralization, bioaccumulation, and biosorption to resistance Cd in the microbial induced phosphate precipitation (MIPP) system and the non-MIPP system, respectively. Moreover, the results of whole genome sequencing and qRT-PCR indicated that phosphorus metabolism genes such as pst, pit, phn, ugp, ppk, etc. and heavy metal tolerance genes (including ion transport, ion efflux, redox, antioxidant stress), such as czcD, zntA, mgtA, mgtC, katE, SOD2, dsbA, cysM, etc. were molecular for the PMB-5 mineralization and Cd tolerance of PMB-5. Together, our findings suggested Enterobacter sp. PMB-5 is a potential target for developing more effective bioinoculants for Cd contamination remediation.


Subject(s)
Enterobacter , Soil Pollutants , Enterobacter/metabolism , Cadmium/metabolism , Biomineralization , Phosphates , Bioaccumulation , Soil Pollutants/metabolism , Soil
7.
Chemosphere ; 337: 139409, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37406938

ABSTRACT

Although studies on immobilized microorganisms have been conducted, their performance remains unclear for enhancing plants to remediate cadmium (Cd)-contaminated soil. In this study, a Cd-resistant strain TY-1 with good plant growth promotion traits was immobilized by biochar (BC) or oyster shell (OS) power to strengthen ryegrass to remediate Cd-contaminated soil. SEM-EDS combined with FTIR showed that TY-1 could tolerate Cd toxicity by surface precipitation, and functional groups such as hydroxyl and carbonyl groups might be involved. In the biocomposite treatments, soil pH increased, and the activity of fertility-related enzymes such as dehydrogenase increased by 109.01%-128.01%. The relative abundance of genus Saccharimonadales decreased from 7.97% to 3.35% in BS-TY and 2.61% in OS-TY, respectively. Thus, a suitable environment for ryegrass growth was created. The fresh weight, dry weight, plant height and Cd accumulation of ryegrass in TY treatment increased by 122.92%, 114.81%, 42.08% and 8.05%, respectively, compared to the control. Cd concentration in ryegrass was further increased in BC-TY and OS-TY by 24.14% and 40.23%, respectively. The improvement in soil microcosm and plant biomass forms an ongoing virtuous cycle, demonstrating that using carrier materials to improve the efficiency of microbial-assisted phytoremediation is realistic and feasible.


Subject(s)
Lolium , Soil Pollutants , Cadmium/analysis , Enterobacter , Porosity , Soil Pollutants/analysis , Soil/chemistry , Biodegradation, Environmental
8.
Eur J Med Chem ; 250: 115238, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36868105

ABSTRACT

Conjunctival melanoma (CM), a rare and fatal malignant ocular tumor, lacks proper diagnostic biomarkers and therapy. Herein, we revealed the novel application of propafenone, an FDA-approved antiarrhythmic medication, which was identified effective in inhibiting CM cells viability and homologous recombination pathway. Detailed structure-activity relationships generated D34 as one of the most promising derivatives, which strongly suppressed the proliferation, viability, and migration of CM cells at submicromolar concentrations. Mechanically, D34 had the potential to increase γ-H2AX nuclear foci and aggravated DNA damage by suppressing homologous recombination pathway and its factors, particularly the complex of MRE11-RAD50-NBS1. D34 bound to human recombinant MRE11 protein and inhibited its endonuclease activity. Moreover, D34 dihydrochloride significantly suppressed tumor growth in the CRMM1 NCG xenograft model without obvious toxicity. Our finding shows that propafenone derivatives modulating the MRE11-RAD50-NBS1 complex will most likely provide an approach for CM targeted therapy, especially for improving chemo- and radio-sensitivity for CM patients.


