Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
1.
Environ Pollut ; : 124318, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844038

ABSTRACT

In recent years, ozone (O3) has emerged as the primary air pollutant in China, superseding PM2.5. Previous studies have concentrated on the spatiotemporal variation of ozone pollution, the analysis of its sources and drivers, as well as its environmental impacts and health benefits. Since ozone pollution can be dynamically transferred through industrial activities and meteorological factors, it is crucial to scientifically identify the spatial spillover and path-dependent effects of ozone pollution in China. However, existing studies have not yet addressed this issue. Therefore, we investigate the spatiotemporal evolution and the spatial spillover of ozone pollution by means of the exploratory spatial data analysis (ESDA) using panel data of 30 Chinese provinces from 2013 to 2020 in this study. The dynamic spatial Durbin model (SDM) was employed to reveal the key drivers of ozone pollution from the perspectives of spatial spillover and path-dependence effects. The direct and spillover effects of each driver on ozone pollution are systematically analyzed. The results show that from 2013 to 2020 ozone concentrations followed a fluctuating upward trend at national and provincial scales. Ozone pollution presented significant spatial spillover and path dependence effects. The direct effects indicated that economic growth, technological level, industrial structure, energy structure, ventilation coefficient, relative humidity and precipitation were the key drivers of local ozone pollution. The spillover effects indicated that population density, technology level, industrial structure, environmental regulations, ventilation coefficient, sunshine hours and relative humidity had significant spatial spillover effects on ozone pollution of surrounding regions. These findings will contribute to the understanding of the spatial spillover and path-dependent effects of O3 pollution, and provide scientific guidance for regional synergy and long-term ozone control policies in China.

2.
ACS Biomater Sci Eng ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752228

ABSTRACT

Due to the decomposition temperature of Polyamide 66 (PA66) in the environment is close to its thermoforming temperature, it is difficult to construct porous scaffolds of PA66/nanohydroxyapatite (PA66/HAp) by fused deposition modeling (FDM) three-dimensional (3D) printing. In this study, we demonstrated for the first time a method for 3D printing PA66/HAp composites at room temperature, prepared PA66/HAp printing ink using a mixed solvent of formic acid/dichloromethane (FA/DCM), and constructed a series of composite scaffolds with varying HAp content. This printing system can print composite materials with a high HAp content of 60 wt %, which is close to the mineral content in natural bone. The physicochemical evaluation presented that the hydroxyapatite was uniformly distributed within the PA66 matrix, and the PA66/HAp composite scaffold with 30 wt % HAp content exhibited optimal mechanical properties and printability. The results of in vitro cell culture experiments indicated that the incorporation of HAp into the PA66 matrix significantly improved the cell adhesion, proliferation, and osteogenic differentiation of bone marrow stromal cells (BMSCs) cultured on the scaffold. In vivo animal experiments suggested that the PA66/HAp composite material with 30 wt % HAp content had the best structural maintenance and osteogenic performance. The three-dimensional PA66/HAp composite scaffold prepared by low temperature printing in the current study holds great potential for the repair of large-area bone defects.

3.
Life Sci Space Res (Amst) ; 41: 136-145, 2024 May.
Article in English | MEDLINE | ID: mdl-38670640

ABSTRACT

To systematically evaluate the effect of simulated long-term spaceflight composite stress (LSCS) in hippocampus and gain more insights into the transcriptomic landscape and molecular mechanism, we performed whole-transcriptome sequencing based on the control group (Ctrl) and the simulated long-term spaceflight composite stress group (LSCS) from six hippocampus of rats. Subsequently, differential expression analysis was performed on the Ctrl and LSCS groups, followed by enrichment analysis and functional interaction prediction analysis to investigate gene-regulatory circuits in LSCS. In addition, competitive endogenous RNA (ceRNA) network was constructed to gain insights into genetic interaction. The result showed that 276 differentially expressed messenger RNAs (DEmRNAs), 139 differentially expressed long non-coding RNAs (DElncRNAs), 103 differentially expressed circular RNAs (DEcircRNAs), and 52 differentially expressed microRNAs (DEmiRNAs) were found in LSCS samples compared with the controls, which were then subjected to enrichment analysis of Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways to find potential functions. PI3K-Akt signaling pathway and MAPK signaling pathway may play fundamental roles in the pathogenesis of LSCS. A ceRNA network was constructed with the predicted 340 DE pairs, which revealed the interaction roles of 220 DEmiRNA-DEmRNA pairs, 76 DEmiRNA-DElncRNA pairs, and 44 DEmiRNA-DEcircRNA pairs. Further, Thrombospondins2 was found to be a key target among those ceRNAs. Overall, we conducted for the first time a full transcriptomic analysis of the response of hippocampus to the LSCS that involved a potential ceRNA network, thus providing a basis to study the underlying mechanism of the LSCS.