Subject(s)
Antineoplastic Agents , Melanoma , Humans , Propafenone , DNA Repair Enzymes/metabolism , Nuclear Proteins/metabolism , Drug Repositioning , Rare Diseases , Cell Cycle Proteins/metabolism , DNA Damage , Homologous Recombination , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Melanoma/drug therapy , DNA Repair
9.
Chemosphere ; 324: 138346, 2023 May.
Article in English | MEDLINE | ID: mdl-36893865

ABSTRACT

Despite numerous reports on phytoremediation of heavy metals contaminated soil, there are few reports on plant retention of heavy metals in the mining area slope. This study was the first of its kind to explore the cadmium (Cd) retention capacity of the blueberry (Vaccinium ashei Reade). Firstly, we investigated the stress response of blueberry to different soil Cd concentrations (1, 5, 10, 15, 20 mg/kg) to assess its potential for phytoremediation by pot experiments. The results showed that the blueberry biomass exposed to 10 and 15 mg/kg Cd was significantly increased compared with the control (1 mg/kg Cd); the blueberry crown increased by 0.40% and 0.34% in 10 and 15 mg/kg Cd-contaminated soil, respectively, compared with control; the blueberry heigh did not even change significantly in each treatment group; the total chlorophyll content, peroxidase and catalase activity of blueberry were enhanced in 5-20 mg/kg Cd treatments. Furthermore, the Cd contents of blueberry in the root, stem and leaf increased significantly as the Cd concentration of soil increased. We found that more Cd accumulated in blueberry root: the bioaccumulation concentration factor was root > stem > leaf for all groups; the residual-Cd (Cd speciation) in soil increased by 3.83%-411.11% in blueberry-planted versus unplanted groups; blueberry improved the Cd-contaminated soil micro-ecological environment including soil organic matter, available K and P, as well as microbial communities. Then, to investigate the effect of blueberry cultivation on Cd migration, we developed a bioretention model and revealed that soil Cd transport along the model slope was significantly weakened by blueberry cultivation, especially at the bottom of the model. In a word, this research suggests a promising method for the phytoremediation of Cd-contaminated soil and the reduction of Cd migration in mining areas.


Subject(s)
Blueberry Plants , Metals, Heavy , Soil Pollutants , Cadmium/toxicity , Cadmium/analysis , Soil , Metals, Heavy/analysis , Chlorophyll , Biodegradation, Environmental , Plants , Soil Pollutants/analysis
10.
Environ Sci Pollut Res Int ; 30(16): 47972-47984, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36746862

ABSTRACT

Antimony (Sb) mining often causes severe Sb pollution and associate arsenic (As) compound contamination. To further understand the interaction mechanism among soil microorganisms, heavy metal distribution, and geochemical factors, the effects of environmental factors on soil microbial communities under different levels of Sb-As co-contamination were studied in situ of Chashan antimony mine, Guangxi Province. The results showed that the range of Sb and As contents in soil were 1339.63-7762.28 mg/kg and 2170.3-10,371.36 mg/kg, respectively, and the residual fraction accounted for more than 98.0% with less than 2.0% of bioavailable fraction. Besides, the concentration of the two metals is both related to the distance to surface runoff. Different microbial communities in arable soils of each sample site were analyzed, which was significantly affected by soil environmental factors such as pH, ALN, AP, OM, Tot-Sb, Tot-As, Bio-As, and Bio-Sb. The phylum of Actinobacteria in sites 1, 4, and 5 was the most dominant and the phylum of Proteobacteria were the most dominant in sites 2 and 3. Moreover, the results of redundancy analysis (RDA), variation partition analysis (VPA), and Spearman correlation analyses demonstrated that microorganisms, heavy metal distribution, and geochemical factors interacted with each other and together shaped the microbial community. Our findings are beneficial for understanding the response of soil microorganisms to As-Sb distribution and geochemical factors in arable soils under Sb mining areas.


Subject(s)
Arsenic , Arsenicals , Soil Pollutants , Soil/chemistry , Antimony/analysis , Arsenic/analysis , Environmental Monitoring , Soil Pollutants/analysis , China , Arsenicals/analysis , Mining
11.
Acta Pharm Sin B ; 12(10): 3861-3876, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36213538

ABSTRACT

Conjunctival melanoma (CM) is a rare and fatal malignant eye tumor. In this study, we deciphered a novel anti-CM mechanism of a natural tetracyclic compound named as cucurbitacin B (CuB). We found that CuB remarkably inhibited the proliferation of CM cells including CM-AS16, CRMM1, CRMM2 and CM2005.1, without toxicity to normal cells. CuB can also induce CM cells G2/M cell cycle arrest. RNA-seq screening identified KIF20A, a key downstream effector of FOXM1 pathway, was abolished by CuB treatment. Further target identification by activity-based protein profiling chemoproteomic approach revealed that GRP78 is a potential target of CuB. Several lines of evidence demonstrated that CuB interacted with GRP78 and bound with a K d value of 0.11 µmol/L. Furthermore, ATPase activity evaluation showed that CuB suppressed GRP78 both in human recombinant GRP78 protein and cellular lysates. Knockdown of the GRP78 gene significantly induced the downregulation of FOXM1 and related pathway proteins including KIF20A, underlying an interesting therapeutic perspective. Finally, CuB significantly inhibited tumor progression in NCG mice without causing obvious side effects in vivo. Taken together, our current work proved that GRP78-FOXM1-KIF20A as a promising pathway for CM therapy, and the traditional medicine CuB as a candidate drug to hinder this pathway.

12.
Front Med ; 16(5): 784-798, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35997986

ABSTRACT

More than 85% of patients with uveal melanoma (UM) carry a GNAQ or GNA11 mutation at a hotspot codon (Q209) that encodes G protein α subunit q/11 polypeptides (Gαq/11). GNAQ/11 relies on palmitoylation for membrane association and signal transduction. Despite the palmitoylation of GNAQ/11 was discovered long before, its implication in UM remains unclear. Here, results of palmitoylation-targeted mutagenesis and chemical interference approaches revealed that the loss of GNAQ/11 palmitoylation substantially affected tumor cell proliferation and survival in UM cells. Palmitoylation inhibition through the mutation of palmitoylation sites suppressed GNAQ/11Q209L-induced malignant transformation in NIH3T3 cells. Importantly, the palmitoylation-deficient oncogenic GNAQ/11 failed to rescue the cell death initiated by the knock down of endogenous GNAQ/11 oncogenes in UM cells, which are much more dependent on Gαq/11 signaling for cell survival and proliferation than other melanoma cells without GNAQ/11 mutations. Furthermore, the palmitoylation inhibitor, 2-bromopalmitate, also specifically disrupted Gαq/11 downstream signaling by interfering with the MAPK pathway and BCL2 survival pathway in GNAQ/11-mutant UM cells and showed a notable synergistic effect when applied in combination with the BCL2 inhibitor, ABT-199, in vitro. The findings validate that GNAQ/11 palmitoylation plays a critical role in UM and may serve as a promising therapeutic target for GNAQ/11-driven UM.


Subject(s)
Melanoma , Uveal Neoplasms , Humans , Mice , Animals , Lipoylation , NIH 3T3 Cells , Uveal Neoplasms/genetics , Melanoma/genetics , Cell Proliferation , Proto-Oncogene Proteins c-bcl-2 , GTP-Binding Protein alpha Subunits, Gq-G11/genetics
13.
Oncogene ; 41(27): 3539-3553, 2022 07.
Article in English | MEDLINE | ID: mdl-35697803