Subject(s)
Gene Regulatory Networks , Hippocampus , Transcriptome , Animals , Rats , Male , Hippocampus/metabolism , RNA, Long Noncoding/genetics , Stress, Physiological , MicroRNAs/genetics , RNA, Messenger/genetics , Sequence Analysis, RNA , Rats, Sprague-Dawley , RNA, Circular/genetics , Gene Expression Profiling , RNA, Competitive Endogenous
4.
Front Public Health ; 12: 1333559, 2024.
Article in English | MEDLINE | ID: mdl-38476494

ABSTRACT

Introduction: Among the different antigens used in the detection of anti-Chlamydia trachomatis antibodies, significant differences in sensitivity and specificity have been observed. Further evaluation of C. trachomatis antigens in antibody detection is urgently needed for the development and application of C. trachomatis serologic assays. Methods: Chlamydia trachomatis antigens Pgp3, TmeA, InaC, and HSP60 were selected and used in luciferase immunosorbent assay (LISA). The detection results obtained from well-defined C. trachomatis positive and negative samples were compared with the commercial C. trachomatis ELISA (Mikrogen) for performance evaluation. Results: Pgp3, TmeA, InaC, and HSP60-based LISA showed sensitivity of 92.8, 88.8, 90.4, and 94.4%, and specificity of 99.2, 99.2, 99.2, and 92%, respectively. ROC analysis indicated that Pgp3-based LISA showed similar performance to Mikrogen ELISA (AUC 0.986 vs. 0.993, p = 0.207). Furthermore, four C. trachomatis antigens achieved strong diagnostic efficiency, i.e., positive likelihood ratios [+LR] ≥ 10 in C. trachomatis-infected women and negative likelihood ratios [-LR] ≤ 0.1 in C. trachomatis negative low exposure risk children, but only Pgp3 and TmeA showed strong diagnostic value in general adults. In addition, Pgp3, TmeA, and InaC, but not HSP60, achieved high performance, i.e., both positive predictive value (PPV) and negative predictive value (NPV) ≥ 90.9%, and showed no significant cross-reactivity with anti-Chlamydiapneumoniae. Conclusion: Three C. trachomatis species-specific antigens Pgp3, TmeA, and InaC show superior performance in the detection of anti-C. trachomatis antibody, indicating the potential to be used in developing C. trachomatis serologic tests.


Subject(s)
Chlamydia Infections , Chlamydia trachomatis , Adult , Child , Female , Humans , Immunosorbents , Chlamydia Infections/diagnosis , Antigens, Bacterial , Enzyme-Linked Immunosorbent Assay/methods
5.
Sheng Li Xue Bao ; 76(1): 12-32, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38444128