ABSTRACT

Unlike cutaneous melanoma, uveal melanoma (UM) is characterized by mutations in GNAQ and GNA11 and remains a fatal disease because there is essentially no effective targeted therapy or immunotherapy available. We report the discovery of the copper ionophore elesclomol as a GNAQ/11-specific UM inhibitor. Elesclomol was identified in a differential cytotoxicity screen of an in-house tool compound library, and its in vivo pharmacological efficacy was further confirmed in zebrafish and mouse UM models. Mechanistically, elesclomol transports copper to mitochondria and produces a large amount of reactive oxygen species (ROS) as Cu(II) is reduced to Cu(I) in GNAQ/11-mutant UM cells, which selectively activates LATS1 kinase in the Hippo signaling pathway and consequently promotes YAP phosphorylation and inhibits its nuclear accumulation. The inactivation of YAP downregulates the expression of SNAI2, which in turn suppresses the migration of UM cells. These findings were cross validated by our clinical observation that YAP activation was found specifically in UM samples with a GNAQ/11 mutation. Furthermore, addition of binimetinib, a MEK inhibitor, to elesclomol increased its synthetic lethality to GNAQ/11-mutant UM cells, thereby overriding drug resistance. This effect was confirmed in an orthotopic xenograft model and in a patient-derived xenograft model of UM. These studies reveal a novel mechanistic basis for repurposing elesclomol by showing that copper homeostasis is a GNAQ/11-specific vulnerability in UM. Elesclomol may provide a new therapeutic path for selectively targeting malignant GNAQ/11-mutant UM.


Subject(s)
GTP-Binding Protein alpha Subunits, Gq-G11 , Hydrazines , Melanoma , Skin Neoplasms , Uveal Neoplasms , Animals , Cell Line, Tumor , Copper/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , Humans , Hydrazines/pharmacology , Ionophores/pharmacology , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Mice , Mutation , Signal Transduction , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Uveal Neoplasms/drug therapy , Uveal Neoplasms/genetics , Uveal Neoplasms/metabolism , Uveal Neoplasms/pathology , Zebrafish/metabolism , Melanoma, Cutaneous Malignant
14.
Exp Eye Res ; 219: 109052, 2022 06.
Article in English | MEDLINE | ID: mdl-35351461

ABSTRACT

Lacrimal gland adenoid cystic carcinoma (ACC) is associated with high recurrence and mortality rates. Many recent studies have focused on the clinical features of the disease, and a better understanding of its underlying molecular mechanisms may help guide future treatment strategies. For proteomics quantitation, we analyzed normal tissues, benign tumor tissues and ACC tissues by LC-MS/MS with Tandem mass tags (TMTs) labeling. Bioinformatics analysis of the KEGG pathway found that, compared with normal tissues, the expression levels of major proteins related to cell metabolism were lower in benign tumors and cancer tissues of the lacrimal gland. In addition, we also performed IHC staining to verify the expression of representative proteins in tissue samples. All of these results indicated that compared with normal tissues, lacrimal gland tumors had unique metabolic reprogramming characteristics. Further Short Time-series Expression Miner (STEM) analysis revealed that glycine, serine and threonine metabolism in ACC tissues was significantly enhanced compared with that in normal tissues and benign tumor tissues. This finding suggested that glycine, serine and threonine metabolism might be the key to the malignant transformation of ACC; thus, assessing the metabolism in these tissues could be an effective approach enabling the early diagnosis of ACC, and the proteins involved in these metabolic pathways could represent therapeutic targets.


Subject(s)
Eye Neoplasms , Lacrimal Apparatus Diseases , Lacrimal Apparatus , Chromatography, Liquid , Eye Neoplasms/metabolism , Glycine/metabolism , Humans , Lacrimal Apparatus/metabolism , Lacrimal Apparatus Diseases/metabolism , Proteomics , Serine/metabolism , Tandem Mass Spectrometry , Threonine/metabolism
15.
Prog Retin Eye Res ; 89: 101030, 2022 07.
Article in English | MEDLINE | ID: mdl-34861419

ABSTRACT

Uveal melanoma (UM) and retinoblastoma (RB), which cause blindness and even death, are the most frequently observed primary intraocular malignancies in adults and children, respectively. Epigenetic studies have shown that changes in the epigenome contribute to the rapid progression of both UM and RB following classic genetic changes. The loss of epigenetic homeostasis plays an important role in oncogenesis by disrupting the normal patterns of gene expression. The targetable nature of epigenetic modifications provides a unique opportunity to optimize treatment paradigms and establish new therapeutic options for both UM and RB with these aberrant epigenetic modifications. We aimed to review the research findings regarding relevant epigenetic changes in UM and RB. Herein, we 1) summarize the literature, with an emphasis on epigenetic alterations, including DNA methylation, histone modifications, RNA modifications, noncoding RNAs and an abnormal chromosomal architecture; 2) elaborate on the regulatory role of epigenetic modifications in biological processes during tumorigenesis; and 3) propose promising therapeutic candidates for epigenetic targets and update the list of epigenetic drugs for the treatment of UM and RB. In summary, we endeavour to depict the epigenetic landscape of primary intraocular malignancy tumorigenesis and provide potential epigenetic targets in the treatment of these tumours.


Subject(s)
Retinal Neoplasms , Retinoblastoma , Adult , Carcinogenesis/genetics , Child , Epigenesis, Genetic , Homeostasis/genetics , Humans , Melanoma , Retinal Neoplasms/genetics , Retinoblastoma/genetics , Uveal Neoplasms
16.
J Mol Cell Cardiol ; 162: 130-143, 2022 01.
Article in English | MEDLINE | ID: mdl-34536440

ABSTRACT

Venous malformation (VM) and cavernous venous malformation (CVM) are two types of vascular malformations. Even if the two diseases are similar in appearance and imaging, the distinct cellular components and signaling pathways between them might help distinguish the two from a molecular perspective. Here, we performed single-cell profiling of 35,245 cells from two VM samples and three CVM samples, with a focus on endothelial cells (ECs), smooth muscle cells (SMCs) and immune microenvironment (IME). Clustering analysis based on differential gene expression unveiled 11 specific cell types, and determined CVM had more SMCs. Re-clustering of ECs and SMCs indicated CVM was dominated by arterial components, while VM is dominated by venous components. Gene set variation analysis suggested the activation of inflammation-related pathways in VM ECs, and upregulation of myogenesis pathway in CVM SMCs. In IME analysis, immune cells were identified to accounted for nearly 30% of the total cell number, including macrophages, monocytes, NK cells, T cells and B cells. Notably, more macrophages and monocytes were discovered in VM, indicating innate immune responses might be more closely related to VM pathogenesis. In addition, angiogenesis pathway was highlighted among the significant pathways of macrophages & monocytes between CVM and VM. In VM, VEGFA was highly expressed in macrophages & monocytes, while its receptors were all abundantly present in ECs. The close interaction of VEGFA on macrophages with its receptors on ECs was also predicted by CellPhoneDB analysis. Our results document cellular composition, significant pathways, and critical IME in CVM and VM development.


Subject(s)
Transcriptome , Vascular Malformations , Endothelial Cells/metabolism , Humans , Myocytes, Smooth Muscle/metabolism , Vascular Malformations/genetics , Vascular Malformations/metabolism , Vascular Malformations/pathology , Veins/abnormalities
17.
Invest Ophthalmol Vis Sci ; 62(15): 11, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34901994

ABSTRACT

Purpose: Retinoblastoma is the most common primary intraocular malignant tumor in children. Although intra-arterial chemotherapy and conventional chemotherapy have become promising therapeutic approaches for advanced intraocular retinoblastoma, the side effects threaten health and are unavoidable, making the development of targeted therapy an urgent need. Therefore, we intended to find a potential drug for human retinoblastoma by screening an in-house compound library that included 89 purified and well-characterized natural products. Methods: We screened a panel of 89 natural products in retinoblastoma cell lines to find the inhibitor. The inhibition of the identified inhibitor xanthatin on cell growth was detected through half-maximal inhibitory concentration (IC50), flow cytometry assay, and zebrafish model system. RNA-seq further selected the target gene PLK1. Results: We reported the discovery of xanthatin as an effective inhibitor of retinoblastoma. Mechanistically, xanthatin selectively inhibited the proliferation of retinoblastoma cells by inducing cell cycle arrest and promoting apoptosis. Interestingly, xanthatin targeted PLK1-mediated cell cycle progression. The efficacy of xanthatin was further confirmed in zebrafish models. Conclusions: Collectively, our data suggested that xanthatin significantly inhibited tumor growth in vitro and in vivo, and xanthatin could be a potential drug treatment for retinoblastoma.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle/drug effects , Furans/therapeutic use , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Retinal Neoplasms/drug therapy , Retinoblastoma/drug therapy , Apoptosis/drug effects , Blotting, Western , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival , Drug Screening Assays, Antitumor , Humans , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Retinal Neoplasms/enzymology , Retinal Neoplasms/pathology , Retinoblastoma/enzymology , Retinoblastoma/pathology , Signal Transduction/drug effects , Sincalide/metabolism , Polo-Like Kinase 1
18.
Cell Death Dis ; 12(12): 1100, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34815392