ABSTRACT

The present study aimed to investigate the alterations in functional interaction between hippocampal CA1 and medial entorhinal cortex (MEC) after moderate traumatic brain injury (TBI) in C57BL/6J mice, and the possible beneficial effects of comprehensive exercise (CE). Following TBI, two microelectrodes were implanted into CA1 and MEC for extracellular recording. We found a clear synchronization of neuronal firing in CA1 and MEC, particularly within 100 Hz and peaked at 20-30 Hz range. TBI induced a significant reduction (P < 0.001) of the coherences of firing between 20-40 Hz frequency band. The mean power spectral densities (PSD) of all group mice in MEC were steadily larger than the values in CA1 in both 20-40 Hz and 56-100 Hz ranges. TBI induced significant and consistent increases of averaged 20-40 Hz or 56-100 Hz PSD (P < 0.001 or P < 0.01) in both CA1 and MEC. Injured mice displayed more varied firing patterns, and showed increased burst frequency (BF), burst duration (BD), inter-spike intervals (ISI) and inter-burst interval (IBI). Injured mice also showed worsened neurological function, sleep, gait performance, and working memory. CE facilitated the restoration of aforementioned electrophysiological characteristics and functional deficits in TBI mice. These results suggest that the beneficial effects of CE on TBI functional deficits may be partly attributed to improved neuronal network interaction between CA1 and MEC.


Subject(s)
Brain Injuries, Traumatic , Entorhinal Cortex , Animals , Mice , Mice, Inbred C57BL , Hippocampus , Neural Networks, Computer
6.
Angew Chem Int Ed Engl ; 63(15): e202319978, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38369652

ABSTRACT

Ethylene (C2H4) purification and propylene (C3H6) recovery are highly relevant in polymer synthesis, yet developing physisorbents for these industrial separation faces the challenges of merging easy scalability, economic feasibility, high moisture stability with great separation efficiency. Herein, we reported a robust and scalable MOF (MAC-4) for simultaneous recovery of C3H6 and C2H4. Through creating nonpolar pores decorated by accessible N/O sites, MAC-4 displays top-tier uptakes and selectivities for C2H6 and C3H6 over C2H4 at ambient conditions. Molecular modelling combined with infrared spectroscopy revealed that C2H6 and C3H6 molecules were trapped in the framework with stronger contacts relative to C2H4. Breakthrough experiments demonstrated exceptional separation performance for binary C2H6/C2H4 and C3H6/C2H4 as well as ternary C3H6/C2H6/C2H4 mixtures, simultaneously affording record productivities of 27.4 and 36.2 L kg-1 for high-purity C2H4 (≥99.9 %) and C3H6 (≥99.5 %). MAC-4 was facilely prepared at deckgram-scale under reflux condition within 3 hours, making it as a smart MOF to address challenging gas separations.

7.
Cardiovasc Res ; 120(5): 548-559, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38271270

ABSTRACT

AIMS: Elucidating the impacts of long-term spaceflight on cardiovascular health is urgently needed in face of the rapid development of human space exploration. Recent reports including the NASA Twins Study on vascular deconditioning and aging of astronauts in spaceflight are controversial. The aims of this study were to elucidate whether long-term microgravity promotes vascular aging and the underlying mechanisms. METHODS AND RESULTS: Hindlimb unloading (HU) by tail suspension was used to simulate microgravity in rats and mice. The dynamic changes of carotid stiffness in rats during 8 weeks of HU were determined. Simulated microgravity led to carotid artery aging-like changes as evidenced by increased stiffness, thickness, fibrosis, and elevated senescence biomarkers in the HU rats. Specific deletion of the mechanotransducer Piezo1 in vascular smooth muscles significantly blunted these aging-like changes in mice. Mechanistically, mechanical stretch-induced activation of Piezo1 elevated microRNA-582-5p in vascular smooth muscle cells, with resultant enhanced synthetic cell phenotype and increased collagen deposition via PTEN/PI3K/Akt signalling. Importantly, inhibition of miRNA-582-5p alleviated carotid fibrosis and stiffness not only in HU rats but also in aged rats. CONCLUSIONS: Long-term simulated microgravity induces carotid aging-like changes via the mechanotransducer Piezo1-initiated and miRNA-mediated mechanism.


Subject(s)
Carotid Arteries , Ion Channels , Mechanotransduction, Cellular , MicroRNAs , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Vascular Stiffness , Weightlessness Simulation , Animals , Aging/metabolism , Aging/pathology , Carotid Arteries/metabolism , Carotid Arteries/pathology , Carotid Arteries/physiopathology , Cells, Cultured , Disease Models, Animal , Fibrosis , Hindlimb Suspension , Ion Channels/metabolism , Ion Channels/genetics , Mechanotransduction, Cellular/genetics , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/metabolism , MicroRNAs/genetics , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/physiopathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Phenotype , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Rats, Sprague-Dawley , Signal Transduction , Time Factors , Vascular Remodeling
8.
Microb Cell Fact ; 23(1): 27, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38238808

ABSTRACT

BACKGROUND: Pickled mustard, the largest cultivated vegetable in China, generates substantial waste annually, leading to significant environmental pollution due to challenges in timely disposal, leading to decomposition and sewage issues. Consequently, the imperative to address this concern centers on the reduction and comprehensive resource utilization of raw mustard waste (RMW). To achieve complete and quantitative resource utilization of RMW, this study employs novel technology integration for optimizing its higher-value applications. RESULTS: Initially, subcritical hydrothermal technology was applied for rapid decomposition, with subsequent ammonia nitrogen removal via zeolite. Thereafter, photosynthetic bacteria, Rhodopseudomonas palustris, were employed to maximize hydrogen and methane gas production using various fermentation enhancement agents. Subsequent solid-liquid separation yielded liquid fertilizer from the fermented liquid and soil amendment from solid fermentation remnants. Results indicate that the highest glucose yield (29.6 ± 0.14) was achieved at 165-173℃, with a total sugar content of 50.2 g/L and 64% glucose proportion. Optimal ammonia nitrogen removal occurred with 8 g/L zeolite and strain stable growth at 32℃, with the highest OD600 reaching 2.7. Several fermentation promoters, including FeSO4, Neutral red, Na2S, flavin mononucleotide, Nickel titanate, Nickel oxide, and Mixture C, were evaluated for hydrogen production. Notably, Mixture C resulted in the maximum hydrogen production (756 mL), a production rate of 14 mL/h, and a 5-day stable hydrogen production period. Composting experiments enhanced humic acid content and organic matter (OM) by 17% and 15%, respectively. CONCLUSIONS: This innovative technology not only expedites RMW treatment and hydrogen yield but also substantially enriches soil fertility. Consequently, it offers a novel approach for low-carbon, zero-pollution RMW management. The study's double outcomes extend to large-scale RMW treatment based on the aim of full quantitative resource utilization of RMW. Our method provides a valuable reference for waste management in similar perishable vegetable plantations.


Subject(s)
Soil , Zeolites , Hydrogen , Ammonia , Mustard Plant , Nitrogen , Glucose
9.
Life Sci Space Res (Amst) ; 40: 135-142, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38245338

ABSTRACT

Long-term spaceflight composite stress (LSCS) can cause adverse effects on human systems, especially the central nervous system. This study aimed to identify the underlying mechanisms of the protective effect of Baoyuan Jieyu Formula (BYJYF) on LSCS-induced depressive-like behavior and memory deficits. In this experiment, we simulated the real space station environment for a period of 42 days. Novel object recognition test and forced swimming test were used to assess the memory abilities and depression level of rats as well as test the therapeutic effects of BYJYF treatment. Results showed LSCS could induce depressive-like behavior and damage short-term memory in the behavioral level, and BYJYF could enhance the ability to resist LSCS. Meanwhile, LSCS increased the levels of CRH, ACTH, and CORT and induced HPA axis hyperactivity, which can be relieved by BYJYF. Further, we predicted and verified the potential signaling pathways of BYJYF. Results showed BYJYF may reverse the inhibition of LSCS on Ca2+ channel currents. And we also found that BYJYF may exert its medicinal effects via four main active components including saikosaponin A. Overall, BYJYF exhibited protective effects against LSCS-induced depressive-like behavior and memory deficits, which might be ascribed to the regulation of Ca2+ channel currents and four active components. And it might become a promising candidate medicine for diseases induced by LSCS.