ABSTRACT

Retinoblastoma is a childhood retinal tumour that is the most common primary malignant intraocular tumour. However, it has been challenging to identify the cell types associated with genetic complexity. Here, we performed single-cell RNA sequencing on 14,739 cells from two retinoblastoma samples to delineate the heterogeneity and the underlying mechanism of retinoblastoma progression. Using a multiresolution network-based analysis, we identified two major cell types in human retinoblastoma. Cell trajectory analysis yielded a total of 5 cell states organized into two main branches, and the cell cycle-associated cone precursors were the cells of origin of retinoblastoma that were required for initiating the differentiation and malignancy process of retinoblastoma. Tumour cells differentiation reprogramming trajectory analysis revealed that cell-type components of multiple tumour-related pathways and predominantly expressed UBE2C were associated with an activation state in the malignant progression of the tumour, providing a potential novel "switch gene" marker during early critical stages in human retinoblastoma development. Thus, our findings improve our current understanding of the mechanism of retinoblastoma progression and are potentially valuable in providing novel prognostic markers for retinoblastoma.


Subject(s)
Retinoblastoma/genetics , Animals , Cell Differentiation , Disease Progression , Gene Expression Profiling , Humans , Male , Mice , Mice, Nude , Retinoblastoma/pathology , Single-Cell Analysis
19.
Asia Pac J Ophthalmol (Phila) ; 10(5): 432-436, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34524142

ABSTRACT

ABSTRACT: "Where there is a will, there is a way." It is never easy to make progress and development but with full dedication and firm commitment, many aspirations can still be realized. We would like to share with the readers the story of how we develop our division of orbital diseases and surgery from scratch to strengths over a period of 2 decades at the Department of Ophthalmology of Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China.


Subject(s)
Orbital Diseases , China , Hospitals , Humans
20.
Cell Death Dis ; 12(4): 380, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33828201

ABSTRACT

Conjunctival melanoma (CM) is a rare and fatal ocular tumour with poor prognosis. There is an urgent need of effective therapeutic drugs against CM. Here, we reported the discovery of a novel potential therapeutic target for CM. Through phenotypic screening of our in-house library, fangchinoline was discovered to significantly inhibit the growth of CM cells including CM-AS16, CRMM1, CRMM2 and CM2005.1. Further mechanistic experiments indicated that fangchinoline suppressed the homologous recombination (HR)-directed DNA repair by binding with far upstream element binding protein 2 (FUBP2) and downregulating the expression of HR factors BRCA1 and RAD51. In vitro and in vivo antitumour experiments revealed that fangchinoline increased the efficacy of cisplatin by blocking HR factors and reduced the drug dose and toxicity. In conclusion, our work provides a promising therapeutic strategy for the treatment of CM that is worthy of extensive preclinical investigation.


Subject(s)
Benzylisoquinolines/therapeutic use , Conjunctival Neoplasms/drug therapy , Drugs, Chinese Herbal/therapeutic use , Homologous Recombination/genetics , Melanoma/drug therapy , Benzylisoquinolines/pharmacology , Drugs, Chinese Herbal/pharmacology , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...