Subject(s)
Depression , Hypothalamo-Hypophyseal System , Humans , Rats , Animals , Depression/chemically induced , Depression/drug therapy , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Memory Disorders/drug therapy , Memory Disorders/etiology , Memory Disorders/prevention & control , Memory, Short-Term/physiology
10.
Rheumatol Ther ; 11(1): 79-96, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37980696

ABSTRACT

INTRODUCTION: Current therapies for autoimmune rheumatic diseases (ARDs) have limited efficacy in certain patients, highlighting the need for the development of novel treatment approaches. This meta-analysis aims to assess the efficacy and safety of low-dose interleukin-2 (LD-IL-2) and evaluate the alterations in lymphocyte subsets in various rheumatic diseases following administration of different dosages of LD-IL-2. METHODS: A comprehensive search was conducted in PubMed, Web of Science, the Cochrane Library, Embase databases and CNKI to identify relevant studies. A total of 31 trials were included in this meta-analysis. The review protocols were registered on PROSPERO (CRD42022318916), and the study followed the PRISMA guidelines. RESULTS: Following LD-IL-2 treatment, patients with ARDs exhibited a significant increase in the number of Th17 cells and Tregs compared to their pre-treatment levels [standardized mean difference (SMD) = 0.50, 95% confidence interval (CI) (0.33, 0.67), P < 0.001; SMD = 1.13, 95% CI (0.97, 1.29), P < 0.001]. Moreover, the Th17/Tregs ratio showed a significant decrease [SMD = - 0.54, 95% CI (- 0.64, - 0.45), P < 0.001]. In patients with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), LD-IL-2 injection led to a significant increase in Treg numbers, and the Th17/Tregs ratio and disease activity scores, including Disease Activity Score-28 joints (DAS28), Systemic Lupus Erythematosus Disease Activity Index (SELENA-SLEDAI) and Cutaneous Dermatomyositis Disease Area and Severity Index (CDASI), were all significantly reduced. No serious adverse events were reported in any of the included studies. Additionally, 54.8% of patients with lupus nephritis achieved distinct clinical remission following LD-IL-2 treatment. Injection site reactions and fever were the most common side effects of LD-IL-2, occurring in 33.1% and 14.4% of patients, respectively. CONCLUSION: LD-IL-2 treatment showed promise and was well tolerated in the management of ARDs, as it effectively promoted the proliferation and functional recovery of Tregs. TRIAL REGISTRATION: Retrospectively registered (CRD42022318916, 21/04/2022).

11.
CNS Neurosci Ther ; 30(3): e14438, 2024 03.
Article in English | MEDLINE | ID: mdl-37849237

ABSTRACT

INTRODUCTION: Long-term spaceflight composite stress (LSCS) can cause adverse effects on human systems, including the central nervous system, which could trigger anxiety and depression. AIMS: This study aimed to identify changes in hippocampus synaptic plasticity under LSCS. METHODS: The present study simulated the real long-term space station environment by conducting a 42-day experiment that involved simulating microgravity, isolation, noise, circadian rhythm disruptions, and low pressure. The mood and behavior of the rats were assessed by behavior test. Transmission electron microscopy and patch-clamp were used to detect the changes in synapse morphology and electrophysiology, and finally, the expression of NMDA receptor channel proteins was detected by western blotting. RESULTS: The results showed that significant weight loss, anxiety, and depressive behaviors in rats were observed after being exposed to LSCS environment for 42 days. The synaptic structure was severely damaged, manifested as an obvious decrease in postsynaptic density thickness and synaptic interface curvature (p < 0.05; p < 0.05, respectively). Meanwhile, LTP was significantly impaired (p < 0.0001), and currents in the NMDAR channel were also significantly reduced (p < 0.0001). Further analysis found that LSCS decreased the expression of two key subtype proteins on this channel. CONCLUSION: These results suggested that LSCS-induced depressive behaviors by impairing synaptic plasticity in rat hippocampus.


Subject(s)
Neuronal Plasticity , Space Flight , Humans , Rats , Animals , Neuronal Plasticity/physiology , Hippocampus , Synapses , Receptors, N-Methyl-D-Aspartate , Long-Term Potentiation/physiology
12.
Small ; : e2307965, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38050950

ABSTRACT

The interaction between fluorinated surface in the partially reduced nano-crystallite titanium dioxide (TiO2-x (F)) and MgH2 is studied for the first time. Compared with pristine MgH2 (416 °C), the onset desorption temperature of MgH2 +5 wt.% TiO2-x (F) composite can be dramatically lowered to 189 °C. In addition, the composite exhibits remarkable dehydrogenation kinetics, which can release 6.0 wt.% hydrogen thoroughly within 6 min at 250 °C. The apparent activation energy for dehydriding is decreased from 268.42 to 119.96 kJ mol-1 . Structural characterization and theoretical calculations indicate that the synergistic effect between multivalent Ti species, and the in situ formed MgF2 and MgF2-x Hx is beneficial for improving the hydrogen storage performance of MgH2 . Moreover, oxygen vacancies can accelerate the electron transportation and facilitate hydrogen diffusion. The study provides a novel perspective on the modification of MgH2 by fluorinated transition metal oxide catalyst.

13.
Sci Rep ; 13(1): 19859, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37963909

ABSTRACT

Theoretically pulse wave velocity (PWV) is obtained by calculating the distance between two waveform probes divided by the time difference, and PWV ratio is used to assess the arterial stiffness gradient (SG) from proximal to distal. The aim was to investigate segmental upper-limb PWV (ulPWV) differences and the effects of hypertension and or aging on each ulPWV and SG. The study collected multi-waveform signals and conduction distances from 167 healthy individuals and 92 hypertensive patients. The results showed significant differences between ulPWVs (P < 0.001), with increased and then decreased vascular stiffness along the proximal transmission to the distal peripheral artery and then to the finger. Adjusted for age and sex, ulPWVs in hypertension exceeded that of healthy individuals, with significant differences between groups aged ≥ 50 years (P < 0.05). The hrPWV/rfPWV (heart-radial/radial-finger) was reduced in hypertension and differed significantly between the aged ≥ 50 years (P = 0.015); the ratio of baPWV (brachial-ankle) to ulPWV differed significantly between groups (P < 0.05). Hypertension affected the consistency of rfPWV with hfPWV (heart-finger). The findings suggest that segmented ulPWV is instrumental in providing stiffness corresponding to the physiological structure of the vessel. The superimposition of hypertension and or aging exacerbates peripheral arterial stiffness, as well as alteration in stiffness gradient.


Subject(s)
Hypertension , Vascular Stiffness , Humans , Vascular Stiffness/physiology , Pulse Wave Analysis/methods , Arteries , Upper Extremity
15.
Transl Psychiatry ; 13(1): 342, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37938258

ABSTRACT

The environment on the space station is quite unique compared to Earth, which is a composite of multiple stressors, such as microgravity, isolation, confinement, noise, circadian rhythm disturbance, and so on. During prolonged space missions, astronauts have to stay in such extreme environments for long periods, which could induce adverse effects on both their physical and mental health. In some circumstances, this kind of long-term spaceflight composite stress (LSCS) could also induce depression and cognitive impairment in various ways, including dysregulating the neuroplasticity of the brains of astronauts, which should be attached to great importance. Here, we have comprehensively reviewed the impact of individual and combined stressors on depression and cognitive function during long-term spaceflight, explained the underlying mechanisms of those effects from the perspective of neuroplasticity, and current countermeasures for mitigating these challenges. This review provides insights into LSCS and potential neuroplasticity mechanisms, current with potentially great impact for understanding and mitigating the mental health risks and traumas of career astronauts and space tourists.


Subject(s)
Cognitive Dysfunction , Space Flight , Humans , Astronauts , Depression/etiology , Cognitive Dysfunction/etiology , Neuronal Plasticity
16.
Environ Sci Technol ; 57(43): 16424-16434, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37844023

ABSTRACT

Mitigating ammonia (NH3) emissions is a significant challenge, given its well-recognized role in the troposphere, contributing to secondary particle formation and impacting acid rain. The difficulty arises from the highly uncertain attribution of atmospheric NH3 to specific emission sources, especially when accounting for diverse environments and varying spatial and temporal scales. In this study, we established a refined δ15N fingerprint for eight emission sources, including three previously overlooked sources of potential importance. We applied this approach in a year-long case study conducted in urban and rural sites located only 40 km apart in the Shandong Peninsula, North China Plain. Our findings highlight that although atmospheric NH3 concentrations and seasonal trends exhibited similarities, their isotopic compositions revealed significant distinctions in the primary NH3 sources. In rural areas, although agriculture emerged as the dominant emission source (64.2 ± 19.5%), a previously underestimated household stove source also played a considerably greater role, particularly during cold seasons (36.5 ± 12.5%). In urban areas, industry and traffic (33.5 ± 15.6%) and, surprisingly, sewage treatment (27.7 ± 11.3%) associated with high population density were identified as the major contributors. Given the relatively short lifetime of atmospheric NH3, our findings highlight the significance of the isotope approach in offering a more comprehensive understanding of localized and seasonal influences of NH3 sources compared to emissions inventories. The refined isotopic fingerprint proves to be an effective tool in distinguishing source contributions across spatial and seasonal scales, thereby providing valuable insights for the development of emission mitigation policies aimed at addressing the increasing NH3 burden on the local atmosphere.


Subject(s)
Air Pollutants , Ammonia , Ammonia/analysis , Seasons , Air Pollutants/analysis , Environmental Monitoring , China
17.
Virol Sin ; 38(6): 860-867, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37839551

ABSTRACT

Cutavirus (CuV) is a novel protoparvovirus possibly associated with diarrhea and cutaneous T-cell lymphomas. Patients with rheumatic disease are immunosuppressed and may be more vulnerable to pathogenic viruses. A descriptive study was conducted among hospitalized patients with rheumatic diseases and individuals undergoing medical health check-ups between June 2019 and June 2022 in Guangzhou, China. Stool samples of subjects were tested for CuV DNA. Demographic and fecal examination data of patients were obtained from electronic medical records. A total of 505 patients with rheumatic diseases and 244 individuals who underwent medical health check-ups were included in the study. Of the patients with rheumatic disease, 5.74% [95% confidence interval (CI): 4.03%-8.12%] were positive for CuV DNA, while no individual in the medical health check-up group was positive, indicating a close correlation between CuV and rheumatic disease. Men and patients with rheumatoid arthritis or ankylosing spondylitis, according to the disease classification, were more susceptible to being infected with CuV (P â€‹< â€‹0.01). After adjustments, being male remained the only significant factor, with an adjusted odd ratio (OR) of 4.4 (95% CI: 1.7-11.4, P â€‹= â€‹0.002). Phylogenetic analysis of the CuV VP2 sequences showed three diverse clades, one of which was segregated to be a single branching independent of previously known sequences, which is possible a new genotype.


Subject(s)
Arthritis, Rheumatoid , Rheumatic Diseases , Spondylitis, Ankylosing , Humans , Male , Female , Phylogeny , Spondylitis, Ankylosing/diagnosis , DNA
18.
Aquat Toxicol ; 262: 106671, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37657145

ABSTRACT

Groundwater in Sri Lanka, contaminated with environmental toxins, is suspected to potentially induce chronic kidney disease of uncertain etiology (CKDu) in humans. This study aims to elucidate the potential mitigating effects of probiotics on kidney damage induced by exposure to this local groundwater (LW) in zebrafish. We used zebrafish as a model organism and exposed them to local groundwater to evaluate the risk of CKDu. Probiotics were then added at a concentration of 108 colony-forming units per milliliter (CFU/mL). Our findings revealed that exposure to local groundwater resulted in abnormalities, such as tail deletion and spinal curvature in zebrafish larvae. However, the addition of probiotics mitigated these effects, improving the hatching rate, heart rate, length, weight, deformity rate, survival rate, and abnormal behavior of zebrafish. It also positively influenced the differential expression levels of kidney development and immunity-related genes (dync2h1, foxj1, pkd2, gata3, slc20a1, il1ß, and lyso). Furthermore, exposure to LW decreased both the diversity and abundance of microbiota in zebrafish larvae. However, treatment with probiotics, such as L. plantarum and L. rhamnosus partially restored the disrupted gut microbiota and significantly impacted the cellular process pathways of the microbial community, as determined by KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. In conclusion, this study highlights the risks associated with Sri Lanka's local groundwater from a CKDu prevalent area and confirms the beneficial effects of different probiotics. These findings may provide new insights into bacterial function in host kidney health.


Subject(s)
Groundwater , Renal Insufficiency, Chronic , Water Pollutants, Chemical , Humans , Animals , Zebrafish , Sri Lanka , Water Pollutants, Chemical/toxicity , Kidney , Larva
19.
Angew Chem Int Ed Engl ; 62(43): e202311654, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37679304

ABSTRACT

Herein, a 2-fold interpenetrated metal-organic framework (MOF) Zn-BPZ-TATB with accessible N/O active sites in nonpolar pore surfaces was reported for one-step C2 H4 purification from C2 H6 or C3 H6 mixtures as well as recovery of C3 H6 from C2 H6 /C3 H6 /C2 H4 mixtures. The MOF exhibits the favorable C2 H6 and C3 H6 uptakes (>100 cm3 g-1 at 298 K under 100 kPa) as well as selective adsorption of C2 H6 and C3 H6 over C2 H4 . The C3 H6 - and C2 H6 -selective feature were investigated detailedly by experimental tests as well as sorption kinetic studyies. Molecular modelling revealed the multiple interactions between C3 H6 or C2 H6 molecules and methyl groups as well as triazine rings in pores. Zn-BPZ-TATB not only can directly generate 323.4 L kg-1 and 15.4 L kg-1 of high-purity (≥99.9 %) C2 H4 from C3 H6 /C2 H4 and C2 H6 /C2 H4 mixtures, but also provide a large high-purity (≥99.5 %) C3 H6 recovery capacity of 60.1 L kg-1 from C3 H6 /C2 H4 mixtures. More importantly, the high-purity C3 H6 (≥99.5 %) and C2 H4 (≥99.9 %) with the productivities of 38.2 and 12.7 L kg-1 can be simultaneously obtained from C2 H6 /C3 H6 /C2 H4 mixtures through a single adsorption/desorption cycle.

20.
Environ Pollut ; 337: 122524, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37683759

ABSTRACT

Chronic kidney disease of unknown etiology (CKDu) is an endemic disease in the dry zone of farming communities, Sri Lanka. The drinking water in a CKDu prevalent area contains a high concentration of F-, hardness and other environmental pollutants, including heavy metals and microcystin, which are considered possible etiology of CKDu in these areas. Here, multi-omics data with host transcriptome, metabolome and gut microbiomes were obtained using simulated local drinking water of Sri Lanka after their exposure to adult zebrafish. Based on an integrated multi-omics analysis in the context of host physiology in the kidney injury samples with different pathologic grades, two common pathways necroptosis and purine metabolism were identified as potentially important pathways that affect kidney injury. The key metabolite acetyl adenylate in the purine metabolism pathway was significantly positively correlated with Comamonas (rho = 0.72) and significantly negatively correlated with Plesiomonas (rho = -0.58). This crucial metabolite and two key gut bacteria genera may not only be potential markers but also potential therapeutic targets in the uric acid metabolic pathway, which is an important factor in the pathogenesis of acute kidney injury (AKI) in general, as well as of chronic kidney disease (CKD). Based on this, we revealed the urea metabolism pathway of kidney injury in zebrafish and provided a new avenue for the treatment of CKDu in Sri Lanka.


Subject(s)
Drinking Water , Renal Insufficiency, Chronic , Animals , Drinking Water/analysis , Zebrafish , Chronic Kidney Diseases of Uncertain Etiology , Multiomics , Renal Insufficiency, Chronic/epidemiology , Sri Lanka/epidemiology , Purines
SELECTION OF CITATIONS
SEARCH DETAIL
